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Abstract

Time series forecasting remains a challenging
task for foundation models due to temporal
heterogeneity, high dimensionality, and the lack
of inherent symbolic structure. In this work, we
propose DRAGON (Discrete Representation and
Augmented Graph encoding Over de BruijN
Graphs), a novel encoder that introduces Multi-
variate de Bruijn Graphs (MdBGs) to bridge the
gap between symbolic representations and neural
modeling. DRAGON discretizes continuous input
sequences and maps them onto a fixed graph
structure, enabling dynamic context recovery via
graph-based attention. Integrated as an auxiliary
module within a dual-branch architecture,
DRAGON augments conventional CNN-based
encoders with symbolic, structure-aware rep-
resentations.  All code developed for this
study is available at: https://github.
com/KurbanIntelligencelLab/
MultdBG-Time-Series-Library

1. Introduction

Foundation models have made great strides in NLP (Zhao
et al., 2023) and computer vision (Awais et al., 2023) by
utilizing non-numeric, large-scale data; however, the same
level of generalization has not emerged in the domain of
time series where challenges exist e.g., temporal heterogene-
ity, multivariate dependencies, and distant relationships.

Existing time series forecasting models rely heavily on the
inputs being numeric, especially continuous (Ekambaram
et al., 2024) (Nie et al., 2023) while missing out on re-
curring motifs that are central to many real-world tempo-
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Figure 1. Illustration of de Bruijn Graphs for univariate and multi-
variate dimensions. (LEFT) The univariate dBG encodes k-tuples
with directed and weighted edges in a single dimension. (RIGHT)
The multivariate dBG extends this structure by incorporating edges
(hyper-tuples) that connect k-tuples across multiple dimensions at
the same time step, capturing inter-variable dependencies.

ral processes. Moreover, the common practice of creating
fixed-size sliding window fragments from long sequences
to facilitate supervised training limits the model’s access to
the global context outside the current fragment. To address
these gaps, we introduce a new architecture that incorporates
a symbolic graph-based structure into time series modeling
through de Bruijn Graphs (dBG) (De Bruijn, 1946). dBGs
are widely used in computational biology in applications
such as genome assembly and k-mer—based (also known
as k-tuple) sequence modeling to efficiently and compactly
represent long sequences from overlapping fragments (Com-
peau et al., 2011). Recently, dBGs have also been explored
in the context of time series modeling for capturing symbolic
temporal patterns and enhancing forecasting performance
(Cakiroglu et al., 2024b;a). Modeling time series data as
dBG allows transforming continuous temporal data into a
compact symbolic representation that captures recurring mo-
tifs and long-range dependencies across sequence fragments.
We introduce a novel method for encoding multivariate time
series as Multivariate de Bruijn Graphs (MdBGs) to capture
patterns both within and across dimensions, allowing mod-
els to access cross sequence global context while processing
each sliding window locally.
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Our contributions are threefold: (i) MdBG, a multivari-
ate extension of de Bruijn graphs, captures intra-, inter-
dimensional, and long-range dependencies; (ii)) DRAGON,
an encoder built on MdBGs, generates task-specific time
series embeddings and integrates into any model; and (iii)
DRAGON outperforms state-of-the-art methods on forecast-
ing benchmarks, including TimesNet (Wu et al., 2022).

2. Methods
2.1. Multivariate de Bruijn Graphs (MdBGs)
2.1.1. DATA PROCESSING

Let D™V {XPw, X5V L, X3V} be a time series
data with D dimensions. Each raw sequence is defined
as: XPV = [z0,2%,...,2%], where i € R and S is
the sequence length. Since dBGs operate on categori-
cal data, the raw input Xi* is first discretized using a
discretization function DISC;(X™, ;) — XY¢. The
set of bin sizes for all dimensions is denoted by A =
{a1,@a,...,a,}, where «; represents the bin size for di-
mension ¢. Similarly, the set of discretization functions
is denoted by F = {DISC;,DISCs,...,DISCp}. This
formulation allows discretization to be customized inde-
pendently for each dimension. The resulting discretized
dataset, denoted as D, consists of sequences defined as
follows: Ddise = {Xgise Xdise . Xdisel where Xdis¢ =
[ch,ch, ..., ck], i e{1,2,...,a;}. Each discretized el-
ement c; represents a categorical value bounded by the
discretization level «;.

2.1.2. GRAPH CONSTRUCTION

A single MdBG is constructed from all sequences in the
training set prior to model training. This allows the entire
training set to be compactly represented as a graph and
provides global context during model training. MdBG is
a structured graph representation of both intra- and inter-
dimensional dependencies of multivariate sequence data. It
is formally defined as G(V, E') where V is the set of nodes
(fixed-length strings over some alphabet) and E is the set of
directed edges (fixed-length strings over the same alphabet)
where some overlapping substring of fixed size between two
nodes. E is labeled with a non-negative number.

More formally, a dBG of order k is a directed graph
where each node represents a unique univariate (k—1)-
tuple (a subsequence of length k—1), and each edge cor-
responds to a k-tuple (length-k subsequence) observed
in the input sequence. Specifically, the set of k-tuples
el = (@},xi,y,...,2i,,_,) induces a directed edge
from the prefix node to the suffix node, Vpeix =
(T s Tyyp—o) = Veutix = (Tpyq,- -5 Tyypq) fort =
1,2,...,(S — k+1). Each €} defines a directed edge be-
tween two (k—1)-tuple nodes, capturing temporal transi-
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Figure 2. The DRAGON architecture employs a MdBG as a fixed
graph database built from the entire training set. MdBG structure
remains constant across batches and is encoded through L layers
of Graph Attention Convolution (GATConv) with ELU activation.
A node-level hard mask determines active nodes and is used to
select encodings for the subgraph corresponding to the(k—1)-
tuples in the input sequence. Only the node features are updated
through masking. To obtain the final output, an attention pooling
mechanism is applied that aggregates the graph-level features and
reshapes them to match the input sequence length. B denotes the
Batch size, D is the number of input dimensions, NV is the number
of MdBG nodes and E is the edge feature dimension.

tions in the sequence. Repeated transitions increment the
edge weights, encoding frequency. The construction of a
dBG from univariate data is illustrated in Figure 1 (LEFT).

Each node v € V can correspond to a set of continuous
k-tuples extracted from the original raw dataset D™¥. This
set is denoted as the feature space of node v:

ko k k
Fv ={af,x5,..., 2},

where each #F € R¥ and 1 < m < S — k + 2. This feature

set JF, captures the continuous embeddings associated with

the discrete representation v.

After constructing individual dBGs for each dimension, a set
of D disconnected subgraphs MdBG = {G1,Gs,...,Gp}
is obtained, where each graph layer G; = (V;, E;) contains
a set of nodes V; representing all observed univariate (k—1)-
tuples from dimension ¢, and directed edges E; correspond-
ing to observed k-tuples.

To capture inter-dimensional structure, hyper-tuple edges
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Figure 3. Overview of the proposed DRAGON architecture for multivariate time series modeling. The input sequence of shape RZ*DP*5
where B is the batch size, is processed through two parallel branches. In the top branch, the sequence is discretized and passed into
the DRAGON encoder, which constructs MABGs and generates graph-based embeddings of shape RZ*7*5X% where .J is the number
of the DRAGON encoders. These embeddings are then aggregated via an attention pooling mechanism to produce the output of the
shape REXS*C In the bottom branch, the original continuous sequence is fed into a 1D CNN encoder, yielding features of shape
RE*S*C The outputs from both branches are concatenated to form a joined representation of shape RZ* 5% (€+6) | which is then sent to

a downstream model for prediction.

that connect nodes across different dimensions are defined.
Given two nodes v € V; and u € V;, a bi-directional edge
is established if their feature sets F,, and fuj contain raw
k-tuples that occur at the same time step. This construction
enables the graph to represent temporal dependencies across
dimensions. As a result, for each multi-dimensional point
x € RP, a hyper-tuple clique of size D is formed by link-
ing all co-occurring (k—1)-tuples across the D dimensions.
This process is illustrated in Figure 1 (RIGHT). Note that
the definition of MdBG is an extension of the original dBG;
when D = 1, the MdBG is structurally equivalent to the
standard dBG structure. An algorithm for constructing the
MdBG is presented in Algorithm 1 in the Appendix.

Once MdBG is constructed from the training set, Graph
Diffusion Convolution (GDC) is applied to further refine
the structural properties of the MdBG and enhance informa-
tion propagation across the constructed multivariate graph.
GDC modifies the adjacency matrix by incorporating global
diffusion patterns, effectively capturing long-range depen-
dencies and smoothing over noisy or sparse connections.
Specifically, we utilize Personalized PageRank (PPR)-based
diffusion, which has demonstrated improved performance in
node representation learning tasks by preserving both local
and global graph structure (Gasteiger et al., 2022). This
transformation improves the robustness and expressiveness
of the learned node embeddings, which are later used in
downstream tasks.

2.2. Training

During training, the DRAGON module encodes a subgraph
of MdBG corresponding to the current input sequence. For
each input sequence, query (k—1)-tuples are generated us-

ing a sliding window mechanism and subsequently dis-
cretized using the dimension-specific functions in the set
F = {DISCy,...,DISCp}. These functions map con-
tinuous input sequences into categorical representations,
yielding discretized tuples consistent with the MdBG vocab-
ulary.

During training, all generated tuples are assumed to exist
within the MdBG, the encoding for the nodes that corre-
spond to the tuples in the input sequence can be simply
retrieved. However, at test time, a query tuple q may not
appear in the MdBG node set V), so the subgraph corre-
sponding to the input sequence is approximated by selecting
the most similar node based on L1 norm (Manhattan dis-
tance) from q. More specifically, masking vector m" over
all nodes v € V is defined as follows:

1 ifv=qeV
m¥={1 ifv=argmin|/q—uly andq ¢V
ueV

0 otherwise

This masking mechanism ensures that either the exact or
the closest matching node is encoded for each (k—1)-tuple
in the input sequence. The overall encoder architecture is
illustrated in Figure 2.

The DRAGON module can be seamlessly integrated into
most time series encoders as an auxiliary component, en-
hancing encoding by providing global context on the struc-
ture and recurring motifs present in the training set. It
operates alongside the main architecture in a dual-branch
design, with both branches later concatenated to form a
fused representation. The overall process is illustrated in
Figure 3.
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Table 1. Average MSE and MAE per model across four datasets (ETTh1, ETTh2, ETTm1, ETTm2). Lowest values in each column are
highlighted in bold. The DRAGON module achieves the lowest error rates in the majority of settings, demonstrating its effectiveness in
recovering long-range dependencies from severely limited input contexts. These results are obtained using a fixed input length of 12 and
illustrate the generalization capabilities of DRAGON in multivariate time series benchmarks.

ETThl ETTh2 ETTml ETTm2
Model MSE MAE | MSE MAE | MSE MAE | MSE MAE
Transformer (Vaswani et al., 2017) 0.909 0.733 | 2.54 1.219 | 0.889 0.672 | 1.404 0.844
TSMixer (Lin et al., 2024) 1.002 0.756 | 2.262 1.236 | 0.916 0.690 | 0.907 0.723
Crossformer (Ekambaram et al., 2024) 0.691 0.609 | 1.982 1.060 | 0.718 0.588 | 1.005 0.675
FiLM (Zhou et al., 2022) 0.712 0.550 | 0.450 0.433 | 1.031 0.626 | 0.350 0.375
Nonstationary (Liu et al., 2022) 0.742 0.586 | 0.576 0.506 | 0.764 0.557 | 0.418 0.399
PatchTST (Nie et al., 2023) 0.642 0.525 | 0.448 0432 | 1.014 0.624 | 0.347 0.373
TimeMixer (Wang et al., 2024) 0.633 0.519 | 0.447 0434 | 0942 0.601 | 0.343 0.370
Autoformer (Wu et al., 2021) 0.656 0.556 | 0.458 0.450 | 0.854 0.603 | 0.335 0.376
TimeXer (Lin et al., 2024) 0.613 0.512 | 0.444 0.428 | 0.904 0.589 | 0.336 0.362
TimesNet (Wu et al., 2022) 0.639 0.525 | 0.457 0438 | 0.850 0.578 | 0.332 0.358
DRAGON (Ours) 0.604 0.510 | 0.446 0430 | 0.742 0.542 | 0.320 0.348

(1) DRAGON Branch: The current batch is processed
through one or more DRAGON encoders. Multiple
DRAGON modules can be employed to capture graph rep-
resentations with different configurations (e.g., varying k
values or alphabet sizes A). The outputs from these modules
are combined using an attention pooling mechanism, result-
ing in a unified graph-based feature representation of shape
RE*SXG "where G denotes the embedding dimension of
the DRAGON branch.

(2) Main Branch: The original continuous input sequence
is passed through a main branch, which can be any stan-
dard time series encoder, such as a Transformer or CNN.
In our design, we opt for a 1D CNN due to its simplicity
and computational efficiency. This allows us to maintain a
lightweight main branch, emphasizing the global contextual
information captured by the DRAGON module. The CNN-
based main branch yields an output of shape RE*SxC
where C' is the number of channels.

The outputs from both branches are concatenated along
the feature dimension, resulting in a fused encoding of
shape REXSX(C+G) This combined representation is sub-
sequently fed into the downstream decoder.

3. Results

To evaluate the effectiveness of the DRAGON module, a
series of experiments is conducted using a narrow input
context of length 12—an intentionally constrained setting
designed to highlight the module’s ability to recover tem-
poral dependencies that span beyond the immediate input
window. TimesNet is used as the base downstream model,
with and without the DRAGON module, to assess the impact
of our approach. The performance of the model is compared
across four widely-used multivariate time series forecast-

ing benchmarks: ETThl, ETTh2, ETTml, and ETTm?2.
The results are benchmarked against several state-of-the-art
(SoTA) models as well as the baseline TimesNet model. A
summary of the key results is presented in Table 1, and the
complete results can be found in Appendix Table 4.

Our experiments show that the DRAGON module consis-
tently improves performance, particularly in scenarios char-
acterized by severely limited input context and extended
forecasting horizon. By leveraging graph-based representa-
tions of historical patterns, DRAGON dynamically recovers
missing temporal dependencies during inference. In addi-
tion to outperforming the TimesNet baseline, the DRAGON-
enhanced variants often achieve SoTA performance when
combined with TimesNet backbone, demonstrating its ver-
satility and generalizability across forecasting architectures.

4. Conclusion

In this work, we introduced DRAGON, a novel encoder
architecture that incorporates MdBGs into time series mod-
eling. By discretizing continuous inputs and mapping them
onto symbolic graph structures, DRAGON enables dynamic
recovery of missing temporal context, especially in con-
strained input scenarios. Our results across four standard
benchmarks show that DRAGON substantially improves
performance when paired with a strong downstream model
like TimesNet. The consistent gains highlight the effective-
ness of symbolic graph representations in complementing
neural architectures for time series analysis. DRAGON
offers a new direction for time series modeling (one that
bridges discrete structure and continuous representation)
and sets the stage for more symbolic-aware foundation mod-
els in temporal domains.
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A. MdBG Feature Selection

In the Multivariate de Bruijn Graph (MdBG), nodes do not have a fixed feature set due to the discretized nature of the
graph. Specifically, multiple raw (k—1)-tuples can map to the same node, resulting in feature sets of varying sizes, i.e.,
1 < |Fy| £ S — k+ 2. Some nodes may contain a large number of associated raw tuples in their feature set .. To handle
this variability, a fixed number of (k—1)-tuples (denoted by f) from each node at every iteration is randomly sampled (with
replacement). This strategy ensures computational tractability and encourages the model to explore diverse node features
during training. f = 16 is set for our experimentation.

B. MdBG Construction Algorithm

The MdBG construction algorithm with the time complexity of O(m? - T') is shown in Algorithm 1. The input consists of
multivariate continous time series data D™V = {X7™, ..., X"}, where each X;™" denotes a univariate sequence. k denotes
the k-tuple length and the 7 = {DISC,,...,DISC,,} represents the discretization functions for each dimension which
can be shared or unique. First, an empty graph is initialized G = (V, £) (line 2). For each input dimension i, the data in
that dimension is discretized DISC; (line 3-6). A sliding window of size & is applied to the discretized data to generate
k-tuples R! and K (lines 9-10). Extracted k-tuple is used to generate a prefix u; and a suffix node v; and its feature set F,,
or F),, is initialized (lines 11-20). These feature sets are always updated to track which raw sequences contributed to each
node (lines 21-22). If the edge (u;,v;) does not exist in £, then it is initialized with the edge weight w = 1, otherwise w is
incremented each time it is visited to reflect the frequency (lines 23-28). At the initial time step ¢ = 0, all prefix nodes u;
across dimensions are connected using a bidirectional hyper-tuple edge to capture the inter-dimensional dependencies (lines
30-33). For all subsequent timesteps, hyper-tuple edges are formed between suffix nodes v; as well (lines 35-37). Finally,
the constructed MdBG (G) is returned (line 39).

Table 2. Dataset Partition Sizes

Dataset Train (S) Validation Test  Dimensions (D)
ETThl & ETTh2 8,533 2,785 2,785 7
ETTml & ETTm2 34,453 11,425 11,425 7

Table 3. MdBG sizes constructed from training data for each « (20, 25, 30).
Dataset Nodes Edges «

ETThl  4,137/6,044 /8,104 207,445/263,494 /304,185 20/25/30
ETTml 3,835/5,678/7,918 306,653 /454,542 /604,859 20/25/30
ETTm2 1,502/2,215/3,044 102,003 /162,246 /241,866 20/25/30
ETTh2 1,708/2,520/3,540 93,531/140,562/180,012 20/25/30
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Algorithm 1 MdBG Construction Algorithm

Input

: DY = (XY, X5V, .., XY Aligned multivariate time series,
k € N: Desired k-tuple length,

F

= {DISCy,...,DISC,,}: Discretizers per dimension

Output: G = (V, £): Constructed Multivariate de Bruijn Graph
1 Function MdBGConstruction (D™, k, F):

RIANU AW

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 end

end
fort < 0inT — k do
for : < 1in m do
Kt X8t ot + K]

end

end

end

end
return

Initialize empty graph: G « (V = 2,& = @)
for i < 1inmdo

DISC; «+ F[Z]

X« DISC,(X™)

R« X[t : t + k]
u; + (4, K0 : k—1])
v; + (i, K![1: K])
ifu; ¢ V then

Add u; to ¥V

Fu, =9

end

if v, ¢ V then

Add v; to V

Fo, =9

end
}—Ui = ‘Fui U {Rﬂo : kil}}
Fo, = Fo, U{R{[L: K]}
if ’U,Z',’Ui! % £ then
‘ Add directed edge: u; li V;
end
else
| Increment edge weight: w < w + 1
end

= (0 then

if ¢

forall distinct pairs (u;, u;) from prefix nodes do
| Add bidirectional hyperedge: u; <+ u; with type hyper
end

forall distinct pairs (v;, v;) from suffix nodes do

Add bidirectional hyperedge: v; <+ v; with type hyper

G
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C. Experimental Details
C.1. Evaluation Metrics

To evaluate the performance of the constructed model, two standard regression metrics are used: mean squared error (MSE)
and mean absolute error (MAE).

MSE is defined as:

n

1
MSE = — — i)
SE=—> (v — )

i=1
MAE is defined as:
1 n
MAE = — i — Ui
- ;:1 lyi — il

where y; and g; denote the ground-truth and the predicted value, and n represents the total number of predictions.

C.2. Extended Experimental Results

In Table 4, MSE and MAE of state-of-the-art (SoTA) forecasting models across on four benchmark datasets with the
prediction length PL € {96,192,336,720} are presented. The DRAGON model architecture has shown improved
performance over the original TimesNet, in most configuration settings.

All experiments use an input sequence length of 12. We employ three DRAGON modules with order £ = 4 and discretization
alphabet sizes av = 20, 25, and 30, respectively for all layers/dimensions. Similarly, a uniform discretization function is used,
which assigns equal-width bins across all features and dimensions for every layer. Each DRAGON module incorporates two
layers of graph attention, and Graph Diffusion Convolution (GDC) is applied with a top-% value of 32. For the downstream
TimesNet model, the “optimal” hyperparameters recommended for each benchmark dataset and forecasting horizon is
adopted. The graph embedding dimension G is consistently set equal to the model channel size C'. Our experimental
pipeline, along with the hyperparameter configurations for all models, follows the TSLib framework (Wu et al., 2022),
available at: https://github.com/thuml/Time-Series—Library.

The partition sizes for training, validation, and test splits across all datasets are summarized in Table 2. The resulting MdBG
graph sizes (in terms of number of nodes and edges) for each alphabet size « are reported in Table 3.

The graph construction algorithm is implemented using the NetworkX library (Hagberg et al., 2008), and the resulting graphs
are subsequently converted to data objects compatible with PyTorch Geometric (Fey & Lenssen, 2019). All experiments are
conducted on a single NVIDIA A100 GPU with 42 GB of memory.

C.3. Future Work

We plan to extend the DRAGON framework in several promising directions. The first step is to improve its scalability in
terms of graph construction and masking strategies to better accommodate long-term forecasting and high dimensional
time series data. Subsequently, we aim to conduct more extensive experiments across diverse benchmark datasets from
various domains and multiple downstream models to assess generalization. Beyond forecasting, we intend to transform
DRAGON into a multimodal architecture by incorporating support for additional downstream tasks, including anomaly
detection, classification, and imputation. Ultimately, our long-term goal is to evolve DRAGON into a foundation model by
training it on large-scale, heterogeneous time series data in a self-supervised manner.
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Table 4. MSE and MAE values of different models across different forecast horizons tested on four datasets. Best-performing values are
highlighted in bold, and the second best is underlined.

ETThl ETTh2 ETTml ETTm2
model PL | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Transformer 9% 0.775 0.667 | 1.147 0.801 | 0.762 0.584 | 0.484 0.535
TSMixer 0.867 0.678 | 1.013 0.823 | 0.805 0.61 0.33 0.438
Crossformer 0.594 0.554 | 0.81 0.63 0.618 0.516 | 0.335 0.404
FiLM 0.669 0.521 | 0.349 0.37 0.971 0.591 | 0.234 0.309
Nonstationary 0.589 0.502 | 0.361 0.384 | 0.682 0.513 | 0.219 0.291
PatchTST 0.589 0.489 | 0.345 0.369 | 0.946 0.587 | 0.231 0.306
TimeMixer 0.583 0484 | 0.34 0367 | 0.886 0.568 | 0.225 0.301
Autoformer 0.635 0.531 | 0.353 0.383 | 0.778 0.565 | 0.212 0.304
TimeXer 0.543 0.470 | 0.337 0.362 | 0.833 0.551 | 0.22 0.295
TimesNet 0.59 0.495 | 0.345 0.366 | 0.679 0.506 | 0.201 0.276
DRAGON (Ours) 0.552 0479 | 0.34 0363 | 0.664 0.499 | 0.2 0.275
Transformer 192 0.819 0.675 | 3.095 1.312 | 0.772 0.623 | 1.052 0.77
TSMixer 0975 0.741 | 2419 1.303 | 0.87 0.66 0.49 0.549
Crossformer 0.631 0.578 | 1.667 0.899 | 0.693 0.576 | 0.438 0.474
FiLM 0.711 0.543 | 0.446 0.422 | 1.015 0.616 | 0.305 0.352
Nonstationary 0.665 0.547 | 0.504 0.469 | 0.752 0.548 | 0.292 0.33
PatchTST 0.637 0.516 | 0.442 0421 | 0.995 0.613 | 0.303 0.35
TimeMixer 0.621 0.509 | 0438 0.42 0.925 0.591 | 0.297 0.346
Autoformer 0.655 0.55 0451 0.438 | 0.807 0.582 | 0.288 0.35
TimeXer 0.593 0.499 | 0.437 0.417 | 0.899 0.582 | 0.292 0.338
TimesNet 0.626 0.514 | 0449 0.425 | 0.727 0.533 | 0.289 0.337
DRAGON (Ours) 0.601 0.505 | 0.44 0417 | 0.701 0.523 | 0.274 0.321
Transformer 336 1.048 0.804 | 2.854 1.335 | 0911 0.699 | 1.166 0.816
TSMixer 1.067 0.792 | 2.765 1.403 | 0.957 0.721 | 0.784 0.717
Crossformer 0.737 0.627 | 2.837 1364 | 0.774 0.628 | 0.889 0.688
FiLM 0.74  0.563 | 0.502 0.464 | 1.054 0.638 | 0.377 0.392
Nonstationary 0.808 0.621 | 0.749 0.593 | 0.799 0.572 | 0.481 0.434
PatchTST 0.67 0.538 | 0.501 0.462 | 1.047 0.639 | 0.374 0.39
TimeMixer 0.659 0.532 | 0.498 0.465 | 0.963 0.613 | 0.372 0.389
Autoformer 0.657 0.564 | 0.515 0.483 | 0.9 0.627 | 0.366 0.395
TimeXer 0.646 0.527 | 0.498 0.459 | 0.919 0.599 | 0.363 0.379
TimesNet 0.657 0.533 | 0.512 0472 | 0.892 0.599 | 0.349 0.366
DRAGON (Ours) 0.636 0.525 | 0.503 0.464 | 0.786 0.564 | 0.35  0.369
Transformer 720 0995 0.786 | 3.062 1.429 | 1.11 0.782 | 2914 1.256
TSMixer 1.1 0.813 | 2.849 1414 | 1.03 0.768 | 2.023 1.188
Crossformer 0.801 0.678 | 2.614 1345 | 0.785 0.633 | 2.357 1.133
FiLM 0.729 0.575 | 0.504 0476 | 1.083 0.659 | 0.483 0.447
Nonstationary 0.905 0.675 | 0.69 0578 | 0.822 0.595 | 0.68  0.54
PatchTST 0.67 0.556 | 0.502 0.475 | 1.069 0.658 | 0.481 0.446
TimeMixer 0.668 0.55 0.513 0.483 | 0993 0.633 | 0.477 0.445
Autoformer 0.676 0.58 0.515 0.494 | 0932 0.638 | 0.476 0.455
TimeXer 0.67 0.552 | 0.506 0.476 | 0.967 0.624 | 0.471 0.437
TimesNet 0.681 0.559 | 0.523 0.489 | 1.1 0.675 | 0.488 0.451
DRAGON (Ours) 0.627 0.533 | 0.5 0474 | 0.819 0.583 | 0.455 0.428




