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Abstract

We introduce a machine learning approach to determine the transition1

dynamics of silicon atoms on a single layer of carbon atoms, when stimulated2

by the electron beam of a scanning transmission electron microscope (STEM).3

Our method is data-centric, leveraging data collected on a STEM. The data4

samples are processed and filtered to produce symbolic representations,5

which we use to train a neural network to predict transition probabilities.6

These learned transition dynamics are then leveraged to guide a single7

silicon atom throughout the lattice to pre-determined target destinations.8

We present empirical analyses that demonstrate the efficacy and generality9

of our approach.10

1 Introduction11

Sub-atomically focused electron beams in scanning transmission electron microscopes (STEM)12

can induce a broad spectrum of chemical changes, including defect formation, reconfiguration13

of chemical bonds, and dopant insertion. Several groups have shown the feasibility of direct14

atomic manipulation via electron beam stimulation, which holds great promise for a number15

of downstream applications such as material design, solid-state quantum computers, and16

others [Jesse et al., 2018, Susi et al., 2017b, Dyck et al., 2017, Tripathi et al., 2018, Dyck17

et al., 2018]. One of the challenges for advances in this space is that these types of atomic18

manipulation rely on manual control by highly-trained experts, which is expensive and slow.19

The ability to accurately automate this type of beam control could thereby result in tremen-20

dous impact on the feasibility of atomic manipulation for real use cases. A critical requirement21

for this automation is accurate estimation of the transition dynamics of atoms when stimu-22

lated by focused electron beams. To date, the microscopy community has relied on heuristic23

estimates for these transition dynamics, with anecdotal evidence of their accurateness. Indeed,24

the common practice has been to use the physically intuitive, but heuristic, assumption that25

the optimal beam position is directly on a neighboring atom.26

In this paper we present a technique for estimating these atomic transition dynamics using27

machine learning techniques on collected observations. Our approach consists in a sequence28

of steps ultimately resulting in a probability distribution over possible beam positions relative29

to a particular atom, conditioned on the atom’s prior position as well as the electron beam’s30

location and dwell time. While evaluated on single silicon atom (typically referred to as a31

dopant) on a lattice of carbon atoms (graphene), our methodology can be generally applied32

to other materials.33
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Figure 1: Left: Illustration of graphene with a single dopant. Carbon atoms depicted
with black circles, while the silicon atom in blue; Center: Contour map learned by our
method, depicting the probability of transitioning to each of the neighbours for different
beam positions. The distributions for each of the neighbours are differentiated using three
colours, and the numbers indicate neighbour ordering as discussed in Section 3.3; Right:
Example trajectory of dopant towards a goal position.

To demonstrate the practical validity of our approach, we use our learned transition probabil-34

ities to automate the sequential control of a silicon atom on graphene towards a pre-specified35

target position. Modern STEMs are capable of this type of automation, and our work paves36

the way for future advances in automated atomic control.37

2 Problem description38

Our system consists of graphene: a single layer of carbon atoms arranged in 3-fold con-39

figuration (i.e. every carbon atom is connected to three other carbon atoms). On this40

lattice, a single silicon atom (hereafter referred to as the dopant) has taken the place of41

one of the carbon atoms. We focus an electron beam on a position in the area spanned42

by the dopant and its three carbon neighbours for a specified amount of time (referred to43

as the dwell time). This electron beam stimuli can result in the dopant moving to one of44

its neighbours (by trading places with the respective carbon atom), or in the configuration45

remaining unchanged1. This configuration has been extensively explored, and hence is an46

ideal system for exploring this type of automation [Dyck et al., 2017, Markevich et al., 2020,47

2021]. We provide an illustration of this configuration in the left panel of Figure 1.48

Our objective is to learn a probability distribution over the position of the dopant, conditioned49

on its current position, beam location, and beam dwell time. If accurate, we can use this50

distribution to determine the optimal beam location and dwell time so as to induce the51

dopant to move to one of its neighbouring positions. In the center panel of Figure 1 we can52

see a heat map depicting the transition probabilities for each of the dopant’s neighbours53

(differentiated with colors) for varying beam locations.54

Equipped with these probability maps, we can repeatedly induce transitions of the dopant to55

neighbouring atoms, resulting in a full trajectory. In other words, we can use a fully greedy56

strategy to move the dopant to any pre-specified target position on the lattice via a simple57

shortest-distance path. In the right panel of Figure 1 we depict one such possible trajectory.58

3 Description of Methodology59

In this section we detail the methodology we used in order to learn the transition dynamics60

of electron-beam induced atomic manipulation, illustrated in Figure 2. We used a Nion61

UltraSTEM 100, which grants us access to nearly every microscope control via a Python62

1Note that for long dwell-times this ”unchanged” outcome can be a result of the dopant moving
twice: once to its neighbour and then back to its original position.
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Figure 2: An overview of the full pipeline for learning the transition probabilities.

API. The silicon dopant atoms have been inserted into the lattice in a previous step at a63

higher (100 kV) accelerating voltage, which is described elsewhere [Roccapriore et al., 2023].64

3.1 Data collection65

Our methodology relies on real data collected with a STEM device, so it is important that66

the data gathered is informative for the task at hand. Since we are concerned with the67

transition dynamics of the dopant, our data collection approach is as follows:68

1. Acquire an initial image of the graphene. For this, we used a field of view of 3 nm69

with the dopant in the center. A sample image is shown on the bottom-left panel of70

Figure 3.71

2. Sample a position uniformly within a 2.84 Å radius2 of the atom. In the top-center72

panel of Figure 3 we display the normalized beam positions.73

3. Focus the electron beam at that position for a dwell time drawn from a distribution74

mostly between 1 and 10 seconds. The top-left corner of Figure 3 displays the75

distribuion of dwell times.76

4. Acquire a final image of the graphene.77

There are a few considerations that are worth mentioning. First, it is important to gather78

multiple samples using the same beam position and dwell time, as transitions are probabilistic.79

Second, image acquisition is done using the same electron beam, which implies that imaging80

itself can cause a transition; to mitigate this, the imaging electron dose should be minimized.81

Third, placing the electron beam in a known position relative to the silicon should be82

conducted in a controlled and automated fashion – for this, atomic coordinates must be83

known in as close to real time as possible, and flexible control of the beam position is needed.84

3.2 Atomic alignment85

In the bottom-left panel of Figure 3 we display one of the raw images captured with the86

STEM device, and to the right of it the processed output. The processed image is an87

“idealized” configuration as illustrated in Figure 1, which are easier to operate on. While it88

is relatively simple to identify the atoms in a single image, there are some challenges that89

arise when using more than one raw image, as discussed in Section 3.1: the graphene sheet90

may have physically moved between image acquisition steps (specimen drift), and there may91

be aberrations (such as warping) caused by the electron beam. To be able to use the images92

acquired for learning transition dynamics, we need not only need to detect the atoms in each93

2Chosen to be the cumulative length of two carbon-carbon bonds.
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Figure 3: Top row: Histogram of dwell times (left) and standardized beam positions (center)
used for data acquisition; beam position data augmented for three neighbours (right). In
the beam position plots, grey and colored circles represent negative and positive transitions,
respectively. The colored circles with a black border represent the neighbouring atoms.
Bottom left: Raw image acquired from the STEM (left), and processed image after atom
detection (right). Bottom right: The result of conducting multiple alignment iterations
with a trained convolutional aligner. Orange dots reflect estimated atom positions in the
previous scan, blue dots reflect atom positions in the current scan, and red dots are dopant
positions. As can be observed, the discrepancies diminish with additional iterations.

of the separate images, but also to be able to map each of the atoms from one image to the94

next.95

We considered three solutions to this problem. A classical approach would be to take the96

cross-correlation between the two scans and estimate the drift to be the arg max of this97

cross-correlation. Unfortunately, as images of this system are generally dominated by the98

very bright silicon dopants, this has the net effect of always aligning the dopant positions99

between time steps – leading to a conclusion that the dopants never move, which is known100

to be false. A second, more sophisticated alternative considered was to use the iterative101

closest points (ICP) algorithm on the extracted atom positions (a similar technique as used102

by Roccapriore et al. [2021]). This allows us to equally weight the dopant and non-dopant103

atoms, simply aligning the lattices together. This method led to acceptable alignments in104

most cases, but it was quite sensitive to failures in atom detection.105

Our final, most robust solution was to use a denoising convolutional neural network to106

solve the alignment problem directly from scans of the system. Given a stack of image107

observations (𝑜1, ..., 𝑜𝑛), the network is trained to predict the drift between 𝑜𝑛−1 and 𝑜𝑛, 𝑑𝑛,108

as a two-dimensional vector. Historical observations 𝑜1, … , 𝑜𝑛−2 serve to provide context109

and noise reduction, but are not used in the loss; as they have already been approximately110

aligned with 𝑜𝑛−1, they provide additional information about the needed shift. After the111

network has been applied, we take its prediction ̂𝑑𝑛 and shift the current observation by it112

to align it to the prior observations, and add it to the current stack of observations.113

To train this network, we generated a dataset of synthetic trajectories, each consisting of114

sequential image observations of a doped graphene system under random, correlated drift.115

To add robustness, we applied both trajectory-wide augmentation by randomly dropping116

atoms, introducing regions of bright contamination, and adding synthetic large holes to the117

system. We then simulated drift, treating the direction and magnitude of the drift as a118

temporally correlated random variables. Finally, we took a series of synthetic scans with the119

simulated cumulative drifts applied; for each scan, we also randomly perturbed the system,120

occasionally dropping or moving atoms. We parameterized the network as six convolutional121
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layers followed by downsampling, followed by a single fully-connected layer. We trained drift122

correction prediction with mean squared error.123

Note that the estimation of 𝑑𝑛 is a denoising task. Given this, we can iteratively apply124

our network for more precise drift correction. We find that this has a very large impact on125

performance. Qualitatively it is clear that the alignment quality increases with additional126

iterations (see bottom-right panel of Figure 3). Quantitatively, a transition model trained127

on only single-step-aligned data produces markedly different estimates of the optimal beam128

position, which are not able to successfully cause transitions when applied to the greedy129

controller (see “Past Neighbor” in Figure 4).130

3.3 Data filtering, augmentation, and structure131

As there are many possible sources of noise and error in our data, we conduct aggressive132

filtering prior to training. Out of a starting data set size of 6, 754 examples, we discard133

transitions where: (1) There is no recorded beam position (793 examples); (2) There is not134

exactly one (1) detected dopant atom before and after the transition (4 examples); (3) The135

dopant does not have the expected number of neighbors (3) before and after the transition136

(3, 593 examples); and (4) The neighbors are not roughly the expected distance (1.42-1.7 Å)137

from the dopant (411 examples).138

These led us to discard approximately 80% of the data we received from the microscope,139

resulting in a final dataset of 1, 953 examples. Once filtering has been done, we further140

post-process our observations to create a uniformized training set. To express beam positions141

in a consistent format, we translated them to a frame-of-reference relative to the current142

position of the dopant to be moved, with this atom at the origin. We then label the neighbor143

closest to the beam position as neighbor 1; we rotate the system, including the beam, such144

that this atom lies on the x-axis. The neighboring atoms are then numbered accordingly in145

counter-clockwise order; these are the indices we predict in our classification. We denote ”no146

movement” as index 0. This labeling is illustrated in the top-center panel of Figure 1.147

In the structure noted above, there is no systematic difference between the three neighboring148

atoms; only their distance from the beam separates them. As we expect our system to be149

invariant to both rotation and reflection, we enforce this by adding data augmentation. To150

do this, we first reflect across the x-axis with 50% probability. This exchanges the second151

and third neighbors. We then apply 0∘, 120∘or 240∘rotations with equal probability, rotating152

the neighbor indices accordingly. This leads to an effective sixfold increase in data coverage.153

The top-right panel of Figure 3 visualizes the beam positions post-augmentation.154

3.4 Learning the transition dynamics155

Experimentally, we modeled our problem as a classification task, estimating 𝑃(𝑆′|𝑎), where156

𝑆′ is the position of the silicon at the next time step, 𝑠0 is its current position, and 𝑎 is the157

beam dwell action chosen by the user, specified as a two-dimensional coordinate 𝑥 and a158

duration in seconds Δ𝑡. To constrain our predictions to respect the observed physical reality159

(i.e., that the probability of moving to another state should be monotonically increasing160

in Δ𝑡), we further formulate the problem as predicting transition rates [Voter, 2007]. We161

decompose this as a total rate 𝜆 and a categorical distribution over possible next states 𝑦; this162

corresponds to decomposing 𝑃(𝑆′|𝑎) into a probability of any transition, 𝑃(𝑆′ ≠ 𝑠0|𝑠0, 𝑎),163

and a distribution over which next state is chosen if a transition occurs, 𝑃(𝑆′|𝑠0, 𝑎, 𝑆′ ≠ 𝑠0).164

We parameterize 𝑃(𝑆′ ≠ 𝑠0|𝑠0, 𝑎) as 1 − 𝑒−𝜆Δ𝑡 – i.e., as an exponential CDF. If desired,165

per-neighbor rates are simply given by 𝜆𝑦. We use then formulate maximum likelihood loss166

functions for the total rate and distribution over neighbors:167

J𝑟𝑎𝑡𝑒 = −𝟙(𝑆′≠𝑠0) ⋅ (−𝜆Δ𝑡) − 𝟙(𝑆′=𝑠0) log(1 − exp(−𝜆Δ𝑡) (1)
J𝑛𝑒𝑥𝑡 = −𝟙(𝑆′≠𝑠0)(𝑆′ ⋅ log 𝑦) (2)
J𝑡𝑜𝑡𝑎𝑙 = J𝑟𝑎𝑡𝑒 + J𝑛𝑒𝑥𝑡 . (3)
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Figure 4: Left: The proportion of transitions that induced the intended transition in under
a 5 second dwell. Right: The beam placement strategies considered in our experiments.

Given the above loss function, we trained a three-layer neural network using Adam with168

weight decay [Kingma and Ba, 2015] and ReLU hidden layer nonlinearities, trained with169

the cross-entropy loss for 500 epochs using batch size 256. We predicted 𝜆 with a softplus170

activation and 𝑦 with a softmax. We whiten all inputs to the network prior to training, for171

stability.172

To improve the robustness of our transition model to initializations, we trained an ensemble173

of transition predictors of bootstrap-resampled datasets. In addition to giving us the ability174

to esimate uncertainties, this significantly improved our overall accuracy and robustness To175

support more rapid inference, we also distilled this ensemble to a single transition predictor.176

By using widely-sampled random beam positions and a large number of training steps, this177

distillation could be made to fairly precisely match the ensemble predictions.178

We display an example of the probability contours found by our system in the center panel179

of Figure 1. Note that we are overlaying three different probability distributions (one for180

each neighbour), where the colours are used to distinguish them. Our main finding confirms181

what was anecdotally held to be true by the microscopy community:182

To induce the dopant to transition to one of its neighbours, the optimal beam
placement is directly on the neighbour, with a 50% probability of causing a transition
with a five second dwell time.

183

Perhaps more relevant than dwell time is the number of electrons emitted, which is a function184

of both dwell time and the beam current. For our experiments we used a beam current of 90185

pA, resulting in approximately 3 billion electrons in a five second period.186

4 Empirical evaluation187

While our main finding is consistent with previously held beliefs in the community, we do not188

have ground-truth data for the learned transition probabilities to quantitatively assess the189

accuracy of our predictions. However, as discussed in Section 2, the purpose of learning these190

transition probabilities is to be able to automate atomic manipulation, so in this section we191

evaluate the efficacy of our learned transition functions for this purpose. Specifically, our192

experiments are conducted as follows:193

1. Start from a configuration with one dopant and 3-fold connections to neighbours,194

with the field-of-view (FOV) centered at the dopant.195

2. Pick an arbitrary carbon atom as the goal position.196

3. Focus the beam on a position dictated by one of the strategies (defined below).197

4. Acquire an image to determine if we caused a transition.198

5. Repeat above steps until the dopant has arrived at the goal position, or until we199

have reached the maximum allowable attempts.200
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Figure 5: Left: Number of positive transitions in dataset versus the sum of squared
prediction error. Right: A visualization of some of the synthetic rate functions overlayed
on a sheet of graphene. The contours represent the rate of transitioning to the associated
neighbor.

In order to determine that on-neighbour is in fact the optimal beam placement, we use a few201

different strategies for beam placement, detailed below and illustrated in Figure 4 (Right).202

• On neighbour: our proposed optimal strategy203

• Short of neighbour: place the beam in between the dopant and its neighbour)204

• Past neighbour: place the beam beyond the neighbour atom205

• Perpendicular offset: offset the beam perpendicularly from neighbour206

• Learned dynamics (less data): we ran the learning method detailed in Section 3.4,207

but with approximately half of the collected data. When doing so, the resulting208

”optimal” beam placement was just past the neighbour.209

For consistency, we used a constant 5s dwell time for all agents. We measured the number210

of times the electron beam was used to try and induce a dopant transition and report211

the findings in Figure 4. We observe that the on neighbor strategy induces the intended212

transition on average over 50% of the time, whereas the other approaches are below 25%.213

5 In-depth empirical analyses214

5.1 Synthetic data215

To test the learning behavior of our transition model without facing the risk of overfitting to216

our relatively small real-world dataset, we generated many datasets of simulated microscope217

interactions. We used these synthetic datasets both to perform hyperparameter selection on218

our transition model and to demonstrate the scaling and learning performance of the model.219

To generate these datasets, we sampled synthetic transition probability distributions as220

mixtures-of-Gaussians, each giving the non-normalized transition rates to neighboring states221

given a certain beam position (equivalent to the predicted per-state rates 𝜆𝑦 in our neural222

network model). Figure 5 (Right) is representative of the synthetic rate functions used223

throughout this section. Doing so grants us ground-truth data for transition probabilities,224

allowing us to quantitatively assess the accuracy of our learned transition model.225

When creating a dataset, we first generate a simulated graphene sheet with a single dopant.226

We then uniformly sample random actions within 2Å of the silicon and simulate the transitions227

of the silicon according to the rate function, continuing until a certain number of positive228

transitions have been observed (As positive transitions are generally far rarer than negative229

transitions, they are the critical determiner of effective dataset size). To simplify comparisons230

between datasets, we enforce that the synthetic rate functions for each dataset have the same231

maximum value, preventing us from sampling datasets that are entirely positive transitions232

or almost entirely negative transitions.233
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We can then use a synthetic dataset to evaluate a learning algorithm by training on it and234

directly comparing its predictions (here, the predicted rates 𝜆𝑦) to the known true values235

across a large grid of beam positions (a uniformly-spaced 2d grid surrounding the dopant).236

For simplicity, we report the sum of squared differences across this grid.3237

5.2 Data scaling238

To test the data scaling of our model – and show that it converges to near-perfect predictions239

in the limit of large datasets – we use this evaluation procedure at a range of data scales. We240

start by collecting 30 datasets with at least 1,000 positive transitions each. We then train241

our models on a range of subsampled scales from these datasets, and report a bootstrapped242

confidence intervals over our our 30 synthetic datasets at each scale in Figure 5 (Left). We243

find that while our model is largely incapable of learning from minimal amounts of data,244

it rapidly converges to near-perfect performance once hundreds of positive transitions are245

available, matching our own experience of the model’s improvement as additional data was246

collected.247

6 Related work248

Atomic manipulation was first demonstrated by Stroscio and Eigler [1991] by using the tip of249

a scanning tunneling microscope (STM) to position individual Xenon atoms on the surface250

of a single crystal surface to form the IBM company logo. Further demonstrations, such as251

quantum corrals and molecular cascades, have demonstrated the potential of the method.252

Perhaps the application that has attracted the most interest is in using tip-induced atomic253

motion as an enabling tool for the fabrication of P and other atoms in Si qubits, the building254

blocks for quantum computers.255

Despite the feasibility of manual control with STM tips, this type of atomic manipulation is256

limited to metallic/conducting surfaces. On the other hand, while STEMs can manipulate257

atoms embedded within a several layer thick specimen, it is still a rather haphazard and258

unpredictable process relative to using STM tips. To date, electron beam induced effects259

(with a STEM) have been studied purely by human operation, most typically by scanning a260

raster pattern (where the electron dose tends to be concentrated non-uniformly on one side261

of the image) in a selected field of view. The more sophisticated experiments involve manual262

positioning of the electron beam by a human, but this kind of motion is unpredictable and263

unreliable, and useful statistics are challenging (if not impossible) to glean from experiments264

conducted in this manner. We note that other experiments have been performed which265

control the electron beam in non-standard trajectories, effectively performing direct-write266

beam patterning processes – but with the critical point that the atomic landscape (i.e.,267

position of atoms) is not considered [Dyck et al., 2023a,b,c].268

The potential of the electron beams of scanning transmission electron microscopes to affect269

matter on the atomic level has been recognized since the early days of the technique. Most270

of these effects have been generally classified as a beam damage, denoting unwanted changes271

in materials structure induced by the beam. Indeed, minimization of beam damage, along272

with the need to increase spatial and energy resolutions, remains one of the three primary273

drivers behind STEM development, having spurred the high-voltage machines of the 1980s274

and 1990s and the aberration corrected low-voltage machines of the last two decades. It was275

also discovered that electron beam effects can be far more subtle, including crystallization276

and amorphization of oxides and semiconductors [Lulli and Merli, 1993, Yang et al., 1997,277

I. Jencic, 1995, Robertson and Jenčič, 1996, Frantz et al., 2001].278

The emergence of aberration-corrected STEMs have made the atomic-resolution imaging279

relatively routine, and spurred a new wave of electron beam matter manipulation on the280

atomic level. The electron beam was shown to be able to deposit single atoms from281

chemisorbed species [van Dorp et al., 2012] and form ordered vacancy arrays [Jang et al.,282

2017]. Similarly, electron beams have been shown to induce direct atomic motion and creation283

of functional defects [Cretu et al., 2012, Yang et al., 2014, Susi et al., 2014].284

3If the rate-based formulation is not desired, the same procedure could be changed to comparing
transition probabilities.
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The combination of simple beam control and feedback systems has enabled the direct assembly285

of crystalline materials with a single unit plane precision via directed crystallization and286

amorphization [Jesse et al., 2015]. These systems have also demonstrated potential for direct287

single atom dopant movement [Jesse et al., 2018], and finally, the controlled manipulation288

of Bismuth dopants in bulk silicon [Hudak et al., 2018]. In 2016, it was proposed that289

the combination of machine learning with electron beam manipulation can become a third290

paradigm for direct atomic construction [Kalinin et al., 2016]. In 2017, Dyck et al. [2017], Susi291

et al. [2017a] and Susi et al. [2017b] demonstrated single atom manipulation and insertion292

experiments for silicon in graphene [Susi et al., 2017b, Dyck et al., 2017, Tripathi et al., 2018,293

Dyck et al., 2018], an approach soon extended to direct atomic assembly of homo- [Dyck294

et al., 2018] and hetero-atomic artificial molecules [Dyck et al., 2019].295

A number of theories for beam manipulation have been proposed, including those based on296

phonon-assisted knock-on and electronic excitations. However the causal relationship of the297

electron beam position relative to the silicon atom has only been suggested and demonstrated298

anecdotally. Physical intuition dictates that the damage mechanism is primarily through299

momentum transfer or so-called “knock-on” processes; therefore, the ideal placement of the300

electron beam would seem to be positioned exactly centered on a carbon (first) neighbor.301

While this is intuitive and appears to have been a successful route by multiple groups, damage302

mechanisms tend to be complex and are dictated by more than one process. For example,303

ionization or sputtering processes may be occurring as well, meaning it is unclear if the304

suggested beam position is actually the ideal one for inducing the most efficient transition of305

a silicon hop. Moreover, the anecdotal but physically intuitive rule of placing the electron306

beam on the center of a carbon neighbor is mostly valid only for a direct Si substitution307

(i.e., 3-fold coordinated silicon). For any other configuration, the rules are already not the308

same, and the optimal beam position for causing a transition event is not clear.309

7 Conclusion310

The last note left by Richard Feynman stated “What I cannot create, I do not understand.”311

Building solid state quantum computers, creating nano-robots, and designing new classes of312

biological molecules and catalysts alike requires the capability to manipulate and assemble313

matter atom by atom, probe the resulting structures, and connect them to the macroscopic314

world; all this necessitates accurate estimates of the transition dynamics induced by sub-315

atomically focused electron beams. Until now, the elements of relevant knowledge have316

been limited to a few research groups, and atomic manipulation has been performed via317

direct control by human operator one beam positioning at a time. The characteristic318

timescale of human-operated experiments vastly exceeds the intrinsic latency of the electron319

microscope, for which hundreds of fabrications steps per second should be possible. Similarly,320

human control necessarily lacks precision, reproducibility, and systematic error correction321

capabilities. While sufficient for a proof of concept, atomic scale fabrication with the322

precision and throughput necessary for applications such as nanopore fabrication for protein323

sequencing, molecule screening platforms for physics and biology, and particularly quantum324

communication, sensing, and computing devices requires moving beyond the current human325

control paradigm.326

Our work is a robust first step for determining transition probabilities via machine learning,327

and paves the way for further advances in this space. The scenario we considered in this work328

is somewhat idealized: we limit ourselves to single dopant and 3-way lattices for our learned329

dynamics. Nevertheless, these settings allowed us to confirm, via a data-driven approach,330

the commonly held belief that placing the electron beam directly on the neighbour has the331

highest probability of inducing a transition of the dopant. Going forward, we will be exploring332

broader settings: multiple dopants, graphene with 4-way connections and aberrations (such333

as holes).334
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