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Figure 1: FreeControl enables efficient, structure-aware generation from raw image references. Top-
left: structure-conditioned generation using reference image on the left. Top-right: Tunable Control
strength via adjustable attention injection. Bottom: compositional generation from user-assembled
reference images enables intuitive spatial and semantic layout control.

Abstract

Controlling the spatial and semantic structure of diffusion-generated images re-
mains a challenge. Existing methods like ControlNet rely on handcrafted condition
maps and retraining, limiting flexibility and generalization. Inversion-based ap-
proaches offer stronger alignment but incur high inference cost due to dual-path
denoising. We present FreeControl, a training-free framework for semantic struc-

∗Corresponding authors: yi@nju.edu.cn; †: project lead

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:yi@nju.edu.cn


tural control in diffusion models. Unlike prior methods that extract attention across
multiple timesteps, FreeControl performs one-step attention extraction from a sin-
gle, optimally chosen key timestep and reuses it throughout denoising. This enables
efficient structural guidance without inversion or retraining. To further improve
quality and stability, we introduce Latent-Condition Decoupling (LCD): a princi-
pled separation of the key timestep and the noised latent used in attention extraction.
LCD provides finer control over attention quality and eliminates structural artifacts.
FreeControl also supports compositional control via reference images assembled
from multiple sources, enabling intuitive scene layout design and stronger prompt
alignment. FreeControl introduces a new paradigm for test-time control—enabling
structurally and semantically aligned, visually coherent generation directly from
raw images, with the flexibility for intuitive compositional design and compatibility
with modern diffusion models at ~5% additional cost.

1 Introduction

While diffusion models [8, 33, 36, 32, 5, 28, 2] have revolutionized generative image synthesis,
they remain difficult to control. There often lacks intuitive ways to specify what appears where, or
how objects should relate spatially and semantically—making them less suitable for tasks like scene
layout, object rearrangement, or design prototyping.

A prevalent approach to this challenge involves conditioning generation on external control maps, as
exemplified by ControlNet [47] and T2I-Adapter [24]. These methods inject spatial guidance via edge
maps, depth cues, or segmentation masks. While effective, they depend on handcrafted pre-processing
and require separate training for each control type and base model. In particular, ControlNet demands
large-scale paired datasets and substantial training resources per condition, making it expensive
to scale across modalities or architectures. Moreover, the control signals themselves are limited:
Canny edges are often overly rigid and may conflict with prompt semantics, while segmentation-
based guidance is restricted by limited category labels, preventing nuanced or open-ended structure
control. In contrast, test-time augmented methods [38, 23, 19, 40] such as DDIM inversion [38]
and TRAC [19] extract structure from reference images by reconstructing their latent trajectory and
injecting features throughout denoising. These techniques incur high inference cost, requiring full or
dual-path denoising and considerable memory.

We propose a training-free, test-time augmented framework for semantic structural control using raw
reference images. Our method performs a single additional denoising step at a model-specific key
timestep, chosen to extract maximally informative self-attention. This attention matrix captures both
spatial structure and semantic intent, and is consistently injected into the main generation process
to guide the arrangement and content of the generated image. The strength and scope of guidance
are tunable, enabling both flexible layout guidance and strong structural adherence, depending on
user intent. Unlike prior test-time augmentation methods [7, 4], our approach eliminates the need
for inversion or reconstruction entirely—removing both the computational burden and architectural
complexity of dual-path denoising. With only 5% additional cost over baseline inference, it delivers
high-quality structural control without retraining, making it directly compatible with fine-tuned [35]
or LoRA-augmented models [10].

By collapsing multi-step extraction into a single attention signal, our one-step approach creates a
tractable point of analysis—enabling us to systematically study and refine the quality of structural
guidance through Latent-Condition Decoupling (LCD). LCD separates the roles of the noised latent
and the key timestep, revealing how each factor shapes the extracted structure. This lets us improve
alignment quality, reduce artifacts, and offer tunable control over structural granularity—from coarse
layout to fine semantic detail.

To support intuitive, layout-aware control beyond segmentation maps or prompt tuning, we introduce
a composition-based conditioning strategy. As shown in fig. 1, users can directly assemble reference
images by cropping and combining objects from different sources, enabling them to express both
spatial layout and semantic intent in a natural visual form, and generate images with content that
aligns with their expectations. This flexibility transforms structural and semantic conditioning into a
designable interface for high-level scene control.
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In experiments, FreeControl outperforms existing structural control methods in both spatial alignment
and visual fidelity, while maintaining high efficiency. Qualitative results further demonstrate its
advantage in semantic-level control, producing generations that more faithfully adhere to the intended
prompts.

Our contributions are as follows:

• We present a training-free, test-time augmented method for semantic structural control from
raw reference images, eliminating the need for handcrafted inputs, inversion, or retraining.

• We propose a one-step attention extraction framework that uses a single denoising step
at a key timestep to guide generation, with attention maps injected across layers during
inference.

• We introduce Latent-Condition Decoupling (LCD), a principled method that separates the
key timestep from the noised latent in attention extraction, enabling stronger control and
improved stability.

• We introduce a composition-based conditioning approach that allows users to define both
spatial layout and semantic intent through assembled reference images, enabling intuitive
control beyond segmentation maps or prompt tuning.

2 Related Work

Diffusion Models. Diffusion models [8, 38, 5, 28] have emerged as a leading framework for high-
quality image synthesis, with success across tasks such as text-to-image generation [33, 36, 32],
image-to-image translation [12, 22, 15], and image editing [7, 3, 45, 13, 37]. Foundational models
like DDPM [8] and DDIM [38] introduced the core denoising process, while later developments
such as LDM [33], DiT [27], and SD3 [6] have scaled diffusion to high-resolution, semantically
rich generation. The field has also moved from U-Net-based backbones [34] to more expressive
transformer-based architectures [41].

Structural Guidance via Training-Based Conditioning. Training-based methods such as Control-
Net [47] and T2I-Adapter [24] guide spatial structure using condition maps like edges or segmentation.
While they achieve strong low-level alignment, they require retraining for each control type and base
model—introducing high computational cost and model proliferation. Their reliance on handcrafted
inputs also leads to brittle performance when structure maps are noisy or conflict with text prompts.
T2I-Adapter is lighter but similarly struggles with complex scenes and still demands per-condition
training. High-level alternatives like GLIGEN [18] and IP-Adapter [46] support layout-aware and
visual conditioning using bounding boxes or global image features. However, IP-Adapter still needs
base-model-specific training and shows varied quality depending on the dataset. Though these
methods improve compositional flexibility, they lack fine-grained structural control—e.g., for object
contours or pose—limiting their utility in dense structure transfer tasks.

Test-Time Control via Inversion and Attention Reuse. Test-time approaches offer another path
to structure control. DDIM inversion [38, 40, 21] and Null-Text Inversion [23] reconstruct noise
latents from reference images, enabling attention reuse for editing. Though effective, they are
computationally heavy and depend on prompt alignment. Prompt-to-Prompt [7] modifies cross-
attention for semantic edits while preserving layout but cannot incorporate visual references.

Plug-and-Play [40] injects image features during inference but offers coarse structure control. It
requires dual attention modulation and ResNet backbones, limiting efficiency and compatibility with
transformer-based models like DiTs [27]. TRAC [19] improves efficiency by avoiding inversion, but
still extracts attention at many timesteps, incurring high cost.

Crucially, both inversion-based and inversion-free methods operate under the same assumption: that
structure must be extracted progressively across a denoising trajectory. Yet, across timesteps, the
role of attention remains consistent—capturing spatial layout and semantic structure. This raises a
fundamental question: if attention serves the same purpose at every step, is repeated extraction truly
necessary?
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Figure 2: The illustration of one-step attention extraction framework. The query attention matrices
in the later layers (blue layers) are extracted from a forward-simulated latent at a single key timestep
and are injected consistently in the generation process to enable structural guidance.

3 Methods

3.1 Semantic Structural Control via One-Step Extraction

One-Step Attention Extraction Motivated by the insight that structural information remains
conceptually consistent across timesteps, we introduce a one-step attention extraction strategy to
replace multi-step guidance. As demonstrated in fig. 2, rather than accumulating structure through
repeated attention capture, we extract attention matrices once from a single, designated timestep and
reuse them throughout the denoising process. This approach preserves structural alignment while
significantly reducing computational overhead.

A key design consideration in this framework is the selection of the optimal timestep t∗ for attention
extraction. We conduct an empirical evaluation across a range of candidate steps and identify the
one (661) that yields the strongest structural alignment in the final output. In contrast to inversion-
based methods, which require traversing a full reverse denoising trajectory to reach t∗, we adopt a
lightweight forward simulation strategy: we apply the forward noise process directly to the reference
latent x0 to simulate the noised latent at timestep t∗, bypassing reverse diffusion entirely. Specifically,
we compute the noised latent as:

xt∗ = σt∗ · ϵ+ (1− σt∗) · x0 (1)

where ϵ ∼ N (0, I) is standard Gaussian noise, and σt∗ ∈ [0, 1] is the timestep-dependent noise scale
factor at optimal timestep t∗. A single denoising step is then applied to xt∗ to produce intermediate
attention maps. From this, we extract the self-attention query matrices Q

(l)
t∗ at each transformer

layer l. During generation, these matrices are injected at every timestep t by replacing the model’s
dynamically computed queries:

Q
(l)
t ← Q

(l)
t∗ (2)

The key (K) and value (V) matrices remain dynamically computed from the evolving latent xt,
preserving responsiveness to the generative context while maintaining consistent structural queries.
This procedure introduces no per-image tuning and requires only a single additional denoising
step, making our method highly efficient, training-free, and broadly applicable across diffusion
architectures.

Layer-Aware Injection for Preserving Appearance Quality. While one-step attention extraction
provides effective structural control, indiscriminate injection across all layers can degrade visual
quality. In particular, injecting structural Q matrices into early layers of the diffusion transformer
interferes with low-level synthesis tasks—such as color, lighting, and texture modeling—often
resulting in desaturation, flat textures, or unnatural shading. This occurs because early layers are
primarily responsible for fine appearance features, and rigid structural guidance can disrupt their
generative flexibility.
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In contrast, deeper transformer layers capture higher-level semantic and spatial information, making
them more suitable targets for structural injection. To balance structure and appearance, we adopt a
layer-aware injection strategy that applies structural Q matrices only to mid-to-late layers (the blue
layers in fig. 2). This preserves structure alignment while allowing early layers to focus on generating
detailed and visually rich content.

Figure 3: Left: Noisy artifacts induced by the noise term. Right: Different granularity of structural
control under different key timesteps.

3.2 Latent-Condition Decoupling (LCD) for Enhanced Attention Quality

With attention now extracted from a single forward-simulated timestep, we gain a stable and isolated
point of intervention for improving control. We introduce Latent-Condition Decoupling (LCD) to
exploit this opportunity. Rather than varying the key timestep t∗, LCD disentangles the two core
influences on attention quality: (1) the noised latent xt∗ provided as input, and (2) the key timestep
passed to the model. By isolating and manipulating these factors independently, we gain deeper
insight into how structural guidance arises—and unlock both improved fidelity and fine-grained
control.

To isolate the contribution of the noised latent, we fix the key timestep (at previously optimal 661)
and vary the construction of xt∗ . As shown in fig. 3, we find that latents generated with high noise
levels (i.e., large σt∗ ) tend to introduce visible noise artifacts such as scattered dots in the final image.
These high-noise latents also degrade the attention maps extracted for structural guidance, likely due
to the model’s inability to reason clearly over heavily corrupted input.

Based on this insight, we propose a simplified latent construction that removes the stochastic noise
term entirely. Rather than performing forward diffusion with sampled noise, we directly construct a
scaled x̃, which serves as a substitute for xt∗ .

x̃ = (1− σ) · x0,

where σ here becomes a tunable scale factor, independent of the key timestep. The removal of
the noise term improves the stability of the proposed method. This noise-free latent simulates the
amplitude characteristics of an intermediate timestep while preserving the spatial coherence of the
original image latent. Empirical evaluation shows that moderate values (e.g., σ ∈ [0.25, 0.5]) yield
the best results.

We then fix the latent input x̃ and vary the key timestep passed to the diffusion transformer. As shown
in fig. 3, the choice of key timestep affects the granularity of structural control. Conditioning with a
timestep near zero yields prominent but coarse structure—capturing large shapes and global layout
while omitting fine detail. In contrast, using a timestep closer to the original key timestep (e.g., 661)
achieves finer structure transfer, preserving contours, texture boundaries, and detailed object shapes.

This observation opens the door to user-driven structural tradeoffs: by adjusting the conditioning
timestep, one can control the rigidity of structural guidance. Lower key timesteps provide more
compositional flexibility—suitable for creative reinterpretations or stylistic variation—while higher
key timesteps enforce stricter alignment with the reference structure. This tunable granularity makes
LCD not only a tool for quality improvement, but also a mechanism for interactive control.

3.3 Unlocking the Full Potential of FreeControl with Compositional Generation

With the core attention control mechanism in place, FreeControl serves as a flexible framework for
structural guidance, enabling users to intuitively define spatial and semantic layout without modifying
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the model. Rather than relying on hand-crafted segmentation maps or prompt engineering, users can
directly control both the content and position of visual elements through image composition.

Compositional Reference Images for Semantic Layouts. While structural control methods like
ControlNet or T2I-Adapter are effective at enforcing edges or spatial layouts, they often struggle to
preserve semantic intent—particularly in complex scenes. FreeControl addresses this by enabling
compositional reference images, where users can define both *what* should appear and *where* it
should appear using direct visual assembly.

For instance, a user can extract an object (e.g., a kite) from a source image using a segmentation tool
like SAM [14] and paste it onto a new background (e.g., sky). The resulting image encodes both
spatial structure and semantic intent, and serves as a direct condition for generation. This “design by
composition” approach allows users to guide the layout in a natural, intuitive way—without requiring
segmentation maps or prompt engineering. Examples are shown in fig. 1, which comprise cases such
as transferring digital text to real writing and scene composition.

To improve robustness when assembling such references, Gaussian blur could be optionally applied to
the compositional image before passing it to the model. This lightweight preprocessing step reduces
sharp boundaries and high-frequency noise, helping the model focus on the intended structure while
avoiding artifacts from copy-paste seams.

4 Experiments

4.1 Implementation details

We conduct all experiments using the FLUX.1-dev [16] model with the FlowMatchEulerDiscrete
scheduler, a timestep range of 1000 to 400, and a guidance scale of 6.5. Quantitative results use
25 denoising steps; 50 steps are used elsewhere for improved visual quality. The key timestep t∗

is fixed at 661. Attention is extracted once and injected into the last 25 transformer layers of the
model’s single transformer block in the quantitative evaluations, and may be reduced elsewhere to
demonstrate results of lower structural control. Compositional image generation is disabled unless
specifically ablated. Inference is performed on a single NVIDIA RTX A6000 GPU with 48 GB of
memory, and the inference time is measured over 100 runs.

4.2 Quatitative Comparison

Dataset. We evaluate on 5,000 images sampled from the COCO 2017 [20] validation set, resized to
512×512. Each image is paired with its corresponding caption, which is used as the input text prompt
for controlled generation.

Metrics. We report FID for visual fidelity, SSIM and PSNR for low-level similarity, and CLIP-Text
Similarity [31] for semantic alignment between images and prompts. For Canny-conditioned models,
we quantify structural fidelity with the F1 score computed between the input Canny edge map and
the Canny edge map extracted from each generated image. For depth-conditioned models, we report
pixel level accuracy as the mean squared error (MSE) between the input depth map and the depth
map predicted from the generated image.

Comparison Methods.We compare FreeControl against five strong baselines: ControlNet [47],
UniControlNet [49], UniControl [30], ControlNet++ [17], and Flux-ControlNet [43, 44]. The
first four baselines are implemented on Stable Diffusion v1.5, while Flux ControlNet is built on
FLUX.1-dev[16]. All SD 1.5-based models are run with 20 denoising steps, and Flux-based meth-
ods—including FreeControl—use 25 steps, following the respective official configurations.

Note that ControlNet-style methods require pre-processed condition maps (e.g., Canny edge or depth),
while FreeControl directly uses the raw image as structural input, with no preprocessing(we also
did not count the preprocessing time for the comparison methods in table 2). The Canny edge is
computed with the high threshold set to 200, and the low threshold set to 100.

Results. Table 1 reports quantitative comparisons across several metrics. FreeControl outperforms
all baselines in terms of structural similarity (SSIM and PSNR), while maintaining competitive
CLIP-Text alignment with prompt semantics. Compared to ControlNet and UniControl-style meth-
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Table 1: Comparison with controlled-generation methods. The best scores are in bold, and the second
scores are under lined.

Configuration F1 ↑ / MSE ↓ FID ↓ SSIM ↑ PSNR ↑ CLIP-T ↑

ControlNet SD1.5 (Canny) [47] 0.23 / * 18.18 0.2585 10.55 0.3083
ControlNet++ (Canny) [17] 0.30 / * 22.06 0.2784 10.59 0.2986
UniControl (Canny) [30] 0.35 / * 21.22 0.3714 11.66 0.3103
UniControlNet (Canny) [49] 0.26 / * 17.97 0.2783 10.59 0.3137
FLUX.1-dev ControlNet (Canny) [43] 0.16 / * 27.11 0.2515 10.65 0.3009
ControlNet SD1.5 (Depth) [47] * / 30.64 18.09 0.2383 10.22 0.3107
FLUX.1-dev ControlNet (Depth) [44] * / 47.04 19.27 0.1968 10.74 0.3087
ControlNet++ (Depth) [17] * / 27.79 23.23 0.2093 9.71 0.3020
UniControl (Depth) [30] * / 33.51 28.24 0.2255 10.09 0.3105
UniControlNet (Depth) [49] * / 34.72 22.25 0.2038 10.12 0.3156
Ours (Iterative Extraction) 0.30 / 20.76 16.43 0.8078 19.11 0.3043
Ours (One Step Extraction) 0.28 / 21.18 15.64 0.7564 17.49 0.3087

Figure 4: Qualitative comparisons on structure-conditioned image generation. Rows 1 and 3 show
results where all methods are conditioned using the original caption of the reference image. Rows
2 and 4 present generations under stylized prompts to evaluate each method’s ability to generalize
beyond the original content.

ods—which rely on handcrafted edge or depth inputs—our method achieves higher visual fidelity
without requiring retraining or specialized condition maps.

In edge-conditioned tasks, FreeControl achieves an F1 score of 0.30 with lower mean squared error
(MSE), produces Canny edge results comparable to UniControl and ControlNet++ while using only
the raw reference image. Additionally, compared to the iterative extraction, our method performs
competitively while exerting significantly less computational resources.

These results demonstrate that FreeControl not only preserves spatial structure and semantic content
effectively but also serves as a lightweight, training-free alternative to existing structure-conditioned
generation pipelines. For further reference regarding the flexibility and fidelity of our method, we
also provide quantitative comparisons that benchmark under different settings in the Appendix.

4.3 Qualitative Results

We present qualitative comparisons in fig. 4, where FreeControl is conditioned on raw reference
images, while baseline methods rely on preprocessed control signals. Under the original prompt,
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FreeControl delivers superior structural alignment and visual fidelity. In contrast, comparison methods
either fail to align accurately with the intended structure or generate artifacts such as blur or noise,
undermining image quality. We further demonstrate results on representative stylized prompts to
evaluate generalization beyond the original setting. FreeControl successfully preserves structural
integrity while adapting to new prompts, demonstrating robust guidance under prompt variation.
Canny-based methods rigidly adhere to edge maps, often at odds with prompt semantics—resulting
in unnatural appearances and ghost artifacts. Depth-based methods suffer from insufficient detail in
the control signal, leading to misalignment, semantic drift, and diminished image fidelity. Overall,
the results underscore FreeControl’s ability to maintain consistent structural control and prompt
adherence, even when guided by raw image inputs rather than handcrafted control maps.

4.4 Inference Time

We benchmark inference speed for FLUX ControlNet (Canny), FLUX ControlNet (Depth), the
vanilla FLUX pipeline, and our method. All models are run with 25 denoising steps and produce
1024× 1024 px outputs on an NVIDIA RTX A6000. For each pipeline, we fix a single prompt and a
single source image—together with its corresponding condition map (canny edges or depth)—and
execute the generation 100 times, recording the elapsed time at every run. Note that we exclude the
pre-process time of the comparison methods for a fair comparison. The aggregate statistics from
these 100-run trials are reported in table 2, and our method, being a test-time augmented method,
performs equally efficiently as the training-based methods. Beyond that, the additional memory usage
brought by our method is around 1 GB, which is also negligible.

Table 2: Inference time of different methods.

Configuration Average Inference Time Max Min Variance

FLUX Original Pipeline FLUX.1-dev [16] 24.89 24.98 24.18 0.0101
FLUX.1-dev ControlNet (Canny) [43] 26.01 26.52 25.61 0.0054
FLUX.1-dev ControlNet (Depth) [44] 26.01 26.09 25.80 0.0034
Ours 26.11 26.16 25.32 0.0117
Ours(Iterative Extraction) 45.16 48.09 45.01 0.1012

4.5 Compatibility with Fine-Tuned or LoRA-Augmented Models

ControlNet [47] often exhibit limited compatibility with finetuned or augmented via LoRA [9]. This
instability arises because ControlNet relies heavily on the original backbone’s parameters—its control
branches are trained jointly with the base model and assume specific internal feature distributions.
However, our method is not dependent on any specific model architecture or weights, demonstrating
strong adaptability across different model variants. To validate this, we conduct experiments on both
fine-tuned [1] and LoRA-augmented [26] models, comparing our method with ControlNet FLUX
(Canny) and FLUX ControlNet (Depth). As shown in fig. 5, our method demonstrates superior
compatibility by providing stable results with consistent structure and fine adaptation to the model
changes in the community models, whereas ControlNet fails to be compatible with them and produce
artifacts and distorted results. More results can be found in the Appendix.

5 Ablation Study

5.1 One-Step vs. Iterative Attention Extraction

To validate the effectiveness of extracting attention from a single timestep, we compare our method
against a baseline that mimics iterative attention extraction across multiple denoising steps—similar
to inversion-based or reconstruction-based strategies. In this baseline, attention matrices are extracted
and injected step-by-step, rather than reused. As shown in table 1 and table 2, one-step injection
achieves comparable structural fidelity while significantly reducing computational overhead. This
result supports our hypothesis that structural information can be captured once and reused without
loss of guidance, due to the shared purpose of structural encoding across timesteps.
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Figure 5: Examples of compatibility with fine-tuned or LoRA-augmented models.

sigma0.0 1.0

key timestep0.0 1000.0

number of modified layers0 37

Prompt

A futuristic blue cyberpunk helmet adorned with intricate neon-lit circuitry patterns and

chrome accents, resting on a sleek pedestal illuminated by pulsating holographic lights,

set against a dark urban backdrop with flickering digital billboards and electric mist.

Figure 6: Visual analysis of structural control effects by varying injection depth, sigma, and key
timestep in FreeControl.

5.2 Injection Depth vs. Sigma vs. Key timestep

The injection depth (number of transformer layers) influences the strength of structural control,
while the injection quality (i.e., the content of the attention matrix) determines its focus. To isolate
the effects of each factor, we vary it individually while holding others fixed at empirically optimal
values. As shown in fig. 6, varying the injection depth reveals a different trade-off: injecting into
fewer transformer layers relaxes structure in less critical regions, improving texture and color fidelity,
whereas deeper injection increases rigidity at the cost of visual richness—especially in color saturation.
The choice of key timestep, on the other hand, influences the focus of attention—that is, what kind
of structural information is being injected. Earlier timesteps (e.g., t = 0) yield more abstract,
layout-level attention that allows greater freedom in fine details; later timesteps (e.g., t = 661) still
capture high-level structure but with greater specificity and finer granularity, resulting in more detailed
structural alignment. The sigma value, in contrast, remains relatively stable at moderate settings, with
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Figure 7: Qualitative Comparison between Layer-Aware Injection and Full-Layer Injection

structural control gradually diminishing as it approaches 1—first affecting fine details, then larger
structures. Based on these observations, we recommend adjusting layer depth and injection range to
tune structural strength, while selecting the appropriate key timestep and sigma to steer the level of
structural detail captured in the generation.

5.3 Impact of Layer-Aware Injection

As discussioned in section 3.1, mid-to-late layer queries encode structural layout rather than raw
appearance, aligning better with our structural control objective. However, early-layer queries
primarily encode low-level appearance statistics, especially color. When injected, they conflict with
the prompt-conditioned key/value features, which often imply a different color palette. This feature
mismatch causes the model to lose chromatic fidelity, leading to muted or grayscale-like outputs.
To verify this, we test prompts with deliberately shifted color themes. As shown in fig. 7, full-layer
injection causes localized color fading in regions where prompt colors diverge from the reference,
while our layer-aware injection maintains both structure and visual quality.

6 Limitations

While FreeControl is efficient, training-free, and offers strong structural control, it does not support
condition maps like edges or segmentation. This limits scenarios where users prefer editing sketches
or symbolic inputs. Although compositional image assembly provides flexibility, some use cases may
still benefit from explicit support for sparse conditions.

7 Conclusion

This paper revisits a central assumption in attention-based structural control for diffusion models:
that effective guidance requires multi-step extraction. We show that a single-step extraction—when
properly conditioned—can offer strong, reusable structural signals without inversion or retraining.
Our Latent-Condition Decoupling (LCD) reveals that attention quality depends not just on the
timestep, but on how the noised latent and conditioning signal are configured. This enables more
stable and controllable generation. Beyond efficiency, FreeControl supports intuitive control by
allowing users to compose reference images that express both layout and intent—bridging structure
and semantics without relying on edge maps or segmentation masks. Overall, our findings suggest
attention can serve not just as an internal mechanism, but as a practical, tunable approach for control
diffusion models.
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paper’s contributions and scope?
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Justification: I believe they are accurately reflected.
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made in the paper.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Justification: It is addressed in the Limitations section.
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3. Theory assumptions and proofs
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Justification: This paper does not include theoretical results.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information provided in the method and experiments section is sufficient
to reproduce the results presented in this paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The paper has clearly provided the details needed to reproduce the method
proposed to the extent to support our claim; however, we are yet unable to provide a properly
formulated code regarding the method and all the experiments conducted. This paper will,
however, open-source the code regarding its main method upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details can be found either in the method section or the implementation
details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Proper information, if needed, is provided to justify the statistical significance
of the results, as in table 2.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Relevant information is provided in the implementation details, and there is
also a table regarding the time of executiontable 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The author believe there is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper itself does not release any pretrained models, or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used are properly cited, and the assets are properly referenced if
necessary.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Quantitative Results on Stylized Prompts (COCO Dataset)

FreeControl conditions generation directly on the raw image, rather than on derived conditions like
edges or depth. This design provides a rich and detailed structural prior, which has proven effective in
preserving the original layout and composition during generation. While prior experiments focus on
tasks where the target image shares semantic similarity with the reference, real-world use cases often
involve prompts that diverge stylistically or conceptually from the original image. To broaden the
evaluation scope and assess FreeControl’s robustness in more diverse generative settings, we conduct
a benchmark using stylized prompts.

We construct this benchmark on the COCO [20] validation set. For each image, we retain the original
as the structural reference and generate stylized prompts by combining the original caption with
one of five target styles (e.g., Cyberpunk, Vaporwave). These stylized prompts are created using
GPT-4o [25], conditioned on both the caption and the style keyword.

This setup introduces a challenging mismatch between the style and the visual structure, making it
difficult for models to retain both prompt adherence and structural fidelity. We compare FreeControl
against Flux-ControlNet [47], which serves as a strong baseline for structure-conditioned generation
on the same backbone. As shown in table 3, FreeControl consistently preserves structure better (as
measured by F1 and MSE) while generating content more semantically aligned with the stylized
prompts (via CLIP-T). This demonstrates the strength of our method in transferring structure faithfully
even when prompt semantics diverge from the original image.

B More Results on Compatibility with Fine-Tuned or LoRA-Augmented
Models

To further support the findings discussed in the main paper, we provide additional qualitative results on
fine-tuned and LoRA-augmented diffusion models. Specifically, we evaluate FreeControl and FLUX
ControlNet variants on community models that are fine-tuned [1, 11] or LoRA-augmented [26, 29].

As shown in figs. 8 to 11, our method consistently preserves structure and semantic fidelity across
diverse model variants, producing stable and visually coherent outputs. In contrast, ControlNet-based
approaches exhibit visible artifacts, color shifts, or loss of structural alignment under the same
settings.

These results further confirm that FreeControl maintains strong compatibility across both fine-tuned
and LoRA-augmented backbones, benefiting from its training-free nature and independence from
specific model weights or feature distributions.

C Additional Visual Results

We provide more visual results for the readers to reference. fig. 12 showcases additional generation
results based on compositional reference images. Users can crop and paste objects into a layout to
specify spatial intent, allowing for precise control over the scene’s composition. With a touch of
creativity, FreeControl empowers users to bring their imaginative visions to life, generating stunning,
dynamic visuals that reflect their unique concepts (like a giant floating whale in the sky). fig. 13 and
fig. 14 provide further comparisons between FreeControl and FLUX ControlNet.

Table 3: Quantitative evaluation on the COCO validation set using stylized prompts. The best scores
are in bold.

Method F1 ↑ MSE ↓ SSIM ↑ PSNR ↑ CLIP-T ↑

FLUX ControlNet (Canny) 0.19 N/A 0.2629 9.72 0.2646
FLUX ControlNet (Depth) N/A 41.41 0.2029 9.98 0.2448
Ours 0.25 26.24 0.4825 15.07 0.2981
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D Expanded Baseline Comparison Results

We have added quantitative comparison experiments with two image editing models, In-Context
Edit [48] and Taming Rectified Flow [42], to improve the fairness and completeness of the evaluation.
The test images are consistent with the previous comparison experiments. We use image captions and
stylized prompts as text inputs respectively, and the corresponding results are shown in table 4 and
table 5.

According to the results, Our method performs comparably to, and often surpasses, Taming Rectified
Flow across several metrics. ICEdit, built on the FLUX-Fill model [16] for image inpainting, achieves
relatively high similarity metrics (e.g., PSNR) primarily because it keeps all content outside the edited
region untouched. However, this strategy limits its ability to satisfy the desired balance between
structural control and free content generation. As a result, its CLIP-T score is lower, and it often
struggles with stability and controllability when following editing instructions.

Table 4: Quantitative Results with image-editing methods on the COCO validation subset.

Method F1 ↑ MSE ↓ SSIM ↑ PSNR ↑ CLIP-T ↑ FID ↓

In-Context Edit 0.47 17.30 0.7781 21.34 0.3024 8.64
Taming Rectified Flow 0.19 28.31 0.4390 16.90 0.3164 16.35
Ours 0.28 21.18 0.7564 17.49 0.3087 15.64

Table 5: Quantitative Results with image-editing methods on the COCO validation subset using
stylized prompts.

Method F1 ↑ MSE ↓ SSIM ↑ PSNR ↑ CLIP-T ↑

In-Context Edit 0.30 35.96 0.5436 14.70 0.2543
Taming Rectified Flow 0.17 38.49 0.4034 16.37 0.2585
Ours 0.25 26.24 0.4825 15.07 0.2981

E Additional Quantitative Ablation Analysis

We have supplemented more comprehensive ablation studies to justify the choice of key parameters
in our method, such as the key timestep t∗, numbers of modified transformer layers and σ. The results
are presented in table 6. Thanks to LCD, by flexibly tuning the hyperparameters, we can achieve
structural control of varying strength and granularity, producing stable and controllable results that
cater to different user requirements.

Table 6: Ablation results on on the COCO validation subset. Each entry in the Parameters column
indicates the number of modified layers, the key timestep t∗, and the σ, in that order.

Parameters F1 ↑ MSE ↓ SSIM ↑ PSNR ↑ CLIP-T ↑ FID ↓

20-661-0.25 0.27 23.01 0.5251 16.61 0.3083 17.84
25-561-0.25 0.27 22.44 0.5232 16.61 0.3077 17.42
25-661-0.0 0.30 21.74 0.5630 17.20 0.3061 17.78
25-661-0.25 0.28 21.86 0.5438 16.87 0.3048 18.00
25-661-0.5 0.24 24.64 0.5097 16.54 0.3072 22.51
25-761-0.25 0.28 23.47 0.5492 17.07 0.3048 21.40
30-661-0.25 0.30 22.20 0.5461 16.88 0.3020 20.20
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F Evaluation under Challenging Structural Scenarios

F.1 Semantic Entanglement and Object Occlusion

We conduct stress tests on both real and synthetic images featuring semantic entanglement and severe
object overlap. Selected results are shown in fig. 15. For each example, the left image is the original
input, and the right image is the generated result. As observed, FreeControl consistently avoids
distorted or unrealistic artifacts such as extra limbs or warped body structures. The outputs remain
natural-looking and visually coherent, demonstrating strong robustness even under highly challenging
compositional scenarios.

F.2 Preservation of Facial Identity

Our method provides flexible control over facial identity preservation, allowing users to adjust the
strength of identity retention via hyperparameters. Under non-conflicting text-image guidance, tuning
parameters such as the number of modified transformer layers enables strong structural control while
preserving facial details, making FreeControl suitable for identity-sensitive tasks. As shown in fig. 16,
with higher control strength, our approach demonstrates a strong ability to retain facial identity.
Conversely, for artistic creation or diversity-oriented generation, relaxing the control allows for slight,
intentional changes in facial features, leading to more expressive results.

G Applicability to UNet-based Models (i.e., Stable Diffusion)

Our method is designed to operate purely at the attention level, making it architecture-agnostic. We
have implemented it on UNet–based models (e.g., SD1.5 [33], SDXL [28]) and observed strong
structural control behavior after only minimal hyperparameters adjustments to fit the model. Several
qualitative examples of structural control are presented in fig. 17 and fig. 18. We further note that, due
to the inherent capacity limitations of UNet-based models, the degree of controllability can diminish
in highly complex scenarios. In practice, we find that leveraging FLUX models [16] yields more
stable and visually coherent generations, and we recommend their use when high-fidelity control is
desired.

H Further Discussion on the Design Space

H.1 Independence from ROPE

The query matrices FreeControl extracts are captured before RoPE [39] is applied, so the injected
queries contain no positional encoding — they are entirely image-driven. While RoPE still affects
key and value during generation, it does not alter what FreeControl injects. Furthermore, FreeControl
works identically on U-Net architectures (which do not use RoPE), showing that structural consistency
stems from the extracted queries themselves, not from positional priors.

To directly confirm this point, we ran a controlled test by removing RoPE entirely from the FLUX
model. As expected, the base model collapsed into near-random noise, since it was never trained
to operate without positional encoding. Crucially, when we applied FreeControl under the same
no-RoPE setup, the one-step injection still imposed clear, image-driven structure on the output.
The result looked like “structured noise” faithfully echoing the condition image’s layout — strong
evidence that FreeControl’s guidance originates from the injected queries themselves, not from RoPE.

H.2 Key timestep Choice

The key timestep fundamentally governs the granularity of structural information that FreeControl
can extract. In diffusion models, each denoising step is influenced not only by progressively refined
latents but also by a changing timestep input that biases the network toward different levels of detail.
Conceptually, the key timestep acts like a focus knob: adjusting it continuously shifts the model’s
representational emphasis from global layout patterns to fine-grained textures.

By holding the latent fixed and sweeping only the key timestep, our experiments reveal a natural
progression in structural granularity encoded within the query matrices. Both quantitative metrics and
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visual evidence show a smooth evolution—from coarse shape-level representation toward detailed
texture-level encoding. Among all tested values, key timestep (661) emerges as a sweet spot, offering
the best trade-off between global consistency and structural precision, making it the most suitable
extraction point for query-based control.

H.3 Layer-wise Query Matrices Similarity

We extract query matrices at different depths under two configurations: with LCD and without LCD,
where the only difference lies in whether noise is added to x0 during the forward diffusion process (as
defined in Sec. 3.1 of main paper). We then compare these two sets of query matrices with the query
matrices from every timestep of the multi-step extraction variant and compute the cosine similarity, as
reported in table 7. The layer-wise similarity shows a clear low-to-high trend: shallow layers tend to
have lower similarity, while deeper layers converge more. This aligns with our layer-aware injection
choice in Sec. 3.1 — early layers focus more on appearance elements rather than structure, diverging
more across timesteps and contributing less to shared structural signals.

Table 7: Cosine Similarity Between One-Step and Multi-Step Extracted Query Matrices. The “Global”
row reports the average similarity of query matrices across all layers.

Layer Depth Cosine Similarity

w/ LCD w/o LCD

Early 0.5418 0.6680
Mid 0.5861 0.6853
Last 0.6011 0.7638
Global 0.5769 0.7063
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Figure 8: Visual results comparing our method and FLUX ControlNet on Lora-Augmented models
(Ghibli-Style LoRA). 25



Figure 9: Visual results comparing our method and FLUX ControlNet on Lora-Augmented models
(Canopus-Pixar-3D-Style LoRA).
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Figure 10: Visual results comparing our method and FLUX ControlNet on finetuned models
(AWPortrait Fine-Tune). 27



Figure 11: Visual results comparing our method and FLUX ControlNet on finetuned models
(UltraReal Fine-Tune). 28



Compose Content

Figure 12: More visual results on compositional generation.

29



Figure 13: Qualitative comparisons on structure-conditioned image generation.
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Figure 14: Qualitative comparisons on structure-conditioned image generation.
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Figure 15: Examples of generated images under Semantic Entanglement and Object Occlusion. For
each pair, the image on the left is the original image, and the image on the right is the generated
result.

Figure 16: Examples of Facial Identity Control. Adjusting control strength, together with a suitable
prompt, enables strong structural preservation of facial features. For each pair, the image on the left
is the original image, and the image on the right is the generated result.

Figure 17: Generation Examples on SDXL model Using Our Method. For each pair, the image on
the left is the original image, and the image on the right is the generated result.

Figure 18: Generation Examples on SD-1.5 model Using Our Method. For each pair, the image on
the left is the original image, and the image on the right is the generated result.
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