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Abstract

Humans can learn to solve new tasks by001
inducing high-level strategies from example002
solutions to similar problems and then adapting003
these strategies to solve unseen problems. Can004
we use large language models to induce such005
high-level structure from example documents006
or solutions? We introduce fLSA, a foundation-007
model-based Latent Semantic Analysis method008
that iteratively clusters and tags document009
segments based on document-level contexts.010
These tags can be used to model the latent011
structure of given documents and for hierarchi-012
cal sampling of new texts. Our experiments on013
story writing, math, and multi-step reasoning014
datasets demonstrate that fLSA tags are more015
informative in reconstructing the original texts016
than existing tagging methods. Moreover,017
when used for hierarchical sampling, fLSA018
tags help expand the output space in the right019
directions that lead to correct solutions more020
often than direct sampling and hierarchical021
sampling with existing tagging methods.022

1 Introduction023

Large language models (LLMs) have shown024

impressive performance on a wide range of tasks,025

such as reasoning (Suzgun et al., 2022; Liu et al.,026

2023), math problem solving (Wu et al., 2023),027

and open-ended text generation tasks (Katz et al.,028

2024; Dubey et al., 2024; OpenAI et al., 2024).029

Given natural language instructions or in-context030

examples with chain-of-thought steps, LLMs031

can adapt quickly to a new task and achieve032

outstanding performance on challenging tasks033

that require multi-step reasoning or planning (Wei034

et al., 2022). However, such methods typically rely035

on humans to provide the LLM with instructions or036

chain-of-thought recipes for solving a task. By con-037

trast, humans learn to solve a new type of problems038

by analyzing some example problems and their so-039

lutions, inducing the common strategies (i.e. latent040

semantic structure) underlying these problem so- 041

lutions, and testing them out on the new problems. 042

Inducing the latent semantic structure in a set 043

of documents can be modeled as an unsupervised 044

clustering and tagging problem, where given a set 045

of coarsely segmented documents, we cluster the 046

text segments that share common characteristics 047

into the same set and assign a tag to each set of seg- 048

ments. Based on these segment tags, we can then 049

uncover the latent structure by learning a dynamic 050

model over the latent tags and their transition prob- 051

abilities in the document set. As an example, Fig- 052

ure 1 shows a dynamic model over learned tags in 053

mathematical solutions. Such dynamic models can 054

help humans better understand and analyze large 055

collections of documents and also produce effec- 056

tive guidelines for LLMs to solve new problems (as 057

shown by the example in Figure 2). Additionally, 058

they can also aid in searching algorithms on com- 059

plex reasoning tasks (Guan et al., 2025) through 060

hierarchical sampling: one can sample from the 061

dynamic model over latent tags as an outline for 062

the actual solution steps to explore more diverse 063

solution paths during the rollout stage. 064

In this paper, we introduce fLSA, an iterative 065

algorithm that alternatively clusters and tags doc- 066

ument segments using LLMs based on segment- 067

and document-level contexts. fLSA combines the 068

merits of traditional topic modeling approaches 069

such as Latent Semantic Analysis (LSA) (Hofmann 070

et al., 1999) and LLM-based approaches, and cap- 071

tures shared semantic features among text segments 072

more effectively. We evaluate 1) the informative- 073

ness of fLSA tags by measuring how well they help 074

reconstruct the original text spans, and 2) their use- 075

fulness in expanding the search space in the right 076

directions by measuring the Hits@K accuracy of 077

the generated solutions through hierarchical sam- 078

pling using the tags. Experiments on story writing, 079

math and multi-step reasoning datasets show that 080

fLSA leads to higher reconstruction likelihood than 081
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Figure 1: Visualizing the bigram dynamic model over the latent tags learned on MATH solutions. For each tag, we list the three
most probable next tags based on the transition probabilities p(tk|tk−1). The transition probabilities are annotated on the arrows.
For Tag 24, we also list two example next tags outside the top-3 choices with transition probabilities p ≈ 0.01.

Figure 2: An example of using the sampled tag sequence as an
outline (in purple) to aid an LLM in generating a solution (ital-
icized) to the given problem (in blue).

existing tagging approaches. Furthermore, on math082

and reasoning tasks, hierarchical sampling using083

fLSA tags helps expand the output space in the right084

directions more effectively than both direct sam-085

pling and existing tagging methods.086

2 Related Work087

2.1 Document Segmentation and Labeling088

To model the structure and topic shifts in a doc-089

ument, prior work has introduced unsupervised090

document segmentation and labeling approaches091

that leverage term co-occurrence features (Hearst,092

1997), co-occurrence shifts in topic vectors (Riedl093

and Biemann, 2012), lexical features and word em-094

beddings (Glavaš et al., 2016). These approaches095

focus mostly on lexical features which are limited096

in modeling the high-level semantic structure of097

documents. On the other hand, Neural-based ap- 098

proaches have the potential of modeling sentence- 099

level semantics and document-level topic flows 100

more effective, but rely heavily on supervised train- 101

ing samples in the target domain (Koshorek et al., 102

2018; Arnold et al., 2019; Zhang et al., 2019). Our 103

algorithm infers the structure of documents based 104

on segment- and document-level contexts using 105

LLMs in an unsupervised fashion. 106

2.2 Topic Modeling 107

Topic modeling is a widely used technique in nat- 108

ural language processing for uncovering hidden 109

thematic structures in large text corpora. The most 110

foundational methods in this domain include Latent 111

Dirichlet Allocation (LDA) (Blei et al., 2003) and 112

Latent Semantic Analysis (LSA) (Hofmann et al., 113

1999; Hofmann, 1999, 2001). Both methods repre- 114

sent each document as a bag of words and models 115

word-document relationships using a mixture of 116

latent topics, where each topic is represented by 117

a list of top words. These algorithms are mathe- 118

matically grounded, but typically rely on manual 119

topic interpretation, which often leads to incorrect 120

or incomplete labels (Gillings and Hardie, 2022). 121

More recent work introduces neural topic mod- 122

els (Miao et al., 2016; Dieng et al., 2020; Srivastava 123

and Sutton, 2017), which combine traditional topic 124

models with word embeddings. These models have 125

shown improved performance in handling large and 126

complex vocabularies. However, they still model 127

each document as a bag of words, disregarding the 128

sentence- and document-level semantics. Addition- 129

ally, the resulting topics are represented either by 130

semantic vectors or lists of closest words, which 131
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still rely on manual interpretation. Furthermore,132

studies have shown that incorporating expert knowl-133

edge in topic modeling improves over traditional134

unsupervised methods (Lee et al., 2017).135

Moreover, the advent of large language mod-136

els (LLMs) has led to LLM-based topic model-137

ing approaches. Li et al. (2023) propose to use138

LLMs for topic labeling based their top terms pro-139

duced by traditional topic models. For short text140

spans, however, the bag-of-words representation of141

texts provides limited information for topic mod-142

eling. Akash et al. (2023) address the issue by143

extending each text span into longer sequences144

using LLMs and extracting topics from the ex-145

tended texts using neural topic models. Futher-146

more, Pham et al. (2024); Wang et al. (2023); Mu147

et al. (2024) propose prompt-based techniques to148

generate, merge, and assign topics using LLMs.149

These approaches leverage the domain knowledge150

embedded in LLMs and produce more interpretable151

topics based on sentence or document-level con-152

texts beyond bag of words.153

However, the generate-and-merge approach lim-154

its the model’s potential for discovering shared fea-155

tures among various text spans across documents of156

different themes and often leads to overly abstract,157

thematical topics, especially on a large-scale doc-158

ument collection. We propose fLSA, which com-159

bines the merits of traditional LSA, which uses160

an iterative EM algorithm to model topic and text161

distributions, and LLM-based approaches.162

3 Approach163

We propose fLSA, a foundation-model-based EM164

algorithm that learns the latent tags on a set of165

segmented documents. We draw inspiration from166

the traditional Probabilistic Latent Semantic Anal-167

ysis and use iterative EM steps to learn the latent168

tags that maximize the estimated likelihood of seg-169

mented documents.170

3.1 Probabilistic Latent Semantic171

Analysis (PLSA)172

PLSA models the distribution over words w in a173

document d as a mixture of conditionally indepen-174

dent multinomial distributions, each such distribu-175

tion representing a topic t. This generative model176

of words in a document is usually expressed math-177

ematically in terms of the distribution:178

pΘ(w|d) =
∑
t

pΘ(t|d)pΘ(w|t), (1)179

which can be sampled by first sampling a topic t for 180

the given document d from pΘ(t|d) and then sam- 181

pling words conditioned on the topic from pΘ(w|t). 182

Θ represents the parameters of the PLSA model. 183

PLSA aims to find Θ that maximizes the log- 184

likelihood of words in all documents: 185

L =
∑
d,w

log
∑
t

pΘ(t|d)pΘ(w|t) (2) 186

To estimate the parametric distributions pΘ(t|d) 187

and pΘ(w|t), PLSA relies on an EM algorithm, 188

which is an iterative method to find the maximum 189

likelihood estimate of parameters in statistical mod- 190

els. Specifically, an EM iteration alternates be- 191

tween an expectation (E) step and a maximization 192

(M) step. At iteration i, the E-step estimates the 193

posterior distribution pΘi−1(t|w, d) of topics t con- 194

ditioned on each document d and word w in it 195

based on fixed parameters Θi−1 from the previous 196

iteration: 197

pΘi−1(t|w, d) =
pΘi−1(t|d)pΘi−1(w|t)∑
t′ pΘi−1(t

′|d)pΘi−1(w|t′)
(3) 198

The M-step optimizes the parameters Θ such that 199

the expectation of the log-likelihood pΘ(w|d) of 200

words in each document given t sampled from the 201

estimated posterior pΘi−1(t|w, d) is maximized: 202

argmax
Θ

∑
d,w

Et∼pΘi−1
(t|w,d) log pΘ(t|d)pΘ(w|t)

(4) 203

Theoretically, each EM iteration will yield a larger 204

likelihood in Eq 2 until it converges to a local max- 205

imum. In topic modeling literature, various gener- 206

alized EM variants exist, including the ones that 207

approximate the posterior distribution with a small 208

number of samples, or just the mode of it, and 209

which alter the parameters so that they do not neces- 210

sarily maximize the likelihood under the posterior, 211

but simply improve it. 212

3.2 Foundation-Model-Based LSA (fLSA) 213

We introduce fLSA, which learns the latent 214

tags (similar to topics in LSA)1 on a set of seg- 215

mented documents d = (x1, x2, ..., xL), where 216

the document d is segmented into L segments xk. 217

A core difference between fLSA and PLSA is 218

that PLSA models the generative probability of 219

1We use the terminology tag instead of topic in our algo-
rithm because they may cover shared characteristics among
document segments beyond topics (see the example tags in
Figure 1).
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Figure 3: An illustration of the E-step and M-step in fLSA. At the E-step, we assign each text segment to a tag through prompting
given the tag descriptions at the previous iteration. At the M-step, we prompt the LLM to generate new tag descriptions based on
the segments assigned to each tag at the E-step.

each word in a document independently, while220

fLSA models the probability of the sequence of221

words (w1, w2, ..., wn) in each text segment xk222

jointly as pΘ(w1, w2, ..., wn|t). Moreover, PLSA223

models the distribution over tags pΘ(t|d) for each224

document independently of other documents, while225

fLSA models the distribution over tags t condi-226

tioned not only on current segment xk but also227

on the document d.228

To express the difference mathematically, in229

fLSA, the generative model of a segment xk =230

w1..n in a document d can be written as:231

pΘ(w1..n|xk, d) =
∑
t

pΘ(t|xk, d)pΘ(w1..n|t),

(5)232

which can be sampled by first sampling a tag t for233

the current segment xk in document d and then234

sampling the word sequence w1..n for that segment235

given the tag.236

Another core difference between fLSA and237

PLSA is that we model the parametric distribu-238

tions pΘ(t|xk, d) and pΘ(w1..n|t) using an LLM239

with frozen parameters, and the tunable “parame-240

ters” Θ in fLSA are the textual description Θ(t) for241

each tag t and the tag assignment for each segment.242

Analogously to the (generalized) EM algorithms243

for traditional topic models, we are seeking Θ244

that corresponds to high likelihood of the word245

sequence in each document:246

L =
∑
d,xk

log
∑
t

pΘ(t|xk, d)pΘ(w1..n|t) (6)247

Our iterative EM steps are shown in Figure 3.248

At the E-step in iteration i, we approximate the249

posterior distribution pΘi−1(t|w1..n, xk, d) 250

of tags t for each segment xk = w1..n 251

in document d by prompting the LLM to 252

greedily assign a tag given the tag descrip- 253

tions Θi−1(t) from the previous iteration, the 254

current segment xk = w1..n and neighbouring seg- 255

ments (xk−W/2, xk+1−W/2, ..., xk−1+W/2, xk+W/2) 256

as document-level context, where W is the con- 257

text window size.2 At the M-step, in lieu of 258

maximizing (or just improving) the expected 259

log-likelihood pΘ(w1..n|xk, d) of words in each 260

segment given the tag assignments from the E-step, 261

argmax
Θ

∑
d,xk

Et∼pΘi−1
(t|w1..n,xk,d)

log pΘ(t|xk, d)pΘ(w1..n|t),
(7) 262

we obtain updated tag descriptions Θ(t) by inviting 263

the LLM itself to summarize the segments assigned 264

to the tag t: We aggregate the segments assigned 265

to tag t and prompt the LLM to generate a tag de- 266

scription that best summarizes what these segments 267

share in common (Fig. 3). 268

4 Experimental Setup 269

4.1 Datasets 270

We evaluate fLSA against various baselines on story 271

writing, math problem solving and multi-step rea- 272

soning benchmarks. We use WritingPrompts (Fan 273

et al., 2018), a story writing dataset that contains 274

300K human-written stories paired with writing 275

prompts from an online forum. We randomly 276

2At the first iteration, since the tag descriptions are empty,
we assign tags randomly.
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sample 100 stories from the training set for277

clustering and tagging. We set the number of278

tags to 100 for all tagging approaches. For math279

problem solving, we use MATH (Hendrycks et al.,280

2021), a popular math benchmark that contains281

high school math competition problems on seven282

subjects including Prealgebra, Algebra, Number283

Theory, Counting and Probability, Geometry,284

Intermediate Algebra and Precalculus. We285

learn 100 tags on 1K randomly sampled problem286

solutions from the training set. We also experiment287

on the Big-Bench Hard (BBH) benchmark (Suzgun288

et al., 2022). The original benchmark includes 23289

challenging multi-step reasoning tasks, but each290

task only includes three step-by-step solution291

examples. Instead, we take the 12 tasks used in Xu292

et al. (2024) and learn the tags on the problem293

solutions (produced by their automatic prompt294

inference algorithm) for the 179 training problems.295

We set the number of tags to 50 for BBH.3296

4.2 Evaluation Metrics297

Reconstruction Likelihood To measure the in-298

formativeness of learned tags (either through fLSA299

or a baseline algorithm), we measure the recon-300

struction log-likelihood of the test documents (sto-301

ries in the test set of WritingPrompts or problem302

solutions in the test set of MATH) conditioned on303

the tags.304

Specifically, for each test case xk, which is305

a segment randomly sampled from a test doc-306

ument x1...L (randomly sampled from the test307

corpus), we approximate the reconstruction log-308

likelihood of xk given latent tags tk predicted309

given xk and its neighboring segments under the310

LLM:311

Etk∼pLLM (t|xk,d)[log pLLM (xk|x1...k−1, tk)] (8)312

Specifically, we first sample S alterna-313

tive segments at position k independently314

by {x̃(1)k , x̃
(2)
k , ..., x̃

(S)
k } ∼ pLLM (·|x1...k−1).315

Next, we conduct T repeated experiments to316

approximate the log-likelihood of xk given317

the previous segments x1. . . k−1 and the tag tk318

predicted on xk under the LLM. Each time,319

we randomly sample C alternative segments320

from {x̃(1)k , x̃
(2)
k , ..., x̃

(S)
k } and put it together321

with xk (in randomly shuffled order) as options and322

ask the LLM which one is the true continuation323

3All datasets used in the work are under MIT license. Our
use of the datasets is consistent with their intended use.

conditioned on x1...k−1 and tk. Based on the 324

number of times (denoted as ck) that the LLM 325

chooses xk as the true continuation among all T 326

experiments, we estimate the reconstruction 327

log-likelihood with alpha-smoothing (α = 0.1): 328

Etk∼pLLM (t|xk,d)[log pLLM (xk|x1...k−1, tk)]

= log
ck + α

T + αS

(9) 329

As a baseline, we compare the reconstruction log- 330

likelihood with the log-likelihood computed the 331

same way as above but without conditioning on 332

any tags: 333

E[log pLLM (xk|x1...k−1)] = log
c′k + α

T + αS
(10) 334

where c′k is the number of times that the LLM 335

chooses xk as the true continuation among T ex- 336

periments, which is computed the same way as 337

above except that when asking the LLM to choose 338

the true continuation, we only provide the previous 339

text segments x1...k−1 without any tags. 340

In our experiments, we evaluate the reconstruc- 341

tion log-likelihood of all methods on the same set 342

of 1K randomly sampled test cases. 343

Hits@K Accuracy To demonstrate that the 344

learned tags can also help expand the search 345

space in the right directions when searching for 346

effective solutions to a complex reasoning task, 347

we learn a dynamic model over the latent tags (as 348

shown by the example in Figure 1) and use it for 349

hierarchical sampling, where we first sample a 350

sequence of tags as an outline and then sample 351

the actual text based on the outline. And then, 352

we evaluate the Hits@K accuracy of hierarchical 353

sampling with latent tags, and compare it with the 354

Hits@K accuracy of direct sampling without tags. 355

Specifically, for each problem, we sample K = 50 356

solutions independently from an LLM given the 357

problem description either directly or through 358

hierarchical sampling with latent tags. If any of 359

the K solutions leads to the correct answer, it gets 360

a score of 1, otherwise 0. Finally, we compute the 361

average score over all testing problems. 362

For hierarchical sampling, we first sample a se- 363

quence of tags (t1, t2, ..., tl) (up till the special tag 364

<END>) with maximum length L using a bigram 365

model learned on the training data (without condi- 366

tioning on the test problem): 367

p(t1, t2, ..., tl)

=p(t1)p(t2|t1)...p(tl|tl−1)p(<END>|tl)
(11) 368
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And then, we prompt the LLM to generate a so-369

lution to the given problem based on the tag se-370

quence (t1, t2, ..., tl) using the prompt template371

shown in Figure 2.372

4.3 fLSA Setup373

For the EM procedure, we set the maximum num-374

ber of iterations to 30.4 At the E-step (where the375

LLM assigns a tag to each segment conditioned not376

only on the current segment but also on neighbour-377

ing segments within the context window), we use a378

context window size of 2 on WritingPrompts and379

use unlimited context window (such that the whole380

solution is used as context) on MATH and BBH.381

At the M-step, we randomly sample 10 segments382

assigned to each tag to update the tag description.383

4.4 Baselines384

TradLDA We compare our approach with the385

traditional Latent Dirichlet Allocation (TradLDA),386

a type of LSA algorithm designed to discover387

latent topics in a collection of text spans (Blei388

et al., 2003).389

TradLDA+LLM As Li et al. (2023) showed that390

the topic labels generated by LLMs based on the391

key terms learned through TradLDA are preferred392

more often than the original labels, we also include393

TradLDA+LLM as a baseline. Specifically, we first394

learn the topics and the key terms for each topic395

using TradLDA, and then use GPT-4 to generate a396

description for each topic based on the key terms.397

Prompting Recent work showed that, with ap-398

propriate prompts, LLMs are capable of directly399

generating topic labels given a set of text docu-400

ments and condensing overarching topics (Pham401

et al., 2024; Wang et al., 2023; Mu et al., 2024).402

As a baseline, we adapt the approach (along with403

the prompts) in Mu et al. (2024) to generate topic404

descriptions for each text segment.405

GenOutline For Hits@K accuracy, we also in-406

clude a two-step sampling baseline, where we first407

prompt the LLM to generate a multi-step outline408

for solving this type of problem and then prompt409

the LLM to generate the actual solution based on410

the problem description and the outline.411

4We found in our preliminary experiment that the learned
tag descriptions become stable (with very little semantic
changes) in less than 30 iterations.

4.5 Large Language Model Setup 412

For clustering and tagging, we use GPT-4 (OpenAI 413

et al., 2024) for all approaches. We set top_p = 414

0.5, sampling temperature τ = 1.0, zero fre- 415

quency and presence penalty. We also use GPT-4 416

with top_p = 0.5 to estimate the reconstruction 417

log-likelihood. We set the temperature τ = 1.0 418

when sampling alternative segments and τ = 0 419

when choosing the best continuation. 420

To measure Hits@K Accuracy, we use Chat- 421

GPT (gpt-3.5-turbo; OpenAI (2023)) instead of 422

GPT-4, because GPT-4 has achieved high accuracy 423

on MATH and BBH (e.g. 84% on MATH (Zhou 424

et al., 2023)), possibly due to data contamination is- 425

sues (Deng et al., 2024; Bubeck et al., 2023). Thus, 426

we use ChatGPT for solution sampling to show 427

the potential of using learned tags to diversify the 428

sampled outputs and improve the chance of find- 429

ing a correct answer when the model cannot find 430

it through direct sampling. We set top_p = 0.5 431

and temperature τ = 1.0 when sampling solutions 432

from ChatGPT. 433

5 Results 434

5.1 Reconstruction Likelihood 435

First, we compare the reconstruction log-likelihood 436

of fLSA with the No Tag baseline (without condi- 437

tioning on any tags). As shown in Table 1, condi- 438

tioning on fLSA tags helps predict the original texts: 439

fLSA brings 0.7–1.4 higher log-likelihood than the 440

No Tag baseline. 441

TradLDA also brings higher reconstruction log- 442

likelihood over the No Tag baseline. How- 443

ever, since TradLDA only captures word or 444

term co-occurrences, it still underperforms fLSA 445

consistently on all three datasets. Moreover, 446

TradLDA+LLM fails to improve over TradLDA. 447

As shown by the examples in Table 2, it is ex- 448

tremely challenging for LLMs and even humans to 449

extract meaningful semantic information from the 450

key terms learned on short text segments through 451

TradLDA, and the resulting tag descriptions are 452

overly generic, making it challenging to reconstruct 453

the original text segments accurately. 454

Compared with the Prompting baseline, fLSA 455

achieves 0.2–0.5 higher log-likelihood on all three 456

datasets. We further compared the tags learned us- 457

ing Prompting versus fLSA. As shown by the exam- 458

ples in Table 3, Prompting tends to merge unrelated 459

topics into a mixed topic (e.g. Tag 1 and 2), and the 460

resulting topics become overly broad. Even for tags 461
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No Tag TradLDA TradLDA+LLM Prompting fLSA

WritingPrompts -4.81 -3.75 -4.12 -3.62 -3.43
MATH-Num -3.32 -2.96 -3.28 -3.06 -2.64
MATH-All -3.67 -3.16 -3.57 -3.44 -2.94

Table 1: Reconstruction log-likelihood of fLSA versus the baseline without tags (No Tag), traditional LDA (TradLDA), traditional
LDA with LLM-generated tag descriptions (TradLDA+LLM) (Li et al., 2023), and the prompting baseline (Prompting) (Mu et al.,
2024) on WritingPrompts story dataset, Number Theory dataset from MATH (MATH-Num), and the MATH (MATH-All) dataset.

Key Terms Tag Description

nothing, get, life, else, light, across, best, ca, sin-
gle, come, got, death, together, running, power,
system, entire, could, control, everything

The words you’ve provided span a broad range
of concepts, but they share a common denom-
inator in that they can all be associated with
themes commonly found in science fiction liter-
ature and media.

continued, surface, wait, raised, floor, slowly,
give, new, sure, needed, around, also, face, body,
fact, made, bitch, girl, guy, much

The words listed seem to be common English
words that could appear in a wide range of con-
texts. However, given their generic nature, they
could be particularly prevalent in narrative or de-
scriptive writing, such as in fiction, storytelling,
or personal narratives.

Table 2: Examples of key terms learned on short story segments in WritingPrompts through TradLDA and the corresponding tag
descriptions generated by GPT-4. Given only the key terms without context, the tag descriptions produced by GPT-4 are too
generic to recover the original text spans.

Prompting Tags fLSA Tags

Tag 1: Stories involving themes of sacrifice,
duty, friendship, companionship, hope, and re-
silience in the face of crisis.

Tag 1: Scenes involving intense, often danger-
ous situations, like explosions, retreats, long
nights, empty streets, fires, and storms.

Tag 2: Stories involving time travel, genetic
irregularities, and strange creatures that feed on
negative emotions.

Tag 2: The protagonist experiences surreal and
unexpected events, often involving time travel
or strange bodily functions, and narrates them
in a casual, humorous tone.

Tag 3: Stories involving emotional moments
and first hugs.

Tag 3: This tag is associated with story seg-
ments that feature intense emotional moments,
often involving fear, anger, or distress, and fre-
quently serve as turning points or climactic
scenes in the narrative.

Table 3: Example tags learned on short story segments in WritingPrompts through Prompting versus fLSA. Prompting tags are
either too mixed (e.g. Tag 1 and 2) or too generic (e.g. Tag 3), while fLSA groups segments of similar themes into the same
cluster and describes each cluster with detailed explanations and example plots.

sharing a common theme, the descriptions often462

lack specificity and detail (e.g. Tag 3). By con-463

trast, fLSA identifies segments with similar themes,464

groups them into a single cluster and produces465

more detailed tag descriptions with example plots.466

5.2 Hits@K Accuracy467

We further evaluate how the tags and semantic468

structure learned through fLSA help expand the469

output space in the right directions that lead to470

correct solutions by measuring the Hits@K Accu- 471

racy of various sampling methods with or without 472

tags. First, compared with direct sampling without 473

using any tags, hierarchical sampling with fLSA 474

tags leads to significantly higher Hits@K accuracy 475

by +10.0 points on MATH and +16.6 points on 476

BBH on average. Additionally, we compare fLSA 477

with GenOutline, a two-step sampling approach 478

where we prompt the LLM to generate an outline 479

before generating the actual solution. GenOutline 480
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No Tag GenOutline TradLDA TradLDA+LLM Prompting fLSA

MATH

Algebra 88.6 90.1 93.6 89.6 91.1 90.1
Counting 61.3 60.4 69.8 65.1 69.8 70.8
Geometry 53.1 55.2 58.3 57.3 62.5 60.4
InterAlgebra 55.7 51.7 58.7 59.2 61.2 61.2
Number 65.4 76.0 77.9 74.0 78.8 83.7
PreAlgebra 74.2 79.1 81.3 81.3 84.6 89.0
PreCalculus 42.2 46.8 51.4 46.8 49.5 55.0

Average 62.9 65.6 70.1 67.6 71.1 72.9

BBH

Date 92.8 94.4 95.6 95.2 95.2 98.8
Formal 45.2 61.2 65.6 52.8 57.2 93.2
Geometric 70.8 76.8 83.6 84.0 80.0 87.6
Logical 89.2 95.6 95.6 96.0 96.5 99.5
Movie 84.8 88.0 92.8 92.0 93.2 95.2
ObjCount 93.2 96.8 99.2 100.0 100.0 95.2
Penguins 93.8 99.3 99.3 100.0 99.3 99.3
ReasonColored 92.8 97.6 98.4 98.8 98.8 100.0
RuinNames 64.8 74.8 69.6 70.0 80.0 93.6
TranslationError 52.4 68.4 60.4 60.0 63.6 75.2
Temporal 86.4 98.4 93.2 96.8 98.0 100.0
WordSort 27.2 36.4 16.0 14.8 42.0 56.0

Average 74.5 82.3 80.8 80.0 83.7 91.1

Table 4: Hits@K accuracy of fLSA versus directly sampling without tags (No Tag), two-step sampling with LLM-generated
outline (GenOutline), traditional LDA (TradLDA), traditional LDA with LLM-generated tag descriptions (TradLDA+LLM) (Li
et al., 2023), and the prompting baseline (Prompting) (Mu et al., 2024) on 12 challenging tasks from BBH benchmark (Suzgun
et al., 2022) and 7 tasks from MATH (Hendrycks et al., 2021).

improves over direct sampling on most tasks, but481

still underperforms hierarchical sampling with482

fLSA by 7–9 points. These results indicate that483

hierarchical sampling using tags derived from the484

domain-specific documents via fLSA produces485

more effective output solutions, thereby increasing486

the likelihood of hitting the correct answer with487

K samples.488

Next, we compare fLSA with hierarchical sam-489

pling with existing tagging approaches. fLSA tags490

expand the output space in the directions that lead491

to correct answers more often than TradLDA on 16492

out of 19 tasks. It brings an average Hits@K Ac-493

curacy improvement of 3–10 points over TradLDA.494

Similarly, compared with TradLDA+LLM, fLSA495

achieves higher Hits@K Accuracy on 17 out of 19496

tasks and improves the average accuracy by 5–11497

points across BBH and MATH. Compared with the498

Prompting baseline, fLSA achieves higher Hits@K499

Accuracy on 14 out of 19 tasks. Overall, hierar-500

chical sampling with fLSA tags improves Hits@K501

Accuracy over existing tagging approaches by 2–11 502

points on average. 503

6 Conclusion 504

We introduced fLSA, a foundation-model-based 505

Latent Semantic Analysis method that aims to 506

uncover the latent semantic structures in document 507

collections by iteratively clustering and tagging 508

document segments based on document-level 509

contexts. Our experiments on story writing, math 510

and multi-step reasoning tasks show that fLSA tags 511

are more informative in reconstructing the original 512

texts than tags generated by existing tagging 513

methods. fLSA tags are also useful in expanding the 514

output space via hierarchical sampling to increase 515

the likelihood of discovering correct solutions to 516

complex reasoning problems. These results sug- 517

gest the potential of fLSA for generating effective 518

task guidelines given some worked-out examples, 519

along with hierarchical sampling and searching for 520

problem solutions on challenging reasoning tasks. 521
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7 Limitations522

One limitation of fLSA is that some of the tags pro-523

duced by fLSA may be semantically similar to each524

other, which can be ideally merged into a single525

tag. This limitation could be addressed by incorpo-526

rating a tag fusion step in the EM algorithm, which527

we leave for future work. In addition, although528

the fLSA algorithm is agnostic to the LLM being529

used, we only test it on GPT-4 (which is one of the530

most powerful and widely used LLMs). Testing the531

algorithm on smaller models can be an interesting532

future work.533

This work also has potential risks. One major534

risk is that the tags learned using fLSA may re-535

flect the undesirable biases within the LLM be-536

ing used. Integrating bias detection and mitigation537

techniques within the algorithm could be useful for538

addressing the issue.539
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