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Abstract— We present a large empirical investigation
on the use of pre-trained visual representations (PVRs)
for training downstream policies that execute real-
world tasks. Our study involves five different PVRs,
each trained for five distinct manipulation or indoor
navigation tasks. We performed this evaluation
using three different robots and two different policy
learning paradigms. From this effort, we can arrive
at three insights: 1) the performance trends of
PVRs in the simulation are generally indicative of
their trends in the real world, 2) the use of PVRs
enables a first-of-its-kind result with indoor ImageNav
(zero-shot transfer to a held-out scene in the real
world), and 3) the benefits from variations in PVRs,
primarily data-augmentation and fine-tuning, also
transfer to the real-world performance. See project
website1 for additional details and visuals.

I. INTRODUCTION
The design of pre-trained visual representations (PVRs)

for sensorimotor control [1], [2], [3], [4], [5], [6], [7], [8]
promises general-purpose visual perception for all robotic
tasks, addressing the current day issues of data-scarcity
and generalization. To measure the potential of PVRs
being general purpose vision backbones for a diverse
set of Embodied AI and robotics tasks requires us to
evaluate the PVRs on a wide range of tasks. Yet doing
so on hardware is impractical if not infeasible for most
researchers in the community. As a result, past studies
on the effectiveness of PVRs have either focused on
broad systematic analyses in simulation [8] or narrow
small-scale experiments on hardware [4], [5], [6].

It is unclear how much of the results from simulation
carries over to the real world where we would hope to
deploy PVRs. Can we use simulation to evaluate and
benchmark PVRs and carry over the results to hardware?
In other words, is the performance of PVRs in simulation
predictive of their performance in the real world?

To answer this question, we conducted the largest
empirical study of PVRs in simulation and the real
world to date. Our empirical study comprised a total
of 348 experiments and over 110 hours of robot
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Fig. 1: We conducted 348 experiments with PVRs on five
tasks (push cube, pick up bottle, open drawer, reach goal
position, and image-goal navigation (ImageNav)), three robots
(Trifinger, Franka, and Stretch), two learning paradigms
(imitation and reinforcement learning), in sim and reality.

experimentation on hardware. To ensure statistical
significance, all experiments (except ImageNav) were
conducted using three random seeds for training policies,
enabling us to identify common trends and exceptions.

Our main findings and contributions are:
1. Sim Predictivity of PVR evaluations on hard-

ware. In prior work [10], Sim Predictivity is presented
as a measure of how well performance in simulation
translates to real-world settings. We evaluate ‘sim-
predictivity’ by comparing the performance of a set
of policies trained and evaluated in simulation with
similar policies trained with real demonstrations and
evaluated on hardware. We find a remarkably high
degree of ‘sim-predictivity’ (a correlation coefficient of
0.929) after basic alignment between the simulation
and real-world setups (e.g. camera placement,
checkpoint selection schemes, etc.). This suggests that
recent progress in training PVRs is materializing into
broadly applicable real-world gains and affirms the
value of simulation benchmarks for model selection.

2. Sim2Real Transfer of PVR-based policies. We
do the same analysis of ‘sim-predictivity’ with policies
trained on demonstrations collected in simulation
and evaluated on the real robot (addressing Sim2Real
Transfer). We find that in this setting the performance
only transfers well for the ImageNav task. While
most tasks do not exhibit Sim2Real Transfer , an
ImageNav agent is able to achieve a 90% success rate
in a zero-shot manner, making it a first result of this
kind with regards to ImageNav policies trained on the
HM3D dataset and evaluated in the real world.

3. Impact of Design Choices. Finally, we study
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TABLE I: Success rate of policies on CortexBench and three hardware platforms (TriFinger, Franka, and Stretch) with results
in reality (real) and simulation (sim).

CortexBench TriFinger Franka Franka Franka Stretch Average
All benchmarks Push cube Reach pos. Pick up bottle Open drawer ImageNav All tasks

# Method (sim) (sim) (real) (sim) (real) (sim) (real) (sim) (real) (sim) (real) (sim) (real)
1 R3M [4] 58 31 34 97 100 87 87 37 37 25 20 56 56
2 CLIP [9] 57 31 38 80 80 77 63 40 33 39 20 54 47
3 MVP [6] 68 44 46 90 90 70 50 50 27 60 50 63 53
4 VC-1 Base [8] 66 40 37 97 97 80 83 57 67 61 60 67 69
5 VC-1 Large [8] 69 41 38 97 87 77 43 50 57 60 90 65 63

the effect of 1) model size, 2) fine-tuning the visual
backbone, and 3) using data-augmentations on PVRs,
with a focus on whether these results hold with our set
of real-world experiments. Do the improvements we
see in simulation also translate to hardware? We find
the performance of most variations to be predictive
of their real-world success. (Section III-C).

II. SIMULATED AND REAL-WORLD
MANIPULATION AND NAVIGATION TASKS
Our study involved 5 PVRs (R3M [4], CLIP [9],

MVP [6], and two variants of VC-1 [8]), 3 different
robot platforms (TriFinger, Franka Arm and Stretch),
2 policy-learning paradigms (imitation and reinforcement
learning), and 5 distinct tasks. For each task, we have
a matching simulation and hardware setup - such that
we can compare PVRs performance in the simulated
setting and the real-world counterpart. In the simulation,
we configure scenes to visually mimic the real world,
but without system identification to match dynamics or
camera extrinsic parameters.

A. Planar Cube Manipulation with a Trifinger Robot via
Behavior Cloning

A TriFinger [11] robot (as seen in Figure 1) consists
of three 3-DoF fingers in a shared workspace and is used
for fine-grained manipulation of objects. We consider a
planar cube re-positioning task designed specifically to
require visual perception and use behavior cloning (BC)
for policy learning. For both simulation and reality, we
collect 30 demonstrations each from an expert policy to
train a BC policy for 500 epochs with a learning rate
of 10−4. The architecture and training regime closely
matches [8]. We used 3 seeds for training and evaluation
and tested the policies on 12 different start and goal
configurations, reporting the average success across seeds
for both hardware and simulation experiments.

B. Manipulation Tasks with Franka via Behavior Cloning
We used a Franka Panda arm fitted with Festo adaptive

fingers to solve three tasks: Reach Pos, Pick Up the
Bottle, and Open the Drawer. The Reach Pos task is
successful if the final position of the arm is within 5cm
of the predetermined, randomly sampled pose. The Pick
Bottle task is successful if the arm picks up the bottle at
the end of the episode. The Open Drawer task succeeds if
the drawer is opened more than 50% from its initial state.

We collected demonstrations (30 for Reach Pos and
Pick Up Bottle, 150 for Open Drawer from [12]) in the
real-world setup via human teleoperation using an Oculus
Quest 2 controller [13] and in simulation using a heuristic
policy. We then trained policies using behavior cloning
on both real-world and simulation demonstrations. The
policies were trained for the same number of epochs (200
for Reach Pos and Pick Up and 500 for Open Drawer)
with three different seeds per task. We ran evaluations
on the policies for ten episodes per task per seed and
reported the average success.

C. Visual Navigation with a Stretch Robot via Large-Scale
Reinforcement Learning

For visual navigation, we use the Stretch robot, a mobile
manipulator developed by Hello Robot. We pick the
ImageNav task [14], where the agent must navigate to a
goal location specified by an image in an unknown 3D envi-
ronment while avoiding obstacles and minimzing collisions.
ImageNav performance was assessed considering the pro-
portion of successful episodes, the total number of steps
taken, and the distance remaining between the robot and
the goal at the end of each episode. In contrast to the other
tasks, we use reinforcement learning (RL) and train only
in simulation. We leverage the Habitat [15] simulator and
the HM3D scene dataset [16]. All 800 HM3D scenes are
ued for training, and a simulated replica of an unseen real-
world apartment is used for evaluation. For real-world eval-
uation, we set up 10 episodes with different start and goal
positions in the unseen apartment. These episodes include
challenges such as multi-room navigation, disambiguation
between similar goals using the background, and navigat-
ing around a kitchen island to reach the goal viewpoint.

III. EXPERIMENTAL FINDINGS
In this section, we evaluate policies that use different

PVRs on five tasks across three hardware platforms.
In total, our real-world experiments required 110 hours
of hands-on evaluation. Our experiments address the
following questions:
1. How do recently released PVRs, designed for robotics,

perform across diverse simulated and real-world
robotic tasks? (Section III-A)

2. How predictive are simulation evaluations of
hardware evaluations when policies for real
world experiments are trained from real world
demonstrations?(Section III-B)



3. How does sim predictivity of PVR results change
when we transfer policies from sim to real (Sim2Real
transfer)? (Section III-C)

4. How do model size, fine-tuning, and data
augmentations impact simulation predictivity?
Can we utilize simulation to benchmark such
variations? (Section III-D)

A. Evaluating Pre-Trained Visual Representations
(PVRs) in Simulation and Reality

We select five PVRs shown in Table I with success
rates on the previously introduced simulation benchmark
suite, CortexBench [8], ranging from 57% to 69%. We
evaluate these PVRs in ‘frozen mode’, without updating
the parameters during the policy learning stage. While
CortexBench tasks span 17 different tasks, we use different
but similar manipulation tasks on the Franka. We would
expect the performance of this subset of CortexBench
tasks to correspond with the performance in sim.

In Table I, we show results for both simulation and
hardware evaluations. Except for the ImageNav task, poli-
cies on hardware were also trained on real robot demon-
strations. We observe that MVP, R3M, VC-1 Base and
VC-1 Large perform strongly for various tasks, and no one
PVR dominates across all tasks. We consider a PVR to be
stronger if its average success is higher, and VC-1 Base has
the highest rate of 69% on all real-world tasks. CLIP has
the lowest average performance with 47% success in reality.
In general, these trends are similar (but not the same)
as the trends on CortexBench, where VC-1 Base is the
third-best PVR and CLIP is the lowest-ranked method.

The strongest performing model differs by task: MVP
for Trifinger, R3M and VC-1 Base, the two smallest
models, for Franka, and VC-1 Large for ImageNav on
the Stretch. Unlike other tasks, the policies for ImageNav
were trained with large-scale reinforcement learning and
evaluated in a Sim2Real manner. We hypothesize that
VC-1 Large does not perform as well as VC-1 Base due to
the limited amount of training data and this would be con-
sistent with the findings in [8], in which scaling data and
model size does not always lead to better performance.

B. Sim Predictivity of hardware results when policies are
trained on real demonstrations

In this section, we analyze the correlation between
performance on CortexBench and real robots and study
how mirroring real-world experimental conditions in
evaluations conducted in simulation can further improve
Sim Predictivity (as measured by SRCC [10]). We contrast
the simulation benchmark proposed in [8] (CortexBench)
with our simulated evaluations from Section II.

For this, we subselected the four tasks that have
real-world demonstrations available (from the TriFinger
and Franka platforms). The Stretch/ImageNav task was
left out since it is trained entirely in simulation and is
a case of Sim2Real Transfer (discussed in Section III-C).
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Fig. 2: Comparison of Sim Predictivity between CortexBench
(left) and our simulation setting (right). Each data point
represents a (model, task) tuple. Models and tasks are depicted
by colors and symbols respectively, as shown in the legend.

In Table I, we report the performance in simulations
(sim) designed for the tasks studied in this work.
Their simulation settings differed from CortexBench
to reflect real-world conditions: matching the number
of demonstrations available in the real world, and
choosing the last training checkpoint was chosen, since
choosing the best performing on a validation set would
be prohibitive in the real world.

Figure 2 shows the correlations between simulation and
real-world performance, for both Cortexbench and our
simulation settings. The SRCC between CortexBench and
real-world performance is -0.47 , while the SRCC of our
simulation and real world performance is substantially
higher at 0.895.These results reinforce the importance
of matching real-world settings in simulation in order
to improve the predictivity.
TABLE II: Zero-shot sim2real evaluations of randomly initial-
ized ViT-Base model with finetuning & augmentations (row
0) and pre-trained visual encoders (rows 1-5) for all tasks.

TriFinger Franka Franka Franka Stretch
Push cube Reach pos. Pick up bottle Open drawer ImageNav

# Model (real) (sim) (real) (sim) (real) (sim) (real) (sim) (real) (sim)
0 Scratch 8 21 0 27 0 11 30 37 10 35
1 R3M 11 31 0 97 0 87 10 37 20 25
2 CLIP 8 31 0 80 0 77 27 40 20 39
3 MVP 5 44 0 90 0 70 13 50 50 60
4 VC-1 Base 3 40 0 97 0 80 23 57 60 61
5 VC-1 Large 2 41 0 97 0 77 23 50 90 60

C. Effect of Sim2Real Transfer on Simulation Predictivity
The next question is: how well do PVRs based policies

perform when trained in simulation and transferred to
the real world? We evaluated our simulation-trained
policies using 5 different PVRs on our 5 tasks. The
results suggest that for the tasks trained using few-shot
imitation learning, the performance achieved when
running a simulation-trained policy in the real world can
not be predicted by that in simulation, with most tasks’
success metrics drop to near zero values (Table II).

In contrast, the performance of frozen PVRs on the
ImageNav task trained using large-scale RL is comparable
to its performance in sim, which we may consider as a
successful zero-shot Sim2Real transfer of results. In Table
III, we compare the performance of PVRs (rows 1-5)
with a randomly initialized model that was fine-tuned
with data augmentations for the ImageNav task (row 0).
We find that in reality, the best model (VC-1 Large, row
5) far exceeds random-initialization performance by 80%
absolute (90% vs. 10%). This result strongly suggests



0.00 0.25 0.50 0.75 1.00
success in sim

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

s 
in

 re
al

SRCC = 0.66 
p-value = 0.01

(a) ViT-B

0.00 0.25 0.50 0.75 1.00
success in sim

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s 

in
 re

al

rea
l >

 si
m

sim
 > 

rea
l

SRCC = 0.60 
p-value = 0.01

(b) ViT-L

reach_pos 
push_cube 
pick_up_bottle 
open_drawer

rea
l >

 si
m

sim
 > 

rea
l

0.00 0.25 0.50 0.75 1.00
success in sim

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s 

in
 re

al

rea
l >

 si
m

sim
 > 

rea
l

SRCC = 0.58 
p-value = 0.02

(c) Frozen

0.00 0.25 0.50 0.75 1.00
success in sim

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s 

in
 re

al

SRCC = 0.64 
p-value = 0.01

(d) Finetuned

reach_pos 
push_cube 
pick_up_bottle 
open_drawer

rea
l >

 si
m

sim
 > 

rea
l

0.00 0.25 0.50 0.75 1.00
success in sim

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s 

in
 re

al

rea
l >

 si
m

sim
 > 

rea
l

SRCC = 0.68 
p-value = 0.00

(e) Without Augmentations
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Fig. 3: Sim Predictivity correlation plots analyzing the impact of different model variations of VC-1: (a, b) model size; (c, d)
fine-tuning; (e, f) data augmentation.
TABLE III: Zero-shot Sim2Real generalization of policy with
randomly initialized (row 0) or pre-trained visual representa-
tions (rows 1-5) on the ImageNav task with a Stretch robot.

Success (%) ↑ Num Steps ↓ Dist-To-Goal ↓ Collisions ↓
# Model (sim) (real) (sim) (real) (sim) (real) (sim) (real)
0 Scratch 34.7 10.0 124.2 119.2 3.3 6.0 11.2 3.0
1 R3M 25.0 20.0 71.0 81.7 3.4 4.2 5.1 1.7
2 CLIP 39.0 20.0 74.3 79.5 3.4 2.6 2.5 0.6
3 MVP 60.3 50.0 97.0 114.8 2.2 1.8 4.2 0.3
4 VC-1 Base 61.0 60.0 101.0 109.7 2.1 1.6 4.1 1.2
5 VC-1 Large 60.0 90.0 107.0 122.5 2.2 0.8 3.9 1.0

that PVRs can play a crucial role in successful, zero-shot
Sim2Real transfer. Achieving this result required changes
to the original settings from CortexBench - particulary,
changing the horizontal field of view on simulation to
42◦ to match that of the real robot.

D. Impact of Model Size, Fine-Tuning, and Data
Augmentation

This section studies the impact of three key design
decisions when using PVRs, focusing on VC-1:
1. Model Size: We use VC-1 Base and VC-1 Large

(ViT-Base and ViT-Large architectures).
2. Freeze vs Fine-tune: We trained policies for each

downstream task both with frozen PVRs (as in the
above sections) and finetuned PVRs.

3. Data Augmentation: We trained downstream
policies with and without the following data
augmentations: 20% random color jitter in brightness,
contrast and hue, and random 8-pixel translations.

We trained and evaluated policies for 4 downstream
tasks with the cross-product of the above variations,
both in simulation and in the real world, producing 32
different tuples of (sim, real) performance. To analyze
the impact of each variation, we sliced these tuples along
each variation and computed the SRCC of the 16 data
points in each arm. The results are shown in Figure 3.
TABLE IV: Success rate of policies using two model sizes,
with and without fine-tuning and augmentations on 4 tasks.

TriFinger Franka Franka Franka Average
Push Cube Reach Pos Pick Up Bottle Open Drawer All tasks

# model size frozen aug. (sim) (real) (sim) (real) (sim) (real) (sim) (real) (sim) (real)
1 VC-1 Base yes no 40 37 97 97 80 83 57 67 55 57
2 VC-1 Base yes yes 38 35 63 40 90 83 40 70 46 46
3 VC-1 Base no no 36 37 89 33 93 63 40 53 52 37
4 VC-1 Base no yes 36 37 100 93 100 90 47 73 57 59
5 VC-1 Large yes no 41 38 97 87 77 43 50 57 53 45
6 VC-1 Large yes yes 35 38 85 37 100 60 43 63 53 40
7 VC-1 Large no no 28 34 93 57 97 90 33 43 50 45
8 VC-1 Large no yes 34 31 96 87 100 50 47 67 55 47

The SRCC values for all VC-1 variations are
statistically significant (p < .05) and show a strong

TABLE V: Sim2Real transfer results. All results are with
policies trained in simulation and evaluated on real robots.

TriFinger Franka Franka Franka Stretch
Push Cube Reach Pos Pick Up Bottle Open Drawer ImageNav

# model size frozen aug. (sim) (real) (sim) (real) (sim) (real) (sim) (real) (sim) (real)
4 VC-1 (ViT-B) yes no 40 3 97 0 80 0 57 23 75 60
5 VC-1 (ViT-B) yes yes 38 6 63 0 90 0 40 27 75 10
6 VC-1 (ViT-B) no no 36 20 89 0 93 0 40 33 61 60
7 VC-1 (ViT-B) no yes 36 11 100 0 100 0 47 30 47 90
8 VC-1 (ViT-L) yes no 41 2 97 0 77 0 50 23 71 90
9 VC-1 (ViT-L) yes yes 35 3 85 0 100 0 43 27 76 80
10 VC-1 (ViT-L) no no 28 23 93 0 97 0 33 37 60 60
11 VC-1 (ViT-L) no yes 34 15 96 0 100 0 47 40 69 90

positive correlation, greater than 0.5 in all cases. The
differences in Sim Predictivity are smaller with regards
to the backbone size (0.66 for Base vs. 0.60 for Large)
and whether or not the layers were kept frozen (0.58 for
frozen vs. 0.64 for fine-tuned). Notably, there is a drop in
predictivity from 0.68 to 0.55 when we use augmentations;
the policies trained with augmentations for the Open
Drawer task consistently outperformed their results in
simulation, affecting predictivity. We hypothesize this
performance increase in real world is due to an increase
in policy robustness. As noted, simulation performance is
predictive of real world performance to different degrees
for all variations (significant SRCC values). From Table
IV we can see that, regardless of the size of the backbone;
fine-tuning and using augmentations yielded the best
results on average and that the model with the highest
average performance across all tasks was VC-1 Base with
augmentations and fine-tuning. It should be noted that,
as with other PVRs, Sim2Real transfer did not work for
most tasks even with these variations (Table V).

IV. CONCLUSIONS

Our study on Sim2Real predictivity suggests that
simulation experiments can inform real-world perfor-
mance of PVR-based policies. Notably, we achieved a
landmark result on ImageNav, demonstrating the critical
role of PVRs in effective Sim2Real transfer. Finally,
our study highlights the impact of key design decisions
when deploying PVRs in real-world robotics tasks. These
insights help illuminate the potential of PVRs for robot
learning, setting a strong foundation for future research.
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Fig. 4: Sim Predictivity correlation for each variation of VC-1
Large.

V. APPENDIX

A. RELATED WORK

Pre-trained Visual Representations. Inspired by
the success of pre-trained representations for natural
language processing and computer vision tasks, the
robotics community has been exploring the use of PVRs
to accelerate vision-based robotics, as opposed to the
status quo of training models from scratch on in-domain
data. [17] trains control policies with PVRs trained on
large-scale computer vision datasets and show that in
many cases, these policies are competitive or outperform
policies trained with ground-truth state. [4], [5], and [6],
introduced the R3M, VIP, and MVP models respectively,
all of which target manipulation tasks and train represen-
tations on egocentric video data. [8] introduced the VC-1
model, which was trained on egocentric data as well as
web images. They also introduced a benchmark called
CortexBench, consisting of a range of 17 different control
tasks including locomotion, navigation, and mobile ma-
nipulation, however, all of these tasks were in simulation.

Sim2Real Transfer. Compared to other domains,
there is a lack of large, diverse, real-world datasets
in robotics. With this context, simulation is a highly
appealing source of potentially unlimited data, but the
domain gap poses a challenge to improving real-world
performance. There have been a number of approaches
which attempt to bridge this domain gap [18], [19],
[20], [21], [22], [23], [24]. In particular, for image-based
navigation tasks, [22] has shown that modular approaches
using semantics significantly outperform end-to-end RL
approaches when transferred to the real world. [25] arrives
at similar findings, also demonstrating poor performance
of an end-to-end network with a prior PVR. In contrast,
in this work we show that VC-1 Large [8], which is
pre-trained on diverse real-world data (including indoor
environments), can be fine-tuned with RL in simulation to
achieve a 90% success rate on ImageNav in the real world.

[26] has also explored the role of PVRs in training poli-
cies for Sim2Real transfer on robot tasks. However, while
they use a PVR trained with visual data from a specific
simulated robot setup, and apply it to the same robot in
the real world, our study focuses on PVRs trained on out-

of-domain real-world data, analyzing their applicability
to multiple different robot platforms and settings.

Sim2Real Predictivity. [10] investigates Sim2Real
predictivity (what we refer to as ‘sim-predictivity’) in
the context of a visual navigation task. They introduce
the Sim2Real Correlation Coefficient (SRCC) metric,
which we also use in this work. However, while they
study Sim2Real predictivity for a single task in a single
simulation environment, our work extends this to a
broader set of simulation environments and tasks, and
studies Sim2Real in the context of PVRs.

B. Details of Manipulation and Navigation tasks
1) Task, Policy and Training details for the TriFinger

task: In this task, the robot must move a cube from an
arbitrary initial position to an arbitrary goal position
specified by a goal image Ig of the cube at the goal
position. The state for the BC policy is [xt, zt, zg], where
xt are the proprioceptive states of the fingers, and zt and
zg are PVR-encoded versions of the current camera image
It and the goal image Ig, both at a resolution of 270×270.
We choose to specify the goal as an image to further
underscore the role of visual perception in this task. The
initial and goal cube positions are uniformly sampled
from within the robot workspace. The success criteria are
defined as 1 − df

di
where df and di are the final and initial

distance between the cube and the goal (respectively).
We collect demonstrations in simulation (PyBullet [27])

using a hand-designed expert policy that relies on
knowing the ground truth initial cube pose, which is
easily obtainable in simulation. Given the initial cube
pose, the expert policy first computes the contact points
on the cube for each finger (or just one finger in the
reach task). It then computes trajectories in Cartesian
space for each fingertip from their initial positions to
their respective contact points on the cube. Once the
fingers have reached the contact points and grasped the
cube, the expert policy computes trajectories for each
fingertip to bring the cube to the goal position. These
trajectories are then used to train a policy using behavior
cloning, with a learning rate of 10−4 for 500 epochs.

We compute the joint torques needed for tracking the
desired fingertip trajectories in Cartesian space using
the simplified impedance controller from [11] (time index
omitted for clarity):

τ = JT (kp(xref − x) + kv(ẋref − ẋ)) (1)

where τ ∈ IR9 is the vector of joint torques to be applied
to each finger, xref are the desired fingertip positions from
the reference trajectory, J is the Jacobian of the 3 fingers,
and kp and kv are hand-tuned controller gains. We also
use this controller to execute policies on the real robot.

See Figure 5 for a comparison between the sim and
real-world visuals for the Trifinger task.

2) Task, Policy and Training details for the Franka
tasks: Figure 1 and Figure 6 show the task configurations,
which include reaching a target point with the gripper



Fig. 5: Trifinger Simulation and Hardware Setup

(Reach Pos) within 5cm error, picking up a bottle stably
(Pick Up Bottle), and opening a drawer (Open Drawer)
more than 50% of the way. The target position or object
for each task is randomly reset before each demonstration
and evaluation so a naïve kinesthetic replay does not
solve the task. For the Reach Pos task, the target is
provided to the policy in the form of a PVR-encoded
goal image. The policies take as input the proprioception
of the arm and gripper (joint angles and velocities), and
the PVR-encoded 424×240 RGB image taken from a
RealSense D435 camera. The learned policies output
desired joint angles which are followed by the default PD
control loop. The policies take as input the joint angles
and velocities of the arm and gripper, and the PVR-
encoded 420×224 RGB image taken from a RealSense
D430 camera. The learned policies output desired joint
angles which are followed by the default PD control loop.

For the Reach Pos and Pick Up Bottle tasks, we
collected 30 demonstrations and trained a behavior
cloning policy at a learning rate of 10−4 for 200
epochs. For the Open Drawer task, we collected 150
demonstrations and trained a behavior cloning policy at a
learning rate 10−3 for 500 epochs. For finetuning, we used
the same learning rate for the policy and PVR encoder.
For augmentation, we added 20% ColorJitter (brightness,
contrast, hue) and 8 pixel random shifts to the image.

See Figure 6 for a comparison between the sim and
real world visuals for the Franka tasks.

3) Task, Policy, and Training details for the ImageNav
task: In Habitat, we represent the Stretch robot as a
cylindrical agent with a height of 1.41m and a radius of
0.3m. The Realsense RGBD camera is placed at a height of
1.31m from the ground and aligned vertically, outputting
an image of size 640×480 (H×W) with a horizontal
field of view of 42◦. We create our own training episode
dataset using the HM3D scene dataset [16], consisting of
800 scenes and 7.2 million training episodes. We allow the
agent to take up to 1,000 steps within each episode. The
episode is deemed successful if the agent reaches within
1m of the goal position and calls StopAction. The policy
takes as input PVR encodings of the current camera image
and the goal image, both downsampled to a resolution of
160×120 and outputs discrete actions. For training the

(a) Reaching Ran-
dom Point on real
robot

(b) Bottle Pickup on
real robot

(c) Open Drawer
task on a kitchen
table-top setup on
real robot

(d) Reaching Ran-
dom Point in sim

(e) Bottle Pickup in
sim

(f) Open Drawer
task on a kitchen
table-top setup in
sim

Fig. 6: Franka real-world manipulation tasks

agents in the HM3D environments, we use 600M timesteps
(25k updates) with 320 environments running in parallel.
Each environment collects up to 64 frames of experience,
followed by 2 PPO epochs utilizing 2 mini-batches. Unless
otherwise specified, we use a learning rate of 2.5 × 10−4

and update the parameters using the AdamW optimizer
with a weight decay of 10−6. The reward functions are
based on those presented in [28], with success weighting
cs = 5.0, angle success weighting ca = 5.0, goal radius
rg = 1.0, angle threshold θg = 25◦, and slack penalty
γ = 0.01. Performance is evaluated every 25M steps of
training, and metrics are reported based on the highest
success rate (SR) achieved on the validation set.

See Figure 7 for a comparison between the sim and
real-world visuals for the ImageNav task.

See Figure 8 for a picture of the stretch robot used
for our experiments and a top-down map generated by
stretch.

C. PVRs details
Table VI is a comparison of the different PVRs studied

in this paper.

D. Qualitative assessments for Sim2Real transfer on
ImageNav:

We observed that R3M only completed the shorter
episodes during real-world evaluation and frequently
collided with obstacles, terminating the episode. This
reflects the behavior seen in simulation where the average
number of collisions (5.1) exceeded other PVRs.

CLIP and MVP were both effective at avoiding
obstacles (colliding 0.6 and 0.3 times on average), but



(a) ImageNav Hardware Setup

(b) ImageNav Simulation Setup
Fig. 7: Illustration of the ImageNav task setup for both
hardware and simulation platforms.

often stopped short of the goal. We speculate that this
might be a result of not observing data similar to the
indoor navigation datasets used to train the stronger
performing models like VC-1 Base and VC-1 Large.

VC-1 Base and VC-1 Large exhibited contrasting
behavior. The larger model explored the environment
effectively (high number of steps) and achieved a high
success rate, while the base model appeared to randomly
explore, but reached the goal when seen from afar.

E. Additional experimental data
Table VII highlights the differences in performance

when models are trained and evaluated in a more
realistic setting compared to the original CortexBench.
The Franka Open Drawer task is compared with
the MetaWorld Open Drawer task, which has a
similar specification but uses different robots. The
results demonstrate that the success rates reported in
CortexBench can be overly optimistic.

(a) The stretch robot used in
the ImageNav real-world experi-
ments.

(b) Top-down view of the
real-world path (green) of
the robot with the point
cloud from the robot’s
head camera and a 2D li-
dar map.

Fig. 8: Stretch robot and sample of a top-down view of a path
from a real-world scene
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Fig. 9: Sim Predictivity chart comparing correlations of sim
performance to policies trained in the real world (blue), vs
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and transferred to hardware (red). Sim2Real transfer (red) is
poor across the board for tasks that use few-shot imitation
learning; as seen by the red points at the bottom of the plot.
Transfer performance is substantially better on ImageNav (red
cross markers), which is trained using large-scale reinforcement
learning on simulated scenes.



TABLE VI: Details of the various pre-trained visual representations we evaluate in this work.

Model Type of supervision Architecture Datasets Number of parameters
R3M Time-contrastive learning, video-text alignment Resnet50 Ego4D 23M
CLIP Image-text alignment ViT-B WebImageText 86M
MVP Image only; masked autoencoder ViT-L Ego4D, ImageNet, Epic Kitchens, 100DoH, SS 307M
VC-1 Base Image only; masked autoencoder ViT-B Ego4D, ImageNet, Epic Kitchens, 100DoH, SS-

V2, RE10k, OpenHouse24
86M

VC-1 Large Image only; masked autoencoder ViT-L Ego4D, ImageNet, Epic Kitchens, 100DoH, SS-
V2, RE10k, OpenHouse24

307M

TABLE VII: Comparison of success rates for policies using 5 different frozen PVRs on CortexBench, MetaWorld, and three
hardware platforms (TriFinger, Franka, and Stretch) in both simulation and real-world scenarios.

CortexBench TriFinger Stretch MetaWorld Franka
Task All Tasks Push cube ImageNav Open drawer

# Method CortexBench CortexBench sim real CortexBench sim real CortexBench (sim) (real)
1 MVP 67.5 63.4 44.4 30.0 68.1 60.3 50 100.00 33.33 26.67
2 R3M 58.0 51.9 31.4 34.3 30.6 25.0 20 100.00 37.00 36.67
3 CLIP 57.0 40.1 31.5 38.1 52.2 39.0 20 100.00 40.00 33.33
4 VC-1 Base 66.2 60.6 39.9 37.5 67.9 61.0 60 100.00 56.67 66.67
5 VC-1 Large 68.7 60.2 40.7 38.0 70.3 60.0 90 100.00 50.00 56.67

TABLE VIII: All experimental results. Dash (-) means that we did not run this particular configuration due to time constraints.

task model frozen augmentation ImageNav open_drawer pick_up_bottle push_cube reach_pos Average
setting real sim real sim real sim real sim real sim real sim
0 CLIP yes no 20.0±12.6 39.0±1.5 33.3±3.3 40.0±0.0 63.3±13.3 76.7±3.3 38.1±0.4 31.5±6.0 80.0±11.5 80.0±0.0 47.0±8.2 54.1±2.8
1 MVP yes no 50.0±15.8 60.3±1.5 26.7±3.3 50.0±0.0 50.0±20.0 70.0±11.5 30.0±4.1 44.4±0.5 90.0± 5.8 90.0±0.0 49.3±9.8 59.6±3.4
2 R3M yes no 20.0±12.6 25.0±1.4 36.7±3.3 37.0±3.3 86.7±3.3 86.7±8.8 34.2±3.1 31.4±6.1 100.0±0.0 96.7±3.3 55.5±4.5 56.0±5.1
3 VC-1 Base no no - - 53.3±13.3 57.0±3.3 63.3±3.3 93.3±3.3 37.1±3.7 35.7±3.7 33.3±6.7 88.9±0.0 46.8±6.8 67.0±4.3
4 VC-1 Base no yes - - 73.3±3.3 73.3±6.7 90.0±10.0 100.0±0.0 36.9±1.4 35.7±2.9 93.3±6.7 100.0±0.0 73.4±5.3 77.3±2.4
5 VC-1 Base yes no 60.0±15.5 61.0±1.5 66.7±3.3 70.0±5.8 73.3±10.8 83.3±3.3 37.5±3.4 39.8±1.2 71.7±11.4 70.6±12.1 61.8±8.9 64.9±4.8
6 VC-1 Base yes yes - - 70.0±5.8 73.3±3.3 83.3±8.8 90.0±5.8 34.8±0.5 38.0±0.3 40.0±10.0 63.0±7.4 57.0±6.3 66.1±4.2
7 VC-1 Large no no 60.0±15.5 71.0±1.4 43.3±3.3 50.0±0.0 90.0±5.8 96.7±3.3 34.3±3.3 28.0±4.0 56.7±6.7 92.6±3.7 56.8±6.9 63.0±4.3
8 VC-1 Large no yes 90.0±9.5 76.0±1.3 66.7±8.8 76.7±6.7 50.0±25.2 100.0±0.0 31.0±3.0 33.6±0.8 86.7±13.3 96.3±3.7 64.9±12.0 76.5±2.5
9 VC-1 Large yes no 90.0±9.5 60.0±1.5 56.7±3.3 66.7±6.7 48.3±8.7 86.7±6.1 38.0±1.1 40.7±4.6 68.3±8.7 68.7±13.3 60.3±6.3 64.5±6.4
10 VC-1 Large yes yes 80.0±12.6 69.0±1.5 63.3±6.7 70.0±5.8 60.0±20.8 100.0±0.0 37.9±6.8 34.6±2.0 36.7±8.8 85.2±3.7 55.6±11.1 71.8±2.6

TABLE IX: All experimental results. Dash (-) means that we did not run this particular configuration due to time constraints.

task model frozen augmentation ImageNav Open Drawer Pick Up Bottle Push Cube
setting sim sim sim sim
0 CLIP no no 20.0(1) 27.0+/-3.0(3) 0.0+/-0.0(3) 11.0+/-2.0(3)
1 MVP no no 50.0(1) 13.0+/-3.0(3) 0.0+/-0.0(3) 6.0+/-2.0(3)
2 R3M no no 20.0(1) 10.0+/-0.0(3) 0.0+/-0.0(3) 8.0+/-3.0(3)
3 VC-1 Base no no N/A 0.33+/-3.0(3) 0.0+/-0.0(3) 14.0+/-3.0(3)
3 VC-1 Base no yes N/A 0.30+/-0.0(3) 0.0+/-0.0(3) 17.0+/-4.0(3)
3 VC-1 Base yes no 60.0(1) 23.0+/-3.0(3) 0.0+/-0.0(3) 3.0+/-0.0(3)
3 VC-1 Base yes yes N/A 0.27+/-7.0(3) 0.0+/-0.0(3) 0.04+/-1.0(3)
4 VC-1 Large no no 60.0(2) 37.0+/-3.0(3) 0.0+/-0.0(3) 20.0+/-2.0(3)
4 VC-1 Large no yes 90.0(2) 33.0+/-3.0(3) 0.0+/-0.0(3) 14.0+/-2.0(3)
4 VC-1 Large yes no 90.0(1) 33.0+/-3.0(3) 0.0+/-0.0(3) 4.0+/-1.0(3)
4 VC-1 Large yes yes 80.0(2) 23.0+/-3.0(3) 0.0+/-0.0(3) 2.0+/-1.0(3)



TABLE X: All hyperparameters and tasks setup comparisons between CortexBench, our simulation and real world settings.
Trifinger Stretch Franka Franka MetaWorld Franka

Task Push cube ImageNav Reach position Pick up bottle Open drawer Open Drawer
Observation Space RGB + proprio. RGB RGB + proprio. RGB + proprio. RGB + proprio. RGB + proprio.

Action Space Continuous Discrete Continuous Continuous Continuous Continuous
Goal Specification Goal Image Goal Image Goal Image - - -

Policy Learning IL RL IL IL IL IL
Context CortexBench sim real CortexBench sim2real sim real sim real CortexBench sim real
Robot Trifinger Trifinger Trifinger LoCoBot Stretch Franka Franka Franka Franka Sayer Franka Franka

Epochs trained 100 500 500 500m Steps 600m Step 200 200 100 50 50
Checkpoint selection Max eval success epoch 100 epoch 100 Max eval success Last epoch 50 epoch 50 epoch 50 epoch 50 Max eval success epoch 100 epoch 100
Num demonstrations 100 31 31 - - 30 30 30 30 100 150 150

Number of random seeds 3 3 3 1 1 3 3 3 3 3 3 3
Learning Rate 10−4 10−4 10−4 2.5 × 10−4 2.5 × 10−4 10−4 2.5 × 10−4 10−4 10−4 - 10−3 10−3

Augmentations described - Color jitter + translate - Color jitter + translate Color jitter + translate Color jitter + translate - Color jitter + translate
Number of evaluation episodes - 12 12 - 10 10 10 10 10 - 10 10

Sampling of goal position 12 different fixed positions random random random random
Sampling of start position 12 different fixed positions random random random random

Other aspects demos from RL/heuristic policy - - demos from RL/heuristic policy demos from tele-operation demos from RL/heuristic policy demos from tele-operation demos from RL/heuristic policy demos from RL/heuristic policy demos from tele-operation
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