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Abstract—The approximation of functions using sampling-
based operators has emerged as a prominent research area
within approximation theory, with potential applications in signal
analysis and image reconstruction. This note aims to introduce
study the approximation capabilities of a novel family of sampling
operators, namely generalized max-min sampling operators and
Kantorovich type max-min sampling operators. This study has
been carried out in the space of continuous functions, classical
Lebesgue spaces and Orlicz spaces. Following the theoretical
groundwork, we illustrate the practical performance of our op-
erators through numerical examples, graphical representations.

Index Terms—Approximation of functions; Max-min opera-
tors; Orlicz space; Modulus of Continuity.

I. INTRODUCTION

Sampling and reconstruction is a mathematical tool that
enables addressing the question of recovering the missing
information from the sampled data. By virtue of this, it has a
wide range of applications in signal analysis and image pro-
cessing (see [2], [10], [16], [11]). To reconstruct a continuous
function f : R → R, Butzer and Stens in [4] constructed a
family of generalized sampling operators given by the formula

(Gχ
nf)(x) =

∑
k∈Z

χ(nx− k) f

(
k

n

)
; x ∈ R

where χ : R → R is a general kernel satisfying cer-
tain assumptions. Later, in order to treat the functions that
are not necessarily continuous, Bardaro in [6] proposed the
Kantorovich-type generalized sampling series by replacing
f(k/w) with the mean value n

∫ (k+1)/w

k/w
f(u)du, that is,

(Kχ
nf)(x) =

∑
k∈Z

χ(nx− k) n

∫ (k+1)/n

k/n

f(u)du.

In practice, the approach of considering average sample values
proved to be more effective since information stored in neigh-
borhood is usually known than precisely at sampled points.
This procedure simultaneously reduces the time-jitter errors.
The Kantorovich-type modifications of various operators have
been studied in various directions (see [6], [8], [13]).

In research fields like mathematical physics, decision analy-
sis and automatic control, where non-linearity and uncertainty
arises, pseudo-linear structures turn out to be more suitable

(see [17], [15]). To bridge the gap for one to benefit from the
other, the authors in [3] initiated the study of pseudo-linear
operators by introducing class of pseudo-linear operators using
ordered semi-ring structure as underlying algebraic structure. It
was observed that these provide better approximation results.
One of the approaches in this direction is to transform any
linear operator into non-linear max-min operator by replacing
summation and product in linear operator with supremum and
infimum respectively.

A. Prior Work.

The max-min type Bernstein operators, Shepard operators,
and their Kantorovich versions based on polynomial kernels
have been analyzed in ( [9], [13], [14]). The application of
max-min type operator in image processing is given in ( [5],
[1])

B. Contibution.

We introduce and analyze a family of max-min sampling
operators, namely generalized max-min operators and Kan-
torovich type max-min sampling operators in different function
spaces, namely the space of all continuous functions, Lebesgue
space and Orlicz space.

C. Notations.

For [a, b] ⊂ R, C([a, b]) denotes the space of all contin-
uous functions on [a, b] endowed with the norm ∥f∥∞ :=
sup{|f(x)| : x ∈ [a, b]}. The collection of all Lebesgue
measurable functions f : [a, b] → [0, 1] is represented by
M([a, b]). Moreover, Lp([a, b]), 1 ≤ p < ∞, denotes the
space of p-integrable functions in Lebesgue sense equipped
with usual p-norm.

D. Outline.

In Section II we discuss the framework. In Section III,
we define and study the pointwise and uniform convergence
results for our proposed family of operators within C([a, b]).
Further we extend the study of the Kantorovich type max-min
sampling operators to the general framework of Orlicz spaces
Lϕ([a, b]) in Section IV. Section V consists of some numerical
illustrations of our presented theory through graphical repre-
sentation.



II. FRAMEWORK

The following framework allows us to define our proposed
family of operators effectively. Let I be an index set. The
operations

∨
k∈I and

∧
k∈I , when operated on the set {ak :

k ∈ I} of real numbers, are assigned the following meaning:∨
k∈I

ak = sup{ak : k ∈ I} and
∧
k∈I

ak = inf{ak : k ∈ I}.

The structure ([0, 1],∨,∧) is a semi-ring. In addition to
these operations, we will also employ classical operations of
addition and multiplication. Additionally, we equip [0, 1] with
usual order and Euclidean metric.

Having outlined idea behind the construction, we now
turn to discussing the class of admissible kernels.

A bounded and measurable function χ : R → R+ is said to
be a kernel if it satisfies the following conditions:

(χ1) χ ∈ L1(R)
(χ2) there exists β > 0 such that,

mβ(χ) := sup
x∈R+

∨
k∈Z

|χ(u− k)||k − u|β < ∞,

(χ3) For cχ > 0, we have inf
x∈[−3/2,3/2]

χ(x) =: cχ.

We have the following results related to χ.

Lemma 1: ( [12], Lemma 2.4) Assume that a bounded
function χ satisfies χ(x) = O(|x|−α) as |x| → +∞. Then
mα(χ) < +∞ for all 0 ≤ β ≤ α.

Lemma 2: ( [7], Lemma 2.2) Let χ be a bounded function
which satisfies (χ2) for some β > 0. Then for every 0 < α ≤
β, mα(χ) < +∞.

Lemma 3: ( [7], Lemma 2.5) Assume that χ : R → R+

is a function which satisfies (χ2) with β > 0, then for every
γ > 0, we have ∨

{k∈Z:|u−k|>nγ}

χ(u− k) = O(n−β)

as n → ∞, uniformly on R.
Lemma 4: ( [7], Lemma 2.3) Let χ : R → R+ be the

given function which satisfies (χ3). Then for every n ∈ N
and x ∈ [a, b], we have∨

k∈Jn

χ(nx− k) ≥ cχ > 0,

where Jn := {k ∈ Z : k = ⌈na⌉, ..., ⌊nb⌋}.

In order to study the convergence of proposed family of
max-min sampling operators, the interplay of metric structure
and pseudo-linear operations on [0, 1] becomes a essential.
This has been addressed in the following results.

Lemma 5: ( [3], Lemma 4) For sequences {ak}∞k=1, {bk}∞k=1

in R with
∨
k∈Z

ak < ∞ or
∨
k∈Z

bk < ∞, we have

∣∣∣∣∣∨
k∈Z

ak −
∨
k∈Z

bk

∣∣∣∣∣ ≤ ∨
k∈Z

|ak − bk| .

Lemma 6: ( [3], Lemma 5) For all x, y, z ∈ [0, 1], we have
|x ∧ y − x ∧ z| ≤ x ∧ |y − z| .

III. BASIC CONVERGENCE IN C[a, b]

A. Generalized max-min sampling operators.

Let χ be the kernel and f : [a, b] → [0, 1]. Then we define
the family of generalized max-min sampling operators as

(Gχ
nf)(x) :=

∨
k∈Jn

{
χ(nx0 − k)

∨d∈Jn
χ(nx0 − d)

∧ f

(
k

n

)}
,

for x ∈ [a, b], where Jn = {k ∈ Z : k = {⌈na⌉..., ⌊nb⌋}}. It
can be observed that

(Gχ
nf)(x) ≤

∨
k∈Jn

{ χ(nx− k)

∨d∈Jnχ(nx− d)

}
≤ 1, for x ∈ [a, b].

This substantiates the well-definedness of (Gχ
nf) for a

continuous function f on [a, b]. The next result provides
insights to some operational properties of the operator (Gχ

n).

Lemma 7: Let χ be the kernel and h, g : [a, b] → [0, 1] be
two arbitrary functions. Then for each n ∈ N, we have

(a) If h(x) ≤ g(x) then (Gχ
nf)(x) ≤ (Gχ

ng)(x), ∀ x ∈ [a, b],
(b) (Gχ

n(h+ g))(x) ≤ (Gχ
nh)(x) + (Gχ

ng)(x), ∀ x ∈ [a, b],
(c)

∣∣(Gχ
nh)(x)− (Gχ

ng)(x)
∣∣ ≤ (Gχ

n(|h− g|))(x), ∀ x ∈ [a, b].

In the next theorem, we have the pointwise and uniform
approximation theorem for (Gχ

n).

Theorem 1: Under the assumptions on kernel χ and f :
[a, b] → [0, 1], (Gχ

nf) converges to f at the point of continuity
of f, that is,

lim
n→∞

(Gχ
nf)(x0) = f(x0).

at each point x0 of continuity of f. Further, if f ∈ C([a, b])
then

lim
n→∞

∥(Gχ
nf)− f∥∞ = 0.

Proof 1: The proof follows by using continuity of f at x0

and Lemma 3.
In case of discontinuous but locally integrable functions on
[a, b], the family of operator (Gχ

nf) is not suitable. Hence we
define and analyze the family of Kantorovich type max-min
sampling operators in the following subsection.



B. The Kantorovich type max-min sampling operators.

For the kernel χ and a locally integrable function f :
[a, b] → [0, 1], we define the Kantorovich type max-min
sampling operator as

(Kχ
nf)(x) :=

∨
k∈Jn

{
χ(nx− k)

∨d∈Jn
χ(nx− d)

∧ n

∫ k+1
n

k
n

f(u)du

}
for x ∈ [a, b], where Jn = {k ∈ Z : k = {⌈na⌉, ..., ⌊nb⌋ −
1}}. Since sup{f(u) : u ∈ [a, b]} ≤ 1, we have

|(Kχ
nf)(x)| ≤

∨
k∈Jn

{ χ(nx− k)

∨d∈Jn
χ(nx− d)

}
≤ 1.

Hence the operator (Kχ
n) is well-defined for locally integrable

functions on [a, b]. Some useful properties of (Kχ
n) are given

in next lemma.

Lemma 8: For a kernel χ and locally integrable functions
h, g : [a, b] → [0, 1], the following holds for all n ∈ N,:
(i) If h(x) ≤ g(x) then (Kχ

nh)(x) ≤ (Kχ
ng)(x), ∀ x ∈ [a, b],

(ii) (Kχ
n(h+ g))(x) ≤ (Kχ

nh)(x) + (Kχ
ng)(x), ∀ x ∈ [a, b],

(iii) |(Kχ
nh)(x)− (Kχ

ng)(x)| ≤ (Kχ
n|h− g|)(x), ∀ x ∈ [a, b].

In the next result, we have uniform convergence of (Kχ
nf)

for f ∈ C([a, b]).

Theorem 2: Let χ be the kernel and f : [a, b] → [0, 1] be
continuous at x0 ∈ [a, b]. Then we have

lim
n→∞

(Kχ
nf)(x0) = f(x0).

In addition, if f ∈ C([a, b]), then

lim
n→∞

∥(Kχ
nf)− f∥∞ = 0.

Proof 2: The proof follows by using continuity of f at x0

and Lemma 3.

IV. CONVERGENCE IN Lϕ([a, b])

A. Orlicz Space

A convex function ϕ : R+
0 → R+

0 is known as Orlicz
function if it satisfies the following conditions:
(O1) ϕ(0) = 0,
(O2) ϕ is non-decreasing and continuous from the left,
(O3) lim

u→∞
ϕ(u) = ∞.

For Orlicz function ϕ, the modular functional Iϕ :
M([a, b]) → [0,∞] defined as

Iϕ[f ] :=

∫ b

a

ϕ(|f(x)|) dx, for f ∈ M([a, b]).

The modular space corresponding to Iϕ([a, b]) is known as
Orlicz space generated by ϕ and is defined as

Lϕ([a, b]) := {f ∈ M([a, b]) : Iϕ[λf ] < +∞ for some λ > 0}.

It is important to note that Lϕ([a, b]) is a vector space over R.
Moreover, the space Lϕ([a, b]) is a normed linear space with
respect to Luxemburg norm, which is defined as

∥f∥ϕ := inf{λ > 0 : Iϕ[λf ] < ∞}, for f ∈ Lϕ([a, b]).

To study the convergence in Orlicz space, the notion of
modular convergence is important. A sequence of functions
{fn}∞n=1 in Lϕ([a, b]) is said to be modularly convergent to
f ∈ Lϕ([a, b]) if there exists λ > 0 such that

lim
n→∞

Iϕ[λ(fn − f)] = 0.

This induces modular topology on Lϕ([a, b]). In general,
the concept of norm convergence is stronger than modular
convergence.
In the next result we prove the modular convergence of (Kχ

nf)
for f ∈ C([a, b]).

Theorem 3: If f is continuous on [a, b] then for every λ > 0,
we have

lim
n→∞

Iϕ[λ((Kχ
nf)− f)] = 0.

Proof 3: First we observe that for any f ∈ C([a, b]), we
have

|(Kχ
nf)|

≤
∨

k∈Jn

{ χ(nx− k)

∨d∈Jnχ(nx− d)

}
≤ m0(χ)

cχ
.

To prove the assertion, we use Vitali convergence theorem. Let
ϵ > 0 be given and B be a measurable subset of [a, b] with

µ(B) < 2ϵ

(
ϕ

[
m0(χ)

cχ

]
+ ϕ[2λf(x)]

)−1

.

Now in view convexity of ϕ, we have∫
B
ϕ [λ|(Kχ

nf)(x)− f(x)|] dx

≤
∫
B
ϕ
[2λ
2
|Kχ

nf(x)|+
2λ

2
|f(x)|

]
dx

≤
∫
B

1

2
ϕ [2λ|(Kχ

nf)(x)|] dx+

∫
B

1

2
ϕ [2λ|f(x)|] dx.

Using non-decreasing nature of ϕ, we get∫
B
ϕ [λ|(Kχ

nf)(x)− f(x)|] dx

≤ 1

2

∫
B
ϕ

[
2λ

m0(χ)

cχ

]
dx+

1

2

∫
B
ϕ[2λf(x)]dx

≤ µ(B)
2

(
ϕ

[
m0(χ)

cχ

]
+ ϕ[2λf(x)]

)
< ϵ.

Since ϵ is arbitrary, we have established the result.

The following modular convergence can be proved using
modular density of continuous functions in Lϕ([a, b]).



Theorem 4: For every f ∈ Lϕ([a, b]), there exists λ > 0
such that

lim
n→∞

Iϕ[λ((Kχ
nf)− f)] = 0.

V. EXAMPLE

The B-spline kernel: The B-spline kernel of order n ∈ N
is defined by (see [4])

Bn(x) :=
1

(n− 1)!

n∑
j=0

(−1)j
(
n

j

)(
n

2
+ x− j

)n−1

+

x ∈ R,

where (x)+ := max{x, 0}. Since B-spline kernel has compact
support, Bn ∈ L1(R), for each n ∈ N. Also, we have

inf
x∈[−3/2,3/2]

Bn(x) = Bn(0) > 0, for n ≥ 4.

Now we use B4 to demonstrate the convergence of (Gχ
n).

Consider f1 : [−1, 2] → [0, 1] defined as

f1(x) =
1

15

(
sin(2πx) + 2sin

(πx
2

))
.

Fig. 1 illustrates the approximation of f1 by (GB4
n f1).

The Fejér’s kernel: The Fejér’s kernel is defined as (see
[6])

F (x) =
1

2
sinc2

(x
2

)
.

Clearly F ∈ L1(R) and

inf
x∈[−3/2,3/2]

F (x) = F (1/2) > 0.

Moreover we have F (x) = O(|x|−2) as x → ∞. Therefore
by Lemma 2, we conclude that the condition (χ2) is satisfies
for β = 2.

In Fig. 2, we illustrate the behavior of (KF
n f2) for n = 5, 10

as compared to f2 : [1, 8] → [0, 1]:

f2(x) =



1

5(x− 1/2)2
, 1 ≤ x < 3

0.2, 3 ≤ x < 5

0.8, 5 ≤ x < 6
−100

x3
+ 1, 6 ≤ x < 8.
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Fig. 1. Approximation of f1 by (GB4
n f1) based on B4 kernel.
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Fig. 2. Approximation of f2 by (KF
n f2) based on Fejér’s kernel.
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[3] Bede, B., Nobuhara, H., Daňková, M., Di Nola, A.: Approximation by
pseudo-linear operators. FUZZY SET SYST 159(7), 804–820 (2008).

[4] Butzer, P. L., Stens, R. L.: Linear prediction by samples from the past.
Advanced topics in Shannon sampling and interpolation theory, Springer
Texts Electrical Engrg., Springer, New York, 157–183.

[5] Bede, B., Schwab, E. D., Nobuhara, H., Rudas, I. J.: Approximation
by Shepard type pseudo-linear operators and applications to image
processing. Internat. J. Approx. Reason. 50(1), 21–36 (2009)

[6] Bardaro, C., Vinti, G., Butzer, P. L., Stens, R. L.: Kantorovich-type
generalized sampling series in the setting of Orlicz spaces. Sampl.
Theory Signal Image Process. 6(1), 29–52 (2007).

[7] Coroianu, L., Costarelli, D., Gal, S., Vinti, G.: The max-product gener-
alized sampling operators: convergence and quantitative estimates. Appl.
Math. Comput. 355, 173–183 (2019).

[8] Coroianu, L., Costarelli, D., Gal, S., Vinti, G.: Approximation by max-
product sampling Kantorovich operators with generalized kernels. Anal.
Appl. (Singap.) 19(2), 219–244 (2021).

[9] Coroianu, L., Gal, S. G.: New approximation properties of the Bernstein
max-min operators and Bernstein max-product operators. Math. Found.
Comput. 5(3), (2022).

[10] Costarelli, D., Seracini, M., Travaglini, A., Vinti, G.: Alzheimer
biomarkers esteem by sampling Kantorovich algorithm. Math. Methods
Appl. Sci. 46(12), 13506–13520 (2023).

[11] Costarelli, D., Seracini, M., Vinti, G.: A comparison between the
sampling Kantorovich algorithm for digital image processing with some
interpolation and quasi-interpolation methods. Appl. Math. Comput. 374,
125046, 18 pp. (2020).

[12] Costarelli, D., Vinti, G.: Max-product neural network and quasi-
interpolation operators activated by sigmoidal functions. J. Approx.
Theory 209, 1–22 (2016).
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