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ABSTRACT

Traffic flow prediction based on vehicle trajectories is a crucial aspect of Intelli-
gent Transportation Systems (ITS). Deep learning approaches have recently been
widely adopted to capture spatio-temporal correlations in traffic conditions, and
have achieved superior performance compared to traditional methods. However,
most existing studies focus on traffic prediction at a single spatial scale, usually
corresponding to the road-segment level. According to the Hierarchy Theory,
processes at different scales form a hierarchy of organization, and meaningful
patterns may emerge at multiple levels of details. Presetting traffic data at an inap-
propriate scale can cause misunderstanding in features learning. In this paper, we
propose a graph learning model called MST-GNN, which captures the compre-
hensive behaviors and dynamics of traffic patterns by fusing multi-scale features
from both space and time perspectives. In ITS applications, users usually con-
sider traffic conditions at the larger-scale regional level, and a prediction model
must attend to multi-scale application requirements. Moreover, the structure of
multiple granularities in time series can fully unleash the potential of different
temporal scales in learning dynamic traffic pattern features. We inject the multi-
scale spatio-temporal structure into a graph neural architecture with a tailored fu-
sion module. Our model achieves state-of-the-art accuracy prediction results on
two traffic benchmark datasets.

1 INTRODUCTION

Traffic prediction is a special time-series forecasting, whose main task is to predict the future traffic
conditions based on historical observations. It is a critical ingredient of the intelligent transportation
system (ITS), which has great effect on the fields of efficient management of urban traffic, rational
allocation of traffic resources, and planning of urban construction Zhang et al. (2011).

Traffic flow prediction is not a new task, early attempts at prediction were made using statistical
methods EDES et al. (1980); Ahmed & Cook (1979). More recently, some scholars have used
machine learning methods such as support vector regression (SVR), K nearest neighbor (KNN) to
build prediction models Castro-Neto et al. (2009); Hu et al. (2016); Davis & Nihan (1991); Zheng
et al. (2020b). However, due to the complex spatio-temporal characteristics of traffic flow data,
statistical and machine learning models have limitations and cannot be adapted to more complex
application scenarios. The development of deep learning technology has brought a new turn for the
problem of traffic flow forecasting. A large number of research results have proved that the deep
learning method is currently the optimal solution to the problem of traffic flow forecasting Wu et al.
(2020); Fan et al. (2020); Jiang & Luo (2022). Recurrent neural networks (RNN, GRU, LSTM,
etc.) were first verified effective in traditional time series prediction, and are often used in traffic
prediction models to capture temporal features Wu & Tan (2016); Zhao et al. (2019). Meanwhile, in
order to capture the adjacent relationship between traffic nodes, researchers successively introduced
a convolutional neural network (CNN) Wu & Tan (2016); Henaff et al. (2015) suitable for Euclidean
structure data and a graph neural network (GNN) Agafonov (2020); Guo et al. (2020); Chen et al.
(2020) suitable for graph structure data. Recently, some models have used spatio-temporal attention
mechanism, which also achieved excellent accuracy Su et al. (2022); Shi et al. (2020); Do et al.
(2019); Guo et al. (2019); Zheng et al. (2020a).
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Figure 1: Schematic diagram of multi-spatial-scale data. (a) Single-scale traffic data prediction
example. (b) Multi-scale traffic data prediction example.

The above studies mainly focus on the traffic flow changes at a single spatial scale He & Shin (2020);
Wang et al. (2022); Liao et al. (2022), or only mine the correlations at a single temporal scale Wang
et al. (2020); Guo et al. (2021); Mallick et al. (2020). Although the traffic flow forecasting research
unceasingly obtains the new breakthrough, some deficiencies remain unresolved. The existing mod-
els still face challenges in the traffic features learning over long distances and long periods. We
argue that there are still two important aspects ignored in these approaches.

Ignoring the integration of traffic features across spatial scales Many recent forecasting mod-
els have focused on traffic forecasting at the road segment scale (which can be considered as fine-
grained), while ignoring the traffic conditions at the urban regional scale (i.e., is coarse-grained).
However, in ITS applications, traffic forecasting at the urban regional scale is also indispensable,
which can help better observe the macroscopic traffic conditions, and allocate urban traffic resources
effectivelySun et al. (2016); Ding et al. (2019). As shown in Figure 1, there is a certain correspon-
dence between coarse-grained data and fine-grained data, and the fine-grained data often generates
smaller features regarding spatial correlation. Combined with the characteristics of coarse-grained
data, it can assist fine-grained process to learn more macro traffic information (e.g., longer-distance
dependency), thereby improving the prediction accuracy.
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Figure 2: Comparison of flow
changes on different time scales. The
sampling time step of panel (a) is 5
minutes, and the sampling time step
of panel (b) is 1 hour.

Ignoring the integration of traffic features across time
scales As shown in Figure 2, the characteristic informa-
tion contained in flow data of different time scales is not
same but compensates each other. Existing forecasting
models tend to ignore such multi-scale information inter-
action. In training, fine-grained data often requires multi-
step iterations for learning long-term dependency features
(e.g., A− >B as shown in Figure 2a). In contrast, under the
coarse-grained series, the number of iterations required to
propagate the information of the same cycle can be greatly
reduced (e.g., A− >B as shown in Figure 2b). While reduc-
ing the number of propagation layers, the model can effec-
tively maintain the critical information during the iterative
process.

Overall, meaningful patterns may emergency at multiple
levels of details, and the Hierarchical Theory O’Neill et al.
(1989) states that smaller-scale processes sustain larger-
scale processes, while the larger processes constrain the
smaller-scale processes by setting the boundary conditions.
Therefore, cross-scale integration of traffic information can
be a potential contributor to advance the traffic flow forecasting research.
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For the above content, we propose a Multi-granularity Spatio-Temporal Graph Neural Network
(MST-GNN). In this model, we input the traffic data of multiple spatial scales, among which the
coarse-grained data is obtained through the community detection. Besides, we add time series infor-
mation on a long-term scale to supplement the model with the dynamic characteristics of the traffic
flows at the macro level. The main contributions of this paper are as follows:

• An effective framework is proposed to simultaneously capture multi-temporal-scale and
multi-spatial-scale information by designing a multi-scale spatial-temporal data mining
module.

• Based on the spatio-temporal correlation of multi-temporal-scale data, a spatio-temporal
attention module that fuses multi-temporal-scale information is proposed.

• Despite MST-GNN’s backbone being a simple model, our method still surpasses existing
methods and achieves SOTA performance on benchmark datasets.

To the best of our knowledge, this is the first work to demonstrate the exceptional ability of multi-
scale spatio-temporal integration to traffic prediction with remarkable accuracy. We expect this can
serve as an effective tool for more various tasks in the spatial-temporal data mining field, in which
scale is an inevitable part of features learning.

2 RELATED WORK

2.1 TRAFFIC PREDICTION

Traffic flow data is a typical spatio-temporal data that exhibits complex spatio-temporal features. Re-
cently, traffic forecasting researches rely on deep learning models to model spatio-temporal features
due to its superior performance. Yu et al. (2017) proposed the STGCN model, which combines the
graph convolutional layer with the convolutional sequence learning layer to model the spatiotempo-
ral dependencies of the road network. Zhao et al. (2019) combined the GCN with the gated recurrent
unit (GRU) to build the T-GCN model. What’s more, some researchers have tried to introduce the
mature methods that have been applied in other time series forecasting topics into the traffic fore-
casting model and have made new breakthroughs. Li & Zhu (2021) proposed the SFTGNN model,
which introduced a dynamic time warping (DTW) method to generate a time graph to compensate
for the shortcomings of the spatial graph in the traditional model. Based on neural control differ-
ential equations (NCDEs), Choi et al. (2022) build the STG-NCDE model that can implement the
spatial and temporal features mining effectively. However, the above methods only focus on the
single-scale spatio-temporal features of traffic data.

2.2 SPATIO-TEMPORAL ATTENTION MECHANISM

Compared with traditional time-series forecasting, traffic flow forecasting is more complicated, es-
pecially in long-term or long-range tasks. The attention mechanism originated in the field of com-
puter vision, and has been applied to many deep learning frameworks due to its flexibility and prac-
ticality Vaswani et al. (2017); Guo et al. (2022); Niu et al. (2021). In order to release the challenge
of learning long-term dependence of traffic data, some researchers introduce attention mechanism
into predictive models Su et al. (2022); Shi et al. (2020); Do et al. (2019). Guo et al.Guo et al.
(2019) proposed an attention-based spatio-temporal graph convolutional network ASTGCN, which
contains a temporal attention layer and a spatial attention layer to capture the spatio-temporal cor-
relation between traffic data. Zheng et al. Zheng et al. (2020a) proposed a graph multi-attention
network GMAN, which adopts the architecture of encoding and decoding. An attention conversion
module is included between the encoder and decoder to simulate the relationship between historical
time steps and future time steps, which helps to alleviate the problem of error propagation between
prediction time steps. Despite the usefulness of attention mechanism in these researches, effectively
learning the long-range dependency from both perspectives of space and time remains a challenging
task.
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Figure 3: Schematic diagram of the Louvain algorithm

2.3 COMMUNITY DETECTION

Due to the efficiency and accuracy of Louvain algorithm, it has become the most widely used method
in community detectionClauset et al. (2004); Wakita & Tsurumi (2007); Pons & Latapy (2005).
The Louvain algorithmBlondel et al. (2008) is a designed modularity calculation for community
detection. It is mainly divided into two stages (Figure 3 ): modularity optimization and network
cohesion. Modularity is a measure of the quality of community detection. The higher the community
modularity, the tighter the internal nodes of the same community in the divided graph structure are,
and the higher the community detection quality is. The formula for calculating the modularity is as
follows:

Q =
1

2m

∑
c

[
∑

in− (
∑

tot)2

2m
] (1)

where
∑

in indicates the sum of weights of edges in community c,
∑

tot indicates the sum of
weights of edges connecting all nodes in community c, m ndicates the sum of weights of all edges
in the whole graph. The Louvain algorithm is used in the detection of various networks. Li et al.
(2022) proposed a new traffic area division method based on the Louvain algorithm, which can
dynamically divide the regional road network according to the changes of traffic features. Compared
with traditional methods, the division results of this model are more objective. Zhang et al. (2021)
used the Louvain algorithm to divide the urban community structure, laying the foundation for
mining the urban core traffic area. In this paper, the Louvain algorithm is used to obtain traffic data
at the urban region scale.

3 METHODOLOGY

As shown in Figure 4, our model involves multi-spatial-scale fusion module, multi-temporal-scale
fusion module and output fusion layer. In the following, we will elaborate on the above contents in
four parts.

3.1 DATA PREPROCESSING

The data preprocessing required by the model includes two parts: data generation at a regional scale
and data generation at a longer time scale.

The data generation at the regional scale is mainly realized by the Louvain community detection
algorithm, and the implementation process is shown in Figure 3. Suppose the input original fine-
grained spatial data is Gf , the coarse-grained spatial data obtained by the Louvain algorithm is Gc,
and the mapping matrix between them is Afc. For node Gc in ni, its eigenvalue is the sum of the
eigenvalues of all the fine-grained nodes it contains.

Figure 2 shows the traffic data changes of the same node on different time scales within twelve
hours. Let the original data be fine-grained data, denoted as XTf

= {x1
Tf
, .., xt

Tf
, ..., xT1

Tf
}, where

T1 is the input time step. Coarse-grained data is summed from fine-grained data, denoted as
XTc = {x1

Tc
, .., xt

Tc
, ..., x

T ′
1

Tc
}, where T ′

1 is the time step of the input. For coarse-grained data xt
Tc

,

4



Under review as a conference paper at ICLR 2024

Louvain

Fine-grained graph data

Coarse-grained graph data

MST-GNN

( )
fTfG X

( )
cTfG X

( )
fTcG X

( )
cc TG X

MS-Block

MT-Block1

MT-Block2

( )
fTfG X

( )
fTfG X

( )
fTc XG

( )
cTfG X

( )
fTc XG ( )

cc TG X

Fine-grained output1

Fine-grained output2

Coarse-grained output1

Coarse-grained output2

FC

FC

Fine-grained output

Coarse-grained output

LSTM

Multi-temporal Granularity Fusion

LSTM

MT-Block

GCN

Time Attention

GCN

Time Attention

Multi-space Granularity Fusion

MS-Block

1{ ,..., }
f f fT

t
T TX x x1{ ,..., }

c c cT
t

T TX x x

...
... fT

x
cT
x

fG
cG

... ...

...

(a)

(b)

(c)

1
2

1T

1
2

1T

INPUT DATA
1 1T 
1 2T 

1 2T T

1 1T 
1 2T 

1 2T T...

Figure 4: The framework of Multi-granularity Spatio-Temporal Graph Neural Network (MST-
GNN). (a)The multi-spatial-scale neural network (MS-Block) mainly deals with the fusion of multi-
spatial-scale data, and the input is multi-spatial-scale data at a smaller temporal scale. The multi-
temporal-scale neural network (MT-Block) mainly deals with the fusion of multi-temporal-scale
data, and the input is fine-grained spatial units (b) and multi-time-scale data (c) under coarse-grained
spatial units.

its evaluation formula is shown as follows:

xt
Tc

=

t∑
i=t−n∗p

xi
Tf

(2)

p = Tc/Tf (3)

Among them, n is the time step of a single input coarse-grained data. Tc is the temporal scale of
the input coarse-grained data, which is 1 hour as shown in Figure 2. Tf is the temporal scale of the
input fine-grained data, which is 5 minutes. Tc must be an integer multiple of Tf , that is, p must be
an integer. Furthermore, for Equation 2, we stipulate that it must satisfy (t− n ∗ p) > 0.

3.2 MULTI-SPATIAL-SCALE FUSION MODULE

The multi-spatial-scale fusion module (MS-Block) is designed to process and fuse the spatiotem-
poral features of multi-spatial-scale data, mainly including a graph neural network (GCN) layer, a
temporal attention layer and a multi-scale features fusion layer. This module is inputted with data
of different spatial granularities under fine time scale. First, it extracts spatial features from the
two scales through the GCN layer, then extracts the temporal features of the data through the self-
attention layer, and finally aggregates the data features at multiple spatial scales through the fusion
module.

Graph Neural Network Layer: In the model, we use a graph convolutional neural network
(GCN) to learning the spatial features of traffic dataKipf & Welling (2016). For graph structure
G = (V,E,A), let H(l) be the current eigenvector matrix of all nodes, then the formula of a convo-
lution operation can be expressed as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

where Ã = A + IN , IN is the identity matrix. D̃ is a degree matrix, and the calculation method is
D̃ =

∑
Ãij . σ(·) is the activation function.

Temporal Attention Layer: The temporal attention layer in the model is realized by performing
self-attention processing on the input multi-scale data in the time dimension, and its main function is
to learn the temporal embedding of the data. After passing through the GCN layer, the current input
data is X l. First, the query (Ql), key (Kl) and value (V l) are obtained through linear transformation,
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Figure 5: Multi-temporal-scale data fusion module based on spatial attention.

and then the weight of the V elements corresponding to the key value is obtained by calculating the
similarity of elements in Q and K, and the final output result is obtained by weighted summation.

Ql = X l · wq (5)

Kl = X l · wk (6)

V l = X l · wv (7)

Ol = softmax(Ql · (Kl)T · V l) (8)

where O is the output of this calculation. wq , wk and wv are trainable parameters.

Multi-scale Features Fusion Layer: MS-Block takes both coarse-grained spatial data Gc and
fine-grained spatial data Gf as the input. After the GCN layer and the temporal attention layer, we
use a multi-scale features fusion layer to fuse the data features of the two scales. In this layer, the
spatial features of the multi-scale data interact with each other through a mapping matrix of the two
sets of data.

X l+1
c = X l

c + η1 · softmax(AfcX
l
fWc) (9)

X l+1
f = X l

f + η2 · softmax(AT
fcX

l
cWf ) (10)

where X l
c and X l

f are the input coarse-grained data and fine-grained data respectively. η1 and η2 are
hyperparameters. Afc is the mapping matrix obtained in the data preprocessing stage. Wc and Wf

are trainable parameters.

3.3 MULTI-TEMPORAL-SCALE FUSION MODULE

The multi-temporal-scale module (MT-Block) aims to process and fuse the spatio-temporal features
of traffic data at multiple time scales, including an LSTM layer and a multi-scale fusion layer based
on spatial attention. In this module, the input is the traffic data of multiple time scales under the
same spatial scale, and the output is finer-temporal-scale data.

LSTM Layer: LSTM can solve the long-term dependence learning problem of cyclic neural net-
workMa et al. (2015). It has good performance in the processing of time series data. In this paper,
LSTM is used to extract temporal features of traffic data at different time scales. For the input time
series X l ∈ Rs×t×f , the LSTM model extracts the embedding O ∈ Rs×t×f . Then it goes through
a fully connected layer for linear transformation to get the output X l+1 ∈ Rs×n×f of the LSTM
layer. Among them, s represents the spatial dimension of data, t represents the time step of data
input, n represents the time step of data output, and f represents the feature dimension of traffic
data.

Multi-scale Fusion Layer: After the input traffic data of multiple time scales are processed by the
LSTM layer, two sets of coarse-grained and fine-grained outputs are obtained. The multi-temporal-
scale fusion module is designed on the spatial attention, and the specific structure is shown in Figure
5. By calculating the similarity between coarse-grained data and fine-grained data, the weight value
is determined, and then the coarse-grained data is weighted and summed to obtain the fusion value
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of coarse-grained data relative to the fine-grained data. The calculated fusion value is added to the
output of the fine-grained data of the previous layer to obtain the final output of the fusion module.
The calculations are as follows:

Ql = X l
f · w′

q (11)

Kl = X l
c · w′

k (12)

V l = X l
c · w′

v (13)

Ol = softmax(Ql · (Kl)T · V l) (14)

X l+1
f = Ol +X l

f (15)

where X l
f and X l

c are the fine-grained and coarse-grained inputs of this layer respectively. X l+1
f is

the output of fine-grained data in this layer. w′
q , w′

k and w′
v are all trainable parameters.

3.4 OUTPUT FUSION LAYER

As shown in Figure 4, the MST-GNN contains one MS-Block module and two MT-Block modules.
MS-Block simultaneously outputs coarse-grained spatial data Xs

c and fine-grained spatial data Xs
f .

The two MT-Block modules output coarse-grained spatial data Xt
c and fine-grained spatial data Xt

f

corresponding to the input data scale, and all the output data have fine-grained time scales.

The output fusion layer fuses the output results under the same spatial scale respectively, and inte-
grates the multi-temporal features and spatial features to obtain the final output result. Specifically:
First, the output results under the same spatial scale are spliced in the time dimension to obtain a
longer vector. Then, after a fully connected layer, the longer vector is linearly transformed to obtain
the final output result.The calculation formulas are as follows:

Xf out = FC([Xs
f , X

t
f ]) (16)

Xc out = FC([Xs
c , X

t
c]) (17)

3.5 LOSS FUNCTION

Note that the fine- and coarse-grained predictions should be consistent.We use the loss function for
the two prediction tasks as follows:

L = η1||Xf target −Xf out||2 + η2||Xc target −Xc out||2 (18)

Xf target and Xc target are the target values of the corresponding spatial scale prediction tasks,
respectively. η1 and η2 are hyperparameters, and we set them both to 0.5 in the experiment.

4 EXPERIMENTS

4.1 DATASET

Our experiments are carried out on two benchmark datasets (California highway datasets), PeMSD4
and PeMSD08Jia et al. (2001). The data is aggregated every five minutes, that is, each sensor
contains 288 pieces of data per day. The traffic variables include flow only. The PeMSD4 dataset
contains 307 sensors, and the time span is from January 2018 to February 2018. The PeMSD8
dataset contains 170 sensors and the time span is from July 2016 to August 2016. In the experiments,
we use the first 60% of the data as the training set, 20% of the data as the validation set, and the last
20% of the data as the test set.

After being processed by the Louvain community discovery algorithm, the PeMSD4 and PeMSD8
data sets contain 31 communities and 15 communities respectively. In addition, we preprocess the
data sets by normalizing the maximum and minimum values, and then the data values are between
0 and 1. The specific formula is that x′ = (x − xmin)/(xmax − xmin), where xmin and xmax are
the maximum and minimum values in the corresponding test set, respectively.
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Table 1: Performance comparison of MST-GNN and baseline models on PeMSD4 dataset.

Time 5mins 15mins 30mins

Metric MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

GCN 0.213 28.18 39.68 0.219 29.29 41.13 0.227 30.60 42.89
LSTM 0.138 21.15 31.82 0.140 21.65 31.39 0.154 23.55 34.13
TGCN 0.192 23.59 35.01 0.194 23.79 35.37 0.221 25.83 37.90

STGCN 0.149 19.79 30.80 0.147 20.84 32.63 0.173 22.67 35.13
ASTGCN 0.201 30.97 51.13 0.181 26.47 42.17 0.184 27.17 43.29

HGCN 0.125 17.73 28.10 0.140 19.68 29.41 0.154 20.67 32.27
STG-NCDE 0.120 18.50 29.28 0.123 18.86 30.03 0.133 19.49 30.99
MST-GNN 0.098 14.51 23.22 0.107 15.69 25.06 0.120 17.44 27.73

Table 2: Performance comparison of MST-GNN and baseline models on PeMSD8 dataset.

Time 5mins 15mins 30mins

Metric MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

GCN 0.210 34.02 46.09 0.208 34.76 46.98 0.212 35.49 48.00
LSTM 0.099 18.00 26.61 0.121 21.69 29.96 0.116 20.96 29.88
TGCN 0.244 22.80 31.82 0.230 22.46 31.52 0.250 23.42 33.08

STGCN 0.125 16.24 24.93 0.134 17.45 26.70 0.143 19.53 29.60
ASTGCN 0.143 21.35 34.88 0.138 20.06 32.70 0.142 20.65 33.72

HGCN 0.092 13.32 20.44 0.102 14.66 22.62 0.109 15.75 24.66
STG-NCDE 0.096 14.27 21.92 0.090 13.73 21.55 0.107 15.98 24.81
MST-GNN 0.063 9.98 15.26 0.067 10.86 16.89 0.075 11.89 18.57

4.2 BASELINES

To test the performance of our proposed model, we selected multiple models for comparative ex-
periments: (1) classic deep learning baseline models including GCNKipf & Welling (2016) and
LSTMMa et al. (2015); (2) classic graph neural network models for traffic flow forecasting, includ-
ing TGCNZhao et al. (2019) and STGCNYu et al. (2017); (3) recent graph neural network model for
traffic flow prediction such as the attention mechanism based ASTGCNGuo et al. (2019); (4) recent
graph neural network model with multi-scale information HGCNGuo et al. (2021); (5) short-term
traffic flow forecasting model STG-NCDEChoi et al. (2022).

4.3 EXPERIMENTAL SETTING

In the experiment, one-hour historical data with 12 continuous time steps is used to predict next
1-time-step data, 3-time-steps data and 6-time-steps data. We have evaluated MST-GNN more than
10 times on each public dataset. Experiments are conducted under the environment with one Intel
Core i9-10940X CPU @ 3.30GHz and NVIDIA GeForce RTX 3080 Ti card. We train our model
using Adam optimizer with learning rate 0.0001. The performances of all methods are measured by
three metrics, i.e., Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE).

4.4 EXPERIMENT RESULTS AND ANALYSIS

Table 1 and table 2 shows the performance of the MST-GNN model and other baseline models on
the PEMS04 and PEMS08 datasets. In the comparative experiment, we predict the traffic data of the
next 5 minutes, 15 minutes, and 30 minutes respectively. For each notable model, we list its average
MAE/RMSE/MAPE from the two datasets. All models experience some decrease in prediction
accuracy as the time step of the forecast data increases. Compared with all models, our model has
a 1.3% 11.5% accuracy improvement on PEMSD4 and a 2.3% 14.7% accuracy improvement on
PEMSD8. The MST-GNN model performs best in all three indicators of MAPE/MAE/RMSE.

As shown in the table 1 and table 2, MST-GNN shows the best performance on all metrics. Exper-
imental results demonstrate that the proposed multi-scale learning framework can effectively fuse
spatio-temporal features across scales to improve prediction accuracy.
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Figure 6: Ablation experiment comparison on PEMSD4 and PEMSD8.

4.5 COMPUTATION COST

In order to test the prediction efficiency of the model, we tested the training computation time
and inference computation time of HGCN, STG-NCDE and MST-GNN, which have the highest
comprehensive prediction accuracy in comparative experiments. The test data set is PEMSD4. In
this experiment, one-hour historical data with 12 continuous time steps is used to predict next 1-
time-step data. The results are shown in Table 3. Although MST-NCDE and HGCN also have
excellent performance in prediction, the computation time of training is much higher than that of the
MST-GNN model. In general, MST-GNN can obtain higher prediction accuracy in a shorter training
time, that is, the prediction efficiency is the highest.

Table 3: The computation time on PeMSD4 dataset.

Method Training Computation
Time (s/epoch)

Inference Computation
Time (s)

HGCN 37.3 4.12
STG-NCDE 426.5 42.7
MST-GNN 4.1 0.45

4.6 ABLATION STUDY

To verify whether the proposed multi-temporal-scale module and multi-spatial-scale module are
effective, ablation experiments are carried out by comparing the complete model and the only-
multiple-spatial-scale model called MST-GNN(ms) and only-multiple-temporal-scale model called
MST-GNN(mt). We carried out ablation experiments on the PEMSD4 data set, and predicted the
traffic conditions in the next 15mins, 30mins and 60mins respectively. The MAPE, MAE and RMSE
indicators are used to measure the prediction accuracy, and the results are shown in Figure 6. MST-
GNN has the highest improvement in the RMSE index, and as the prediction time increases, the
accuracy advantage of MST-GNN becomes more obvious. This result validates the effectiveness of
the multi-spatial-temporal-scale module in the MST-GNN model for the research question.

5 DISCUSSION AND CONCLUSION

In the paper, we propose MST-GNN model for traffic flow prediction. Aiming at the problem that
existing models ignore the cross-temporal-scale and cross-spatial-scale characteristics of traffic data,
our research proposes a simple but effective solution for scales fusion. Our model contains a multi-
temporal-scale features fusion module as well as a multi-spatial-scale features fusion module. We
conducted comparative experiments on two public datasets, and in both our model showed SOTA
performance. In addition, we also tested the calculation time of the model to measure the operat-
ing efficiency of the model, and the experimental results prove that our model has high prediction
efficiency. Although MST-GNN has unified two scales of space and time, our future direction will
focus on integrating more scales knowledge.
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