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ABSTRACT

We consider function spaces defined by self-attention networks without normal-
ization, and theoretically analyze their geometry. Since these networks are poly-
nomial, we rely on tools from algebraic geometry. In particular, we study the
identifiability of deep attention by providing a description of the generic fibers of
the parametrization for an arbitrary number of layers and, as a consequence, com-
pute the dimension of the function space. Additionally, for a single-layer model,
we characterize the singular and boundary points. Finally, we formulate a conjec-
tural extension of our results to normalized self-attention networks, prove it for a
single layer, and numerically verify it in the deep case.

Figure 1: A slice of the space of lightning self-attention mechanisms.

1 INTRODUCTION AND RELATED WORK

The self-attention mechanism is the cornerstone of the Transformer – a modern machine learning
architecture that is nowadays popular in a vast variety of domains, ranging from natural language
processing (Vaswani et al., 2017), to vision (Dosovitskiy et al., 2020), to sound (Huang et al., 2018).
In all of these domains, self-attention mechanisms have showcased outstanding performance due
to their ability to model long-range dependencies within data sequences. Lightning self-attention
mechanisms (Schlag et al., 2021) are standard variants where, differently from the original pro-
posal, the attention weights are left un-normalized. As a result, the computational complexity of a
forward pass is linear with respect to the sequence length, substantially improving on the quadratic
complexity of the original model.

Despite their effectiveness, the theoretical understanding of self-attention mechanisms is superficial,
and many aspects have yet to be clarified. In particular, understanding the geometry of function
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spaces defined by neural networks – typically referred to as neuromanifolds (Marchetti et al., 2025;
Kohn, 2024; Calin, 2020) – is a fundamental challenge due to its intimate connection to several ma-
chine learning aspects, such as sample complexity and expressivity. Moreover, since neural networks
learn by following a gradient flow over the neuromanifold, the geometry of the latter controls several
aspects of the training dynamics (Trager et al., 2019). While neuromanifolds are well-understood
for several architectures, such as fully-connected (Kileel et al., 2019; Kubjas et al., 2024) and con-
volutional networks (Kohn et al., 2022; 2023; Shahverdi et al., 2024), they have not been considered
for self-attention mechanisms.

In this work, we study the geometry of neuromanifolds associated to lightning self-attention mech-
anisms. These models are of algebraic nature, since they are tri-linear in their weights and cubical
in the input. This enables us to analyze neuromanifolds via ideas and tools from algebraic ge-
ometry – a rich field concerned with spaces defined by polynomial equations. In particular, it is
possible to compute geometric quantities such as the dimension of the neuromanifold. The latter
is a measure of expressivity of the underlying model. More concretely, it is intimately linked with
sample complexity. According to the Fundamental Theorem of Learning, the dimension controls,
linearly, the sample complexity of learnability (Shalev-Shwartz & Ben-David, 2014). This theory
is typically formulated for (binary) classifiers1, and the notion of dimension is a discrete one – the
Vapnik–Chervonenkis (VC) dimension, specifically. In the continuous setting, the dimension of the
neuromanifold is the natural analogue of the combinatorial VC dimension, and controls the sample
complexity of learnability. An expression for sample complexity can be used both to select the ap-
propriate model/architecture given an available dataset, and to collect appropriate amounts of data
to train a given a model. This is especially important for attention-based models, that are nowadays
popular in several domains, and are trained at extremely-large scales.

The dimension of the neuromanifold is related to the dual question of identifiability (Grigsby et al.,
2023; Bona-Pellissier et al., 2023; Fefferman et al., 1994) – a problem concerned with characterizing
the parameters corresponding to the same function. Geometrically, such parameters define fibers of
the parametrization of the neuromanifold, and their (generic) dimension measures the difference be-
tween the dimension of the neuromanifold and the number of parameters. Therefore, characterizing
fibers leads to an estimate of sample complexity which is more precise than the common practice of
counting parameters. Moreover, understanding the fibers can be interesting beyond their relation to
the dimension, since they control aspects of the training dynamics. Indeed, fibers induce invariances
of the loss function which are data-independent, meaning that for any dataset, the loss will be con-
stant for parameters within the same fiber. This gives rise to the phenomenon of flatness of the loss
landscape (Zhao et al., 2022b), where minima are not isolated but instead belong to a continuous set.
Even further, it is understood that the symmetries of the loss landscape control training dynamics as
gradient directions must be orthogonal to fibers of the loss, which also induces a constraint on the
Hessian (Kunin et al., 2020). This has recently been exploited to design optimizers that ‘teleport’
along fibers (Zhao et al., 2022a), improving learning efficiency.

1.1 SUMMARY OF CONTRIBUTIONS

Our core contribution is a description of the (generic) fibers of the parametrization of lightning
self-attention networks. As a consequence, the expression for the dimension of the neuromanifold
follows immediately. More specifically, our results are summarized as follows.

For a single layer of lightning self-attention (Section 3.1), we describe all the fibers, and addition-
ally study various aspects of the geometry of the neuromanifold. Specifically, we prove that it is
Euclidean closed and compute its singular and boundary points.

For a deep lightning self-attention network (Section 3.3), we compute the generic fibers. Our proof
involves a reparametrization – which can be interpreted as introducing ‘virtual weights’ – and a
subtle induction argument based on a closed-form algebraic expression for the network w.r.t. the
new parameters. Assuming the network has a bottleneck architecture, we derive a formula for the
dimension of the neuromanifold. In particular, the dimension is strictly lower than the number of
parameters, with redundancies arising from a scaling symmetry, from inter-layer symmetries, and
from the rank constraint on the attention weights.

1In this context, neuromanifolds are referred to as ‘hypothesis spaces’, and are usually considered in a
combinatorial version.
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Lastly, we study traditional self-attention by re-introducing the softmax normalization (Section 3.4).
We prove that the parametrization of a single layer is generically one-to-one, and state a conjecture
– verified via numerical experiments – for the generic fibers of deep self-attention networks.

2 LIGHTNING SELF-ATTENTION

Fix positive integers d, d′, a, t ∈ N and matrices Q,K ∈ Ra×d, V ∈ Rd′×d. The latter are deemed
query weights, key weights, and value weights respectively2. A self-attention mechanism is a map
parametrized by (Q,K, V ) sending sequences of length t of vectors in Rd to sequences of vec-
tors in Rd′

. Here we consider the variant of self-attention mechanisms deemed lightning, which is
computationally efficient and fully algebraic.
Definition 1. The lightning self-attention mechanism associated to the weights W = (Q,K, V ) is
the map:

φW : Rd×t → Rd′×t

(xi)1≤i≤t →

 ∑
1≤j≤t

x⊤
j

(
K⊤Q

)
xi V xj


1≤i≤t

(1)

Intuitively, every component xi of the input corresponds to a token and ‘attends’ bilinearly to every
other xj , producing a scalar weight x⊤

j K
⊤Qxi ∈ R. These weights are used to aggregate the values

V xj ∈ Rd′
, obtaining the corresponding component of the output. The map defined by Equation 1

is tri-linear in (Q,K, V ) and homogeneous cubical in x. It is often convenient to write Equation 1
in matrix form: if X = (xi)1≤i≤t is interpreted as a d× t matrix, then:

φW (X) = V XX⊤K⊤QX. (2)

Moreover, we will often simplify the parametrization by introducing the attention matrix:

A = K⊤Q. (3)

The latter will always be interpreted as a bilinear form x⊤Ay.

Lightning attention mechanisms are variants of the traditional ones (Vaswani et al., 2017), where the
attention weights x⊤

j Axi are normalized to a probability distribution across j – see Section 3.4 for
further details. The major practical advantage of the lightning variant is its computational efficiency
with respect to the sequence length. Specifically, Equation 1 can be computed in O(t) time, while
traditional self-attention mechanisms require O(t2) time due to normalization. The improvement in
efficiency motivates the term ‘lightning’.

Self-attention mechanisms can be stacked in order to obtain a deep network architecture. To this end,
fix positive integers t, l,d = (d0, . . . , dl),a = (a1, . . . , al), and weights Q = (Q1, . . . , Ql),K =
(K1, . . . ,Kl),V = (V1, . . . , Vl), with Qi,Ki ∈ Rai×di , Vi ∈ Rdi×di−1 .
Definition 2. A deep self-attention network associated to the weights W = (Q,K,V) is the map:

φW : Rd0×t → Rdl×t (4)

given by the composition φW = φWl
◦ · · · ◦ φW1

.

Again, a deep self-attention network is homogeneous of degree 3l in x. Based on this, we denote by
Sym3l

(
Rd0×t,Rdl×t

)
the vector space of homogeneous polynomial functions from Rd0×t to Rdl×t

of degree 3l in all the output co-ordinates.
Definition 3. The neuromanifold of a deep self-attention network is the image of the parametrization
map W 7→ φW:

Md,a =
{
φW |W ∈ R

∑
i di(2ai+di−1)

}
⊂ Sym3l

(
Rd0×t,Rdl×t

)
. (5)

The neuromanifold is a semi-algebraic set by the Tarski-Seidenberg Theorem, meaning that it can
be defined by a finite number of polynomial equalities and inequalities in Sym3l

(
Rd0×t,Rdl×t

)
.

2An alternative standard notation for Q,K, V is WQ,WK ,WV . Our choice is motivated by better read-
ability.

3



Published as a conference paper at ICLR 2025

3 RESULTS

In this section, we study the neuromanifold of lightning attention networks, focusing on its
parametrization and its dimension. Our core focus will be the description of the fibers of the
parametrization map W 7→ φW, meaning that we will describe the sets of weights that define
the same function. More precisely, the fiber of φW ∈ Md,a is the set

{W′ | φW′ = φW}. (6)

Once the fibers are understood, the dimension of the neuromanifold can be computed. To this end, it
is actually sufficient to describe the generic fibers, i.e., the ones corresponding to ‘almost all W’ or,
more precisely, to W lying outside of the common zeros of a polynomial system. The co-dimension
of such fibers is constant and coincides with the dimension of the neuromanifold.

In order to study the parametrization map and its fibers, it is convenient to split the problem by
considering self-attention mechanisms as parametrized via the attention matrix. More precisely, we
will think of self-attention mechanisms as parametrized, by abuse of notation, via weights W =
(A, V ), where A ∈ Rd×d is an arbitrary matrix, and will study the matrix multiplication map
(Q,K) 7→ A = K⊤Q independently. We begin by considering the latter. When a < d, the matrix
multiplication map is not surjective, since A is constrained to have rank ≤ a. In other words, the
image of this map is the determinantal variety – defined as the set of matrices in Rd×d of rank at
most a. On the other hand, the fibers of the matrix multiplication map are subtle, since they are
closely related to the problem of matrix factorization. Yet, it is still possible to describe the generic
fibers. To this end, note that the map exhibits the following invariance: K⊤Q = K ′⊤Q′, where
K ′ = CK and Q′ = C−⊤Q for an arbitrary invertible matrix C ∈ GLa(R). Conversely, the
following elementary result shows that this is the only symmetry of a generic fiber.
Lemma 3.1. Suppose that A = K⊤Q = K ′⊤Q′ = A′ and that rk(A) = rk(A′) = a ≤ d. Then
there exists a unique invertible matrix C ∈ GLa(R) such that K ′ = CK and Q′ = C−⊤Q.

Proof. See Appendix A.1

If follows from the above result that, for a < d, the generic fibers of the matrix multiplication map
are isomorphic to GLa(R), and therefore have dimension a2. This recovers the well-known formula
for the dimension of the determinantal variety, which coincides with 2ad− a2 = a(2d− a).

3.1 SINGLE-LAYER IDENTIFIABILITY

We now describe completely the fibers of the parametrization of a lightning self-attention mechanism
in terms of the attention matrix. By abuse of notation, we will write φW for W = (A, V ). Firstly,
note that it is always possible to rescale the weights without changing the function. That is, (A, V )
and

(
λA, 1

λV
)

belong to the same fiber for all λ ∈ R \ {0}. Therefore, we will focus on the fibers
up to rescaling.
Theorem 3.2. Suppose t ≥ 2. The fiber of φW ∈ Md,d′,a for a given W = (A, V ) is as follows:

• If rk(A) = rk(V ) = 1, given tensor decompositions A = k ⊗ q and V = h ⊗ v for
some q, k, v ∈ Rd \ {0}, h ∈ Rd′ \ {0}, the fiber consists, up to rescaling, of W and
W ′ = (v ⊗ q, h⊗ k).

• If φW = 0, the fiber consists of W ′ = (A′, V ′) such that A′ = 0 or V ′ = 0.

• Otherwise, the fiber consists only of rescalings of W .

Proof. See Appendix A.2.

Note that the second condition of Theorem 3.2 is negligible, i.e., it does not hold for almost all
weights W , even under the constraint rk(A) ≤ a. Moreover, if d, d′ ≥ 2 or d, a ≥ 2, the first
condition is negligible as well. Therefore, the generic fibers are one-dimensional. As a consequence,
it is possible to compute the dimension (in the sense of algebraic geometry) of the neuromanifold,
even when parametrized via queries and keys, or equivalently, when A is restricted to have rank ≤ a.
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Corollary 3.3. Suppose that t ≥ 2 and that d, d′ ≥ 2 or d, a ≥ 2. The dimension of the neuroman-
ifold is:

dim (Md,d′,a) =

{
2ad+ dd′ − a2 − 1 if a ≤ d,

d2 + dd′ − 1 otherwise.
(7)

Proof. The formula follows from the fact that the generic fibers of the parametrization are one-
dimensional and that the dimension of the determinantal variety is 2αd + dd′ − α2, where α =
min{a, d} (see discussion after Lemma 3.1).

3.2 SINGLE-LAYER GEOMETRY

We will now describe the geometry of the neuromanifold of a single layer in more detail. We will
return to the question of identifiability for deep networks in Section 3.3. Throughout this section,
we assume that t ≥ 2 and that either d, d′ ≥ 2 or d, a ≥ 2.
Theorem 3.4. The neuromanifold Md,d′,a is closed in the Euclidean topology. Its (relative) bound-
ary points are those φ(A,V ) of the form A = k⊗q and V = h⊗k for some q, k ∈ Rd, h ∈ Rd′

. More-
over, Md,d′,a is not a smooth manifold: its singular points are the φ(A,V ) satisfying rk(A)rk(V ) ≤ 1.

Proof. This is an amalgamation of Corollaries A.1, A.4, and A.6 in Appendix A.3.

Figure 1 provides a visualization of M2,1,2 for t = 2. The latter has dimension 5 and is embedded in
the 40-dimensional space Sym3

(
R4,R2

)
. The illustration shows a rendering of the neuromanifold

in a 3-dimensional affine slice of the ambient space. This slice cuts a 2-dimensional section of the
neuromanifold. The yellow line denotes the singular locus, whose dotted segment emerges by taking
the closure in the Zariski topology.

The above result has several consequences, from a machine learning perspective and, in particular,
in terms of learning dynamics. The fact that the neuromanifold is closed in the Euclidean topology
implies that it contains its limit points. In particular, when the model is trained via a dynamical
system – which is the case for gradient descent – any training trajectory that converges to an equi-
librium in the ambient space will converge within the neuromanifold. Moreover, singularities of
neuromanifolds are a central focus in Information Geometry, and specifically in Singular Learning
Theory (Watanabe, 2009). According to the latter, singularities of neuromanifolds play a central role
in deep learning, since the function learned by a neural network (via gradient descent) often corre-
sponds to a singular point of the neuromanifolds [8]. In other words, singularities often attract the
learning dynamics, resulting in a form of ‘implicit bias’ associated to the neural architecture. Ac-
cording to Theorem 3.4, singularities of the neuromanifold arise exactly when both A and V have
rank ≤ 1 (or vanish). Therefore, this result suggests an implicit bias in attention mechanism towards
inferring (extremely) low-rank functions. Such bias has been empirically observed in a variety of
neural architectures (Amari et al., 2006), and our result might suggest a mathematical explanation
to this phenomenon, at least in the single-layer and lightning case.

3.3 DEEP NETWORKS

In this section, we completely describe the symmetries in the parameters of a generic function arising
from a deep network of lightning self-attention layers. We show that there are only three symmetries:
1) each layer can be scaled by a constant, 2) the keys and queries within each layer can be scaled by
an invertible matrix as in Lemma 3.1, and 3) the output of one layer can be scaled by an invertible
matrix if the next layer cancels out this scaling. We now describe the latter type of parameter
symmetry, before formally stating our main result in Theorem 3.7.

To this end, consider dimension vectors d, a and weights W = (A,V) of a network with l layers.
For 1 ≤ i ≤ l, define:

Li =
∏

l−i≤j<l

Vl−j Mi = L⊤
i−1AiLi−1. (8)

Moreover, set M1 = A1. It follows immediately from Definition 2 that a deep self-attention network
can be written in terms of (M, L), where M = (M1, . . . ,Ml) and L = Ll. Therefore, we introduce
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a further re-parametrization and write, with abuse of notation, φW for W = (M, L). We call the
parameters in this parametrization virtual weights.

This parametrization has symmetries. Namely, invertible matrices Ci ∈ GLdi(R) for 1 ≤ i < l,
consider:

V ′
i = CiViC

−1
i−1 A′

i+1 = C−⊤
i Ai+1C

−1
i . (9)

In the above, we set C0 and Cl to the identity. Replacing Vi, Vi+1, Ai+1 with V ′
i , V ′

i+1, A′
i+1 does

not alter the virtual weights M and L. Intuitively, this operation consists of transforming the output
of the i-th layer and cancelling back the transformation in the next layer. The following result states
that, for generic V and with an assumption on the dimensions di, the above procedure completely
characterizes the generic fibers of the map (A,V) 7→ (M, L).

Lemma 3.5. Suppose that for some δ ∈ N it holds that di = δ for all 0 < i < l and d0, dl ≥ δ.
Let (M, L) be virtual weights (Equation 8) obtained from both (A,V) and (A′,V′). If rk(L) = δ
then for every i there exists a unique Ci ∈ GLdi(R) such that V ′

i and A′
i+1 are obtained from Vi

and Ai+1 via Equation 9.

Proof. See Appendix A.4.

The assumption on the dimensions di in the above result can be practically interpreted as a ‘bot-
tleneck’ architecture. Specifically, this architecture is equivalent to including a low-dimensional
embedding and a high-dimensional unembedding layer, which is common in the literature, espe-
cially in an interpretability context (Elhage et al., 2021).

Before computing the fibers of the re-parametrization, it is convenient to rephrase the latter. The
following result provides a recursive expression of a deep attention network in terms of (M, L).

Lemma 3.6. For X ∈ Rd0×t, define inductively:{
D0 = I

Di = Di−1X
⊤MiXDi−1X

⊤M⊤
i XDi−1.

(10)

Then:

φW(X) = LlX

 ∏
1≤i≤l

Dl−iX
⊤Ml−i+1X

 . (11)

Proof. See Appendix A.5.

The above result can be rephrased without recursion. Given X = (xi)1≤i≤t, since XX⊤ =∑
1≤i≤t xix

⊤
i , Equation 11 states that φW(X)k can be written for every k as:

∑
k1,...,kl̃

Llxk1

 ∏
1≤j≤l̃−1

x⊤
kj
M̃jxkj+1

x⊤
l̃
A1xk, (12)

where l̃ = (3l − 1)/2 and M̃j is defined as follows. Let αj be the index of the first non-zero digit
from the right of j in base 3 (i.e., its 3-adic valuation plus one). Then M̃j equals to Mαj if this digit
is 1, and to M⊤

αj
if it is 2. We provide a diagram illustrating Equation 12 in Figure 2, where the

matrices in the equation correspond, in order, to the regions between the lines.

We now discuss the fibers, as anticipated. Firstly, similarly to the one-layer case, W = (M, L)
can be rescaled without altering the corresponding function. More precisely, if M ′

i = λiMi and
L′ = ρL for some λi, ρ ∈ R \ {0}, then φW′ = φW if:∏

1≤i≤l

(λi)
3l−i

=
1

ρ
. (13)

Conversely, we now show that rescaling characterizes the generic fibers. The following is the main
result of this work.

6



Published as a conference paper at ICLR 2025

M⊤
3M3

Ml

M2 M⊤
2

M1 M⊤
1

M2

M3

M1 M⊤
1 M⊤

1M1 M1M1 M⊤
1

Figure 2: Diagrammatic illustration of Equation 12.

Theorem 3.7. Let W = (M, L). Suppose that t ≥ 3 and:

• For 1 ≤ i ≤ l, rk(Mi) ≥ 2,

• For 1 < i ≤ l, Mi is not skew-symmetric3.

Then the fiber of φW consists of rescalings of W.

Proof. The proof is highly technical. Here, we provide a short summary; for the full proof, see
Appendix A.6. Using unique factorization of polynomials, we first show that, up to rescalings, the
fiber consists of W′ = (M′, L), where M ′

i = Mi+Σi and Σi is a skew-symmetric matrix. We then
proceed to show that Σi = 0 via an induction argument over i. The argument involves analyzing
specific monomials where Σi appears, and proving that most of them vanish due to the symmetries
of the unrolled recursion tree in Figure 2.

The conditions of the above theorem are generic if di, ai ≥ 2 for all i. To summarize, the theorem
states that a generic function in the neuromanifold has precisely three types of symmetries in its
parameters: 1) scaling each layer by a constant as in Equation 13, 2) scaling the keys and queries
of each layer by invertible matrices as in Lemma 3.1, and 3) scaling the output of one layer by
an invertible matrix and reverting this scaling in the next layer as in Equation 9. Similarly to the
one-layer case, this results leads to the computation of the dimension of the neuromanifold.

Corollary 3.8. Suppose that t ≥ 3, ai ≥ 2 for all i, and for some δ ≥ 2 it holds that di = δ for all
0 < i < l and d0, dl ≥ δ. The dimension of the neuromanifold is:

2α1d0 − α2
1 + δ(d0 + dl)− δ2 − l +

∑
1<i≤l

(2αiδ − α2
i ), (14)

where αi = min{ai, di−1}.

Proof. See Appendix A.7.

As discussed in Section 1, an exact expression for the dimension of the neuromanifold enables one to
estimate the sample complexity of the model.While the latter is commonly measured as the number
of parameters, the dimension – which constitutes the theoretically-correct estimate – can, sometimes,
significantly differ from it. To illustrate this, in some instances the dimension of queries/keys is set
to be equal to the embedding dimension (Vaswani et al., 2017), which translates to setting αi = δ
for all i. Assuming d0 = dl = δ, the number of parameters is 3

2d
2l, while according to Equation

14 the dimension is d2(l + 1) − l. Asymptotically, their ratio is 3
2 , i.e., in this case the number of

parameters is 50% larger than the dimension.

3A square matrix M is skew-symmetric if M⊤ = −M .
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3.4 TRADITIONAL SELF-ATTENTION

In this section, we briefly consider the case of traditional self-attention mechanisms, where the at-
tention weights are normalized. We compute the fibers in the single-layer case and state a conjecture
around the deep case.

In order to introduce the normalization, consider a map S : R → R>0 that is injective and such that
S(0) = 1. A typical choice is S(x) = ex/τ , where τ ∈ R>0 is the temperature hyperparameter. The
traditional self-attention mechanism is then defined for W = (A, V ) and X ∈ Rd×t as:

φW (X) =

 1

ζi

∑
1≤j≤t

S
(
x⊤
i Axj

)
V xj


1≤i≤t

ζi =
∑

1≤k≤t

S
(
x⊤
i Axk

)
. (15)

Note that, for simplicity, we adhere to the convention of parametrizing via the attention matrix.
Intuitively, in Equation 15 the attention weights S

(
x⊤
i Axj

)
are normalized to sum to 1, forcing the

model to ‘distribute’ its attention across the input components. The following result describes the
fibers of the parametrization, analogously to Theorem 3.2.

Theorem 3.9. Suppose that t ≥ 2. If φW = 0, then V = 0. Otherwise, the fiber of φW is a
singleton {W}.

Proof. See Appendix A.8.

Therefore, differently from lightning self-attention, in this case, the parametrization is generically
one-to-one.

We now consider the deep case. Note that even with normalization, deep attention networks can be
reparametrized via M and L, as defined in Section 3.3. Therefore, the fibers of the parametrization
will be unaffected by the symmetries inside the attention matrices from Lemma 3.1 and the transfor-
mations Ci from Equation 9. However, this time no rescaling is possible. Therefore, we conjecture
that the parametrization via (M, L) is generically one-to-one; in other words, that normalization
only breaks the layer-wise scaling symmetry of the parametrization.

Conjecture 3.10. For normalized deep self-attention networks, the generic fibers of the
parametrization via (M, L) are singletons.

In particular, suppose that for some δ it holds that di = δ for all 0 < i < l and d0, dl ≥ δ. Similarly
to Corollary 3.8, the above conjecture implies that the dimension of the neuromanifold equals to:

2α1d0 − α2
1 + δ(dl + d0)− δ2 +

∑
1<i≤l

(2αiδ − α2
i ), (16)

which coincides with the dimension in the lightning case (Equation 14), summed with the number
of layers l due to the removal of scaling symmetries. This is an inconsequential difference for large
models, where l is significantly smaller than the number of parameters per layer.
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Figure 3: Plot of the estimated and expected dimensions of the neuromanifold as δ varies.
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We provide empirical evidence for Conjecture 3.10. To this end, we implement a deep attention
network with softmax normalization (i.e., S(x) = ex), and estimate the dimension of its neuroman-
ifold. The latter is a subtle problem since, differently from the lightning case, the neuromanifold is
not a priori embedded in a finite-dimensional vector space. Therefore, we rely on a stochastic finite
element approach by randomly sampling N = 250 input points in Rd0×t from a normal distribution
and restricting φW to this finite space. As a result, the neuromanifold is embedded in a (N×t×dl)-
dimensional vector space. Its dimension can then be computed as the rank of the Jacobian of the
parametrization at a random parameter W. This provides the correct result with probability 1 w.r.t.
to the sampling of W, with the only possible error coming from the discretization, which can be
corrected for by increasing the number of input samples. Our Python code is available at a public
repository4. The results are visualized in Figure 3 for a deep attention network with l = 2 layers,
t = 3, ai = 2 for all i, and di = δ varying from 3 to 10. The plot shows both the dimension esti-
mated via the numerical approach (‘Estimated’) and the one computed via Equation 16 (‘Expected’).
The two values coincide for all δ, confirming Conjecture 3.10 empirically.

4 CONCLUSIONS AND FUTURE WORK

In this work, we have analyzed the geometry of neuromanifolds of lightning self-attention networks.
In particular, we have provided a description of the fibers of the parametrization, and consequently
computed the dimension of the neuromanifold for an arbitrary number of layers. Finally, we have
formulated an analogous conjecture for traditional self-attention networks.

Our work represents a first step towards the mathematical understanding of neuromanifolds de-
fined by attention networks. As such, it is subject to limitations and leaves several questions open.
Specifically, the attention networks we consider are a simplified version of the ones deployed in
practice, since we omit popular architectural variations (Brauwers & Frasincar, 2021). Two such
variations, which are ubiquitous in contemporary Transformers, are skip connections and multiple
heads. With both these additions, the lightning self-attention mechanism is still polynomial. Note
that skip connections make the model non-homogeneous, which breaks the scaling symmetry in
the parameterization. We believe that in this case the parameterization via (M, L) is generically
one-to-one, similarly to the traditional case (Conjecture 3.10), which is also non-homogeneous. In
contrast, including multiple attention heads introduces new symmetries due to permutation of heads,
similarly to the permutation symmetries of traditional Multi-Layer Perceptrons (Kileel et al., 2019).
Therefore, these two variations give rise to interesting phenomena in terms of symmetries of the
parameterization, and define future directions that are worthy of exploration.

From a wider perspective, the research program of applying the tools offered by algebraic geometry
to the field of deep learning remains open and worthy of exploration. Even further, going beyond the
polynomial setting – e.g., addressing problems such as Conjecture 3.10 – is an even more general
challenge that lies at the foundations of the theoretical understanding of deep learning.
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A PROOFS OF THEORETICAL RESULTS

In this appendix, we include the proofs of the theoretical results in the main body of the paper.

A.1 PROOF OF LEMMA 3.1

Proof. Since a ≥ rk(Q) ≥ rk(A) = a, we deduce rk(K) = a, and similarly for Q,K ′, Q′.
Therefore, without loss of generality, we can assume that K = K1 ⊕ K2, where K1 ∈ GLa(R)
and K2 ∈ Ra×(d−a), and similarly for K ′, Q,Q′. If follows immediately that exists a unique
C ∈ GLa(R) such that K ′

1 = CK1. Since by hypothesis K⊤
1 Q1 = K ′⊤

1 Q′
1, we deduce Q1 =

C⊤Q′
1. But then K⊤

2 Q1 = K ′⊤
2 Q′

1 = K ′⊤
2 C−⊤Q1, implying that K⊤

2 = K ′⊤
2 C−⊤ and, similarly,

Q2 = C⊤Q′
2, as desired.

A.2 PROOF OF THEOREM 3.2

Proof. Suppose that φW (X) = φW ′(X) for all X = (xi)1≤i≤t ∈ Rd×t, where W ′ = (A′, V ′).
By comparing the terms containing only x1 in the polynomial identity φW (X)1 = φW ′(X)1, we
obtain:

V x1 x
⊤
1 Ax1 = V ′x1 x

⊤
1 A

′x1. (17)

The above equation is a product of a quadratic form and a linear multivariate form. If rk(A) > 1, the
quadratic form is irreducible, and from the unique factorization property of polynomials it follows
that, up to multiplicative scalars, V coincides with V ′, and the quadratic form associated to A
coincides with the one associated to A′. The same holds if rk(V ) > 1, since the sides of the above
equation represent cubical polynomials that share a quadratic factor, but whose remaining linear
factors are independent. In order to prove that A and A′ coincide (up to scaling), consider the terms
linear in x1 and quadratic in x2 in the identity φW (X)1 = φW ′(X)1. This leads to:

HHHV x2 x⊤
2 Ax1 = H

HHV ′x2 x⊤
2 A

′x1. (18)

It follows that the bilinear forms associated to A and A′ coincide (up to scaling), as desired for the
third case of the claim.

If instead rk(A) = rk(V ) = 1, then it is possible to factor A = k ⊗ q and V = h ⊗ v for some
vectors q, k, v ∈ Rd \ {0}, h ∈ Rd′ \ {0}. Exchanging the role of k and v does not alter Equation
1, which provides the first case of the claim. Finally, since the ring of polynomials is an integral
domain, if φW (X) = 0 then from Equation 17 it follows that either A = 0 or V = 0, as desired for
the second case of the claim.

A.3 PROOF OF THEOREM 3.4

To prove Theorem 3.4, we begin with the following key insight: a consequence of Theorem 3.2
is that it is possible to projectify the neuromanifold and its parametrization (with respect to the
attention matrix). To this end, denote by PV = V/(R \ {0}) the projectification of a vector space V.
The second condition of Theorem 3.2 implies that the parametrization descends to a well-defined
morphism:

φ : PRd×d × PRd×d′
→ PSym3

(
Rd×t,Rd′×t

)
. (19)

We denote by PMd,d′,a the image of the map φ – referred to as projective neuromanifold. The fact
that φ is well-defined implies the following topological result.
Corollary A.1. The neuromanifold Md,d′,a is closed in the Euclidean topology.

Proof. A continuous map between a compact and a Hausdorff space is closed, and in particular has
a closed image. These properties are satisfied by φ, where both the domain and the codomain are
equipped with the Euclidean topology over projective spaces. It follows that PMd,d′,a is Euclidean

closed in PSym3

(
Rd×t,Rd′×t

)
. Since the parametrization is homogeneous, the neuromanifold

coincides with the affine cone of its projectification. Since affine cones of closed subspaces are
closed, the claim follows.
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Next, we characterize the lightning self-attention mechanisms that are singular in the neuromanifold,
i.e., whose tangent space has a dimension greater than Equation 7. For that, we combine Theorem
3.2 with a computation of the critical points of the network parametrization map. Firstly, we remark
that the last point in Theorem 3.2 implies that φ is generically one-to-one onto its image PMd,d′,a,
i.e., it is birational.
Corollary A.2. The map φ is birational onto its image PMd,d′,a, with special fibers of cardinality 2.

Proof. This follows from the first and the last point of Theorem 3.2.

Next, we compute the critical points of the parametrization. To this end, recall that a point is critical
for a differentiable map if the differential at that point does not have maximal rank.
Lemma A.3. A point (A, V ) = W is critical for the parametrization map W 7→ φW if and only if
A = k ⊗ q and V = h⊗ k for some q, k ∈ Rd, h ∈ Rd′

.

Proof. Given W = (A, V ), by computing the partial derivatives of φ•, we see that the differential
sends a tangent vector (Ȧ, V̇ ) to V̇ XX⊤AX + V XX⊤ȦX . The latter is interpreted as an element
of the vector space Sym3

(
Rd×t,Rd′×t

)
, which is identified with the tangent spaces of all of its

elements. Since the dimension of the neuromanifold is one less than the dimension of the parameter
space, the point W is critical if and only if the kernel of the differential has dimension > 1. The
kernel consists of those (Ȧ, V̇ ) that, for all X , satisfy

V̇ XX⊤AX = −V XX⊤ȦX. (20)

If V = 0, the differential vanishes whenever V̇ = 0; and similarly for A. This provides the first case
of the claim. If rk(A)rk(V ) ≥ 2, Theorem 3.2 implies that the kernel consists of (V̇ = −λV, Ȧ =
λA) for λ ∈ R, and W is therefore not critical. Finally, suppose that rk(A) = rk(V ) = 1, and write
A = k ⊗ q and V = h ⊗ v for some q, k, v ∈ Rd, h ∈ Rd′

. In order to obtain a larger kernel,
by Theorem 3.2, it is necessary that v = k (up to scaling). In that case, for every Ȧ of the form
Ȧ = p ⊗ q, we have that V̇ = −h ⊗ p is a solution to Equation 20, implying that W = (A, V ) is
critical.

By exploiting the fact that φ is birational with finite fibers, the above result leads us to the charac-
terization of the singular points of Md,d′,a.
Corollary A.4. φ(A,V ) is singular in the neuromanifold if and only if rk(A)rk(V ) ≤ 1.

Proof. The morphism φ is finite and birational by Corollary A.2. For such a map, a standard fact
from algebraic geometry (Kohn et al., 2017, Lemma 3.2) says that a point φW is singular in the
projective neuromanifold PMd,d′,a if and only if either its fiber under φ has cardinality ≥ 2 or W
is critical for φ. By Lemma A.3 and Theorem 3.2, a point with rk(A)rk(V ) ≤ 1 is either critical or
has a fiber of cardinality 2, and φ(A,V ) is therefore singular in PMd,d′,a. Since Md,d′,a is the affine
cone of PMd,d′,a, a point is singular in the projective neuromanifold if and only if the corresponding
line is singular in the neuromanifold, from which the claim follows.

Finally, we compute the boundary points of Md,d′,a. We will see that they are precisely the critical
values of the parametrization map. For that, we interpret the neuromanifold as a Segre variety on
linear forms, as follows. Given a vector space V, we consider its dual space V∗ and the outer product
of vectors of linear forms:

σ̃ : (V∗)d × (V∗)d
′
→ Sym2(V)

d×d′
,

(α, ν) 7→ (αm · νn)1≤m≤d,1≤n≤d′ .

We can projectify this map analogously to φ, obtaining birational morphism (if d > 1 or d′ > 1),
but not an embedding. If a < d, we need to restrict the first factor of the map σ̃ to tuples of linear
forms that span a subspace of rank at most a. We denote this space by (V∗)d≤a.

Proposition A.5. The neuromanifold Md,d′,a is linearly isomorphic to the image of σ̃ restricted to
(V∗)d≤a × (V∗)d

′
, where V = Rd.
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Proof. We denote by αm the linear form that takes the inner product with the m-th column of A and
by νn the inner product with the n-th row of V . We have seen in the proof of Theorem 3.2 that every
φW ∈ Md,d′,a is uniquely determined by its term that is linear in x1 and quadratic in x2, which is

x⊤
2 Ax1V x2 =

(
d∑

m=1

x1,m αm(x2) νn(x2)

)
1≤n≤d′

.

Since the x1,m are formal variables, this expression is the collection of all products of linear forms
αm · νn for 1 ≤ m ≤ d and 1 ≤ n ≤ d′, which shows the claim.

In what follows, relative boundary refers to the set of points (in the Euclidean topology) in Md,d′,a

that are limit points of sequences in Md,d′,a \ Md,d′,a, where Md,d′,a denotes the closure of the

neuromanifold in the Zariski topology of its ambient space Sym3

(
Rd×t,Rd′×t

)
.

Corollary A.6. φW is on the relative boundary of the neuromanifold if and only if W it is critical
for the parametrization map.

Proof. For simplicity, we write M for Md,d′,a, and start by computing its Zariski closure M. The
Zariski closure of a subset S of RN consists precisely of the real points in the complex Zariski
closure of S viewed as a subset of CN . We compute the complex Zariski closure of M by considering
the parametrization map φ in (19) over C instead of over R. That map φC is also a well-defined
morphism between projective spaces. The main theorem on projective varieties (Hartshorne, 2013,
II, §4, Theorem 4.9) states that the image PMC of φC is Zariski closed. Hence, the real Zariski
closure M consists precisely of the real points φ(A,V ) with A ∈ Cd×d, V ∈ Cd×d′

.

Next, we compute the points in the complement M \M. Using the identification in Proposition A.5,
points in that complement look like real matrices with entries αm · νn, where αm, νn are complex
linear forms, and no real parametrization exists. So one of the αm is non-real. Since each of the
αm ·νn is real, every νn has to be the complex conjugate αm times a real scalar. Analogously, all αr

have to be νn times a real scalar, i.e., they need to coincide with αm up to scaling. This shows that
M\M consists of φ(A,V ) with A = k⊗q and V = h⊗k for some q ∈ Rd \{0}, h ∈ Rd′ \{0}, k ∈
Cd \ Rd. In the limit, sequences of W = (A, V ) in this form can become real if either one among
A and V vanish, or the complex conjugated pair k, k becomes the same real vector k = k.

A.4 PROOF OF LEMMA 3.5

Proof. Note that Vi is invertible for every 1 < i < l by the rank hypothesis. Moreover, since L =∏
0≤j<l Vl−j =

∏
0≤j<l V

′
l−j , it is possible to apply Lemma 3.1 by splitting the latter factorization

of L at the first and last layer. This way, we obtain matrices Ci ∈ GLδ(R) for 1 ≤ i ≤ l such that
V ′
i = CiViC

−1
i−1. But then we have:

L′⊤
i−1A

′
iL

′
i−1 = L⊤

i−1C
⊤
i−1A

′
iCi−1Li−1 = L⊤

i−1AiLi−1. (21)

Since Li is surjective by the rank hypothesis, we conclude that C⊤
i−1A

′
iCi−1 = Ai.

A.5 PROOF OF LEMMA 3.6

Proof. For 0 ≤ i ≤ l, denote by Xi the output of the i-th layer of the network. In other words,
X0 = X and Xi = φWi

(Xi−1) = ViXi−1X
⊤
i−1AiXi−1 for i > 0. We wish to prove that for all i:

Xi = LiX
∏

1≤j≤i

(
Di−jX

⊤Mi−j+1X
)
. (22)
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Denote by Yi the right-hand side of Equation 22. We have:

Yi = Li︸︷︷︸
ViLi−1

XDi−1X
⊤ Mi︸︷︷︸

L⊤
i−1AiLi−1

X
∏

1≤j<i

Di−1−jX
⊤Mi−jX (23)

=Vi Li−1XDi−1 (Li−1X)
⊤
Ai Li−1X

∏
1≤j<i

Di−1−jX
⊤Mi−jX︸ ︷︷ ︸

Yi−1

. (24)

Therefore, in order to show that Yi satisfies the same recurrence relation as Xi, we need to prove
that LiXDi (LiX)

⊤
= YiY

⊤
i for all i, which in turn reduces to show that Di = ZiZ

⊤
i , where:

Zi =
∏

1≤j≤i

(
Di−jX

⊤Mi−j+1X
)
. (25)

To this end, since Zi = Di−1X
⊤MiXZi−1, we have:

ZiZ
⊤
i = Di−1X

⊤MiXZi−1Z
⊤
i−1X

⊤M⊤
i XD⊤

i−1. (26)

If we assume inductively that Zi−1Z
⊤
i−1 = Di−1, and using the fact that Di is a symmetric matrix

(i.e., D⊤
i−1 = Di−1), the above recurrence relation coincides with the one defining Di in Equa-

tion 11. This implies that ZiZ
⊤
i = Di, as desired.

A.6 PROOF OF THEOREM 3.7

Proof. Pick weights W, W′ such that φW(X) = φW′(X) for all X = (xi)1≤i≤t ∈ Rd0×t. Our
proof strategy will involve considering the polynomial identity

φW(X)1 = φW′(X)1 (27)

and comparing monomial terms arising from Equation 12 with specific degrees in the xi’s.

To this end, Equation 12 implies that all such terms contain x1. Even further, the unique term in
φW(X)1 that is linear in x1 and of degree 3l − 1 in x2 can be written as:

Llx2

 ∏
2≤i≤l

(
x⊤
2 Mix2

)3l−i

(x⊤
2 A1x2

)3l−1−1
x⊤
2 A1x1. (28)

Put simply, the above expression is a product of a linear form in x2, several quadratic forms in x2,
and a bilinear form in x1 and x2. Moreover, the quadratic forms are coprime by hypothesis since
rk(Mi) > 1 for i > 1. By comparing this term with the corresponding term on the right-hand
side of Equation 27, from the unique factorization property of polynomials, it follows that up to a
multiplicative scalar, the following hold:

• Ll coincides with L′
l,

• A1 coincides with A′
1,

• The quadratic forms associated to Mi and M ′
i coincide for all 2 ≤ i ≤ l.

The last condition above implies that for every 2 ≤ i ≤ l there exists a skew-symmetric matrix Σi

such that M ′
i coincides with Mi+Σi up to a multiplicative scalar. Since Equation 12 is multi-linear

in each occurrence of Mj , by substituting M ′
j = Mj + Σj in φW′(X)1 for all j, we obtain a sum

of expressions in the form of Equation 12, but where an arbitrary number of occurrences of Mj has
been replaced by Σj . The only expression with no replacement coincides with φW(X)1. Therefore,
Equation 27 reduces to a vanishing sum of copies of Equation 12, where at least one Mj has been
replaced with Σj .

In order to conclude, we wish to show that Σi = 0 for i ≥ 2. We will proceed by induction on
i. Specifically, given i and assuming that Σj = 0 for j < i, we will show that Σi = 0. To this
end, consider the monomial terms in φW′(X)1 of degree 1 in x1, of degree 3i−1 − 1 in x3, and
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of remaining degree in x2. This is possible since we assume t ≥ 3. From the discussion above, it
follows that Equation 27 reduces to a vanishing sum of copies of Equation 12, where an arbitrary
(non-zero) number of occurrences of M̃j = Mαj , with αj ≥ i, has been replaced with Σαj (and
similarly with transposes), and where kj ∈ {2, 3} for all 1 ≤ j ≤ l̃ = (3l − 1)/2.

We will now argue that several terms cancel due to the symmetries of Equation 12, illustrated in
figure 4. Namely, consider a monomial term with some multi-index k• containing a factor of the
form x⊤

kj
Σαj

xkj+1
for some j, with αj > i. Since x3 cannot appear more than 3i−1 − 1 times in

the monomial, there exists a j ≤ (3i−1 − 1)/2 such that kj−j = kj+j+1 = 2. Moreover, due to the

inductive hypothesis, M̃j′ coincides with Mαj′ or with its transpose for all j− j ≤ j′ ≤ j+ j since
αj′ < i. Consider the multi-index k′• such that k′j−j′ = kj+j′+1 for all −j ≤ j′ ≤ j, and k′j′ = kj′

for all the other j′. Intuitively, k′• ‘reflects’ k• locally around j – see Figure 4 for an illustration. By
construction, the monomial corresponding to k′• is identical to the one corresponding to k•, except
for the term

x⊤
k′
j
Σαj

xk′
j+1

= x⊤
kj+1

Σαj
xkj

= −x⊤
kj
Σαj

xkj+1
. (29)

Therefore, these two monomials cancel each other out.

M⊤
1M1

Σi

M⊤
1M1

Figure 4: Diagrammatic illustration of the symmetry involved in the cancellation argument.

After the above cancellation argument, we are left with monomials containing occurrences of Σαj

only for αj = i. In fact, the cancellation argument still applies verbatim to these cases, except for
when j = (3l − 3i−1)/2 and kj−j′ ̸= kj+j′+1 for all j′ ≤ (3i−1 − 1)/2. In this case, due to the
presence of x1, the monomials corresponding to k• and k′• are not opposite, but contain different
factors given by x⊤

3 A1x2x
⊤
2 A1x1 and −x⊤

3 A1x1 x⊤
2 A1x2, respectively. At the end of the day,

Equation 27 reduces to an expression of the form:

x⊤
3 Σix2

(
x⊤
3 A1x2x

⊤
2 A1x1 − x⊤

3 A1x1 x
⊤
2 A1x2

) ∑
h•

p((xhj
)j) = 0, (30)

where h• is an opportune multi-index with values in {2, 3}, and p is a polynomial consisting of
products of bilinear/quadratic forms associated to the Mj’s, and a multi-variate linear factor asso-
ciated to Ll. The right-most factor in Equation 30 is not the zero polynomial (in the variables x2

and x3) since, by imposing the condition x2 = x3, it becomes (up to a multiplicative scalar) a
product of quadratic forms associated to the Mj’s. The latter are non-vanishing since Mj is not
skew-symmetric for all j by hypothesis.

We wish to prove that the second factor in Equation 30 is non-vanishing as well. To this end, note
that the coefficients of that factor, seen as a polynomial in x1, x2, x3, are of the form

(A1)α,β(A1)γ,δ + (A1)α,γ(A1)β,δ − (A1)α,δ(A1)β,γ − (A1)α,δ(A1)γ,β (31)

for 1 ≤ α, β, γ, δ ≤ d0. Suppose by contradiction that the above expression vanishes for all
α, β, γ, δ. When β = γ, Equation 31 coincides with (twice) the determinant of an arbitrary 2 × 2

16



Published as a conference paper at ICLR 2025

minor of A1 intersecting the diagonal. If (A1)β,β ̸= 0 for some β, then from the Kronecker’s
bordered matrix theorem it follows that A1 has rank 1, contradicting the hypothesis rk(A1) ≥ 2.
We conclude that the diagonal entries of A1 are zero, and, when β = γ, Equation 31 reduces to
(A1)α,β(A1)β,δ = 0. Therefore, if (A1)α,β ̸= 0 for some α ̸= β, then the β-th row of A1 must
vanish. But then Equation 31 reduces (up to sign) to the determinant of an arbitrary 2 × 2 minor
intersecting (α, β), and we again obtain a contradiction from Kronecker’s bordered matrix theorem.

In conclusion, the left-most factor in Equation 30 must vanish, meaning that Σi = 0, as desired.

A.7 PROOF OF COROLLARY 3.8

Proof. Recall that the dimension of the determinantal variety of di−1 × di−1 matrices of rank at
most ai is 2αidi−1 − α2

i , and therefore the space of parameters (A,V) has dimension

2α1d0 − α2
1 + δ(d0 + dl) + (l − 2)δ2 +

∑
1<i≤l

(2αiδ − α2
i ). (32)

Moreover, by Lemma 3.5 the generic fibers of the re-parametrization (A,V) 7→ (M, L) have di-
mension (l − 1)δ2, while by Theorem 3.7 the generic fibers with respect to (M, L) have dimension
l (recall the constraint on rescaling given by Equation 13). Since the dimension of the image of a
map coincides with the co-dimension of the generic fibers, the result follows.

A.8 PROOF OF THEOREM 3.9

Proof. Suppose that φW (X) = φW ′(X) for all X = (xi)1≤i≤t ∈ Rd×t, where W ′ = (A′, V ′). We
assume that V ̸= 0, since the case φW = 0 follows immediately. Due to normalization, if xi = xj

for all i, j, then φW (X)1 = V x1 = V ′x1 = φW ′(X)1, implying V = V ′. If instead xi = 0 for
i > 1, since S(0) = 1, we obtain:

S
(
x⊤
1 Ax1

)
S
(
x⊤
1 Ax1

)
+ t− 1

H
HHV x1 =

S
(
x⊤
1 A

′x1

)
S
(
x⊤
1 A

′x1

)
+ t− 1

HHHV ′x1 (33)

Since S is injective, we deduce that the quadratic form associated to A coincides with the one
associated to A′. In order to prove that A = A′, suppose that xi = xj for i, j ≥ 2, obtaining:

S
(
x⊤
1 Ax1

)
V x1 + S

(
x⊤
1 Ax2

)
V x2

S
(
x⊤
1 Ax1

)
+ (t− 1)S

(
x⊤
1 Ax2

) =
S
(
x⊤
1 A

′x1

)
V ′x1 + S

(
x⊤
1 A

′x2

)
V ′x2

S
(
x⊤
1 A

′x1

)
+ (t− 1)S

(
x⊤
1 A

′x2

) . (34)

After elementary algebraic manipulations using the fact that x⊤
1 Ax1 = x⊤

1 A
′x1 and V = V ′, the

above equation reduces to:

(t− 1)
(
S
(
x⊤
1 A

′x2

)
− S

(
x⊤
1 Ax2

))
V x1 =

(
S
(
x⊤
1 A

′x2

)
− S

(
x⊤
1 Ax2

))
V x2. (35)

Since V ̸= 0, V x1 ̸= V x2 for generic x1, x2. Therefore, S
(
x⊤
1 A

′x2

)
− S

(
x⊤
1 Ax2

)
must vanish

generically, implying A = A′ due to the injectivity of S, as desired.
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