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ABSTRACT

Analog Ising machines represent a transformative paradigm for combinatorial op-
timization, exploiting physical dynamics to achieve high speed, energy efficient
operations over conventional digital electronics. However, existing optimiza-
tion algorithms fail to harness these platforms’ massive parallelism while tack-
ling the inherent measurement noise for Analog Ising machines. We introduce
BRAIN (Boltzmann Reinforcement for Analog Ising Networks), transforming the
traditional sampling-based optimization to distribution learning framework. The
Boltzmann distribution provides the fundamental link between statistical physics
and Ising-type combinatorial optimization, establishing the theoretical framework
that enables physical systems to solve NP-hard problems. Unlike Monte Carlo
Markov Chain (MCMC) methods that sample states from Boltzmann distributions,
BRAIN directly learns the Boltzmann distribution through variational reinforce-
ment learning. This fundamental transformation makes the algorithm inherently
resilient to the Gaussian measurement noise intrinsic to analog Ising systems. Our
approach employs policy gradients to optimize a parametric state generator, natu-
rally aggregating information across multiple noisy measurements without requir-
ing precise energy differences. We benchmark BRAIN against MCMC methods
across diverse combinatorial optimization problems, demonstrating three critical
advantages. First, BRAIN generalizes across different interaction topologies, per-
forming effectively on both Curie-Weiss and 2D nearest-neighbor Ising models.
Second, it exhibits remarkable robustness under severe measurement noise up to
40%. Third, it scales efficiently to large systems of 65,536 (N) spins, scaling
as O(N1.55), with noisy energy evaluations. With realistic 3% Gaussian noise,
BRAIN maintains 98% ground state fidelity while MCMC methods achieve only
51% fidelity with BRAIN arriving at the MCMC solution 192× faster. Beyond
ground state optimization, BRAIN preserves the complete thermodynamic land-
scape, analyzing phase transitions and metastable states essential for robust large-
scale combinatorial optimization and complex many-body physics applications.

1 INTRODUCTION

Analog Ising machines represent a transformative paradigm for combinatorial optimization, exploit-
ing physical dynamics to achieve unprecedented computational advantages over digital processors.
These systems - implemented through optical interference AL-Kayed et al. (2025); Mohseni et al.
(2022); Prabhu et al. (2020); Hua et al. (2025), magnetic oscillators Si et al. (2024), or parametric
amplifiers Honjo et al. (2021) - embed optimization directly into physics, eliminating the von Neu-
mann bottleneck entirely, providing 103 − 106× speedups over GPU-based solvers while reducing
power consumption by two orders of magnitude. Unlike digital processors that simulate physics se-
quentially, analog Ising machines enable simultaneous evaluation of thousands of spin interactions
in a single operation. Analog systems offer a fundamental advantage beyond computational speed:
they naturally explore the full solution landscape, not just isolated optima. This broad sampling un-
covers critical features that traditional optimization often overlooks—such as phase transitions and
metastable states. It shifts the paradigm from finding a single answer to understanding the entire
solution ecosystem. While digital algorithms typically chase one global minimum, analog systems
chart the terrain of possibilities, delivering insight essential for complex challenges like drug discov-
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ery, supply chain optimization, and logistics - where robustness and viable alternatives are as vital
as peak performance Taillard (2022).

However, these complexities are not captured by existing optimization algorithms, limiting the full
potential of analog hardware. Current approaches make critical assumptions incompatible with ana-
log systems: (i) noise-free energy evaluations, contradicting the 3-10% measurement noise inherent
to analog hardware, (ii) sequential processing through single-spin updates, ignoring massive hard-
ware parallelism, and (iii) ground-state optimization focus, collapsing rich thermodynamic structure.
When noise approaches energy scale differences, the traditional Metropolis acceptance criterion be-
comes random, detailed balance breaks down, and algorithms fail even for suboptimal solutions.

To address these limitations, we introduce BRAIN (Boltzmann Reinforcement for Analog Ising Net-
works), a variational reinforcement learning framework that transforms optimization from sampling
individual states to learning complete probability distributions. Rather than going up against analog
characteristics, BRAIN embraces them by learning the Boltzmann distribution π(x) = e−βE(x)/Z
that naturally encode solution hierarchies, metastable states, and transition probabilities. Our main
contributions include: (i) noise-resilient learning through policy gradients that aggregate information
across multiple measurements, (ii) parallel evaluation exploiting hardware parallelism by sampling
multiple configurations simultaneously, and (iii) thermodynamic landscape preservation, maintain-
ing access to metastable states and phase transitions, essential for robust optimization and physics
applications. BRAIN maintains 98% ground state fidelity under realistic 3% noise where traditional
methods achieve only 51%, scales favorably O(N1.55) to 65,536 spins, and preserves complete ther-
modynamic landscapes across all temperature regimes. This represents the first algorithm designed
to overcome the inherent noise limitation of analog Ising machines, unlocking new possibilities for
large-scale combinatorial optimization and many-body physics exploration.

2 RELATED WORK: ALGORITHMS FOR NOISY ISING SYSTEMS

Most approaches treat noise as a perturbation to be minimized rather than an algorithmic resource
and hence limited work explicitly addresses noisy analog Ising optimization. Experiments on
spatial-photonic Ising machines demonstrate that tuning detection noise can increase success prob-
ability on frustrated, fully connected instances, with the optimal level depending on size/topology
Pierangeli et al. (2020).Coherent Ising machines with optical error-correction/feedback have been
proposed and analyzed, highlighting all-to-all programmability, chaotic search dynamics in feed-
back, and potential low-power operation Reifenstein et al. (2021). In parallel, classical ML has
targeted Ising and combinatorial optimization: reinforcement learning (RL) can learn annealing
schedules that outperform fixed ones and generalize across related instances Mills et al. (2020), and
deep-RL frameworks report gains on Edwards–Anderson spin-glass benchmarks Fan et al. (2023a).
Generative modeling complements these control approaches: Boltzmann machines reproduce finite-
temperature thermodynamics Torlai & Melko (2016a), and variational neural annealing with au-
toregressive models achieves high-fidelity finite-temperature sampling in rough energy landscapes
Hibat-Allah et al. (2021a); Fellows et al. (2019). Physics-inspired graph neural networks (GNNs)
provide scalable solvers for QUBO/Ising tasks (e.g., Max-Cut), relaxing the Hamiltonian during
training and projecting to discrete solutions Schuetz et al. (2022); normalizing-flow “Boltzmann
Generators” enable unbiased equilibrium sampling with reweighting when gradients/surrogates are
available Noé et al. (2019a).

Unlike noise-agnostic generative methods (typically assuming exact/noiseless energies) or RL con-
trollers that tune schedules for a simulator, our approach learns the Boltzmann distribution directly
from noisy, non-differentiable energy measurements via policy gradients, aligning training with the
physical objective while aggregating hardware noise and addressing the gap between noise-sensitive
MCMC and differentiability-dependent generative samplers.

3 METHODS

3.1 PROBLEM STATEMENT

Our goal is to design an efficient, scalable algorithm that learns the full distribution of solutions
to combinatorial optimization problems, such as those represented by analog Ising machines. Our
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algorithm must not only identify the global minimum accurately, but also capture all relevant lo-
cal minima with their appropriate probabilities, since reconstructing the statistical structure of the
solution space is critical in applications such as drug discovery and logistics Taillard (2022). Cru-
cially, our algorithm should achieve these goals with high sample efficiency, and scalability to high-
dimensional problems, in cases where the reward is non-differentiable and noisy.

3.2 MARKOV CHAIN MONTE CARLO APPROACHES

Markov Chain Monte Carlo (MCMC) algorithms, such as the Metropolis-Hastings (MH) algorithm
Metropolis et al. (1953); Hastings (1970), are a class of algorithms, designed to sample configura-
tions from a target probability distribution P (x). MH in particular constructs a Markov chain with
transition probabilities P (x′|x) that satisfies detailed balance P (x′|x)P (x) = P (x|x′)P (x′), ensur-
ing P (x) is stationary. Factorizing the transition probabilities into a proposal probability Q(x′|x)
and an acceptance probability α(x′, x), and enforcing detailed balance, for a target Boltzmann dis-
tribution p(x) = e−βE(x)∑

x e−βE(x) Metropolis et al. (1953), and a symmetric (or uniform) proposal distri-
bution, yields the familiar acceptance criterion:

P (x′|x)
P (x|x′)

=
Q(x′|x)α(x′, x)

Q(x|x′)α(x, x′)
=

P (x′)

P (x)
, α(x′, x) = min

(
1, e−β(E(x′)−E(x))

)
(1)

where β is the inverse temperature. While MH provides samples from the target stationary distri-
bution, simulated annealing Kirkpatrick et al. (1983) gradually increases β (lowers temperature) to
concentrate samples near the global minimum, providing a stochastic global optimization proce-
dure. Numerous extensions of these fundamental methods have been proposed to improve sample
efficiency and convergence, including Hybrid Monte Carlo Duane et al. (1987), and no U-turn sam-
pling Hoffman et al. (2014) both of which attempt to improve acceptance rate and avoid inefficient
walks in state space. We point readers to more thorough reviews of this class of algorithms for fur-
ther background Brooks et al. (2011). For the purposes of this work, we illustrate that this class of
algorithms attempts to sample from a target distribution by accepting and rejecting moves in state
space.

3.3 BRAIN - LEARNING A TARGET DISTRIBUTION WITH REINFORCE

In this approach, our goal is to learn parameters θ for a state generator model qθ(x), such that qθ(x)
that approximates the Boltzmann distribution p(x) = e−βE(x)∑

x e−βE(x) with high sample efficiency, and

for high-dimensional cases, where
∑

x e
−βE(x) is intractable. One such instance is an analog Ising

machine, where the state is defined as a collection of spins x = {σ1, σ2, ..., σN2}, σi ∈ {+1,−1},
on a two-dimensional N × N grid. For a 32×32 analog Ising machine system, this corresponds to
232×32 ≈ 10308 states.

Learning a target distribution via minimizing KL divergence: We use variational inference to
learn qθ(x) directly, minimizing the KL divergence between qθ(x) and p(x), defined as:

θ∗ = argmin
θ

KL(qθ ∥ p), KL(qθ ∥ p) =
∑
x

qθ(x) log
qθ(x)

p(x)
.

For p(x) equal to the Boltzmann distribution, KL(qθ ∥ p) expands to:

KL(qθ ∥ p) =
∑
x

qθ(x) log qθ(x) + β
∑
x

qθ(x)E(x) + logZ,

where Z =
∑

x e
−βE(x) is the partition function. Using standard definitions, this can be written as:

KL(qθ ∥ p) = −H(qθ(x)) + β Eqθ [E(x)] + logZ, (2)

where H(qθ) is the entropy of the model. Since Z is a summation over all possible system states,
it is a constant (which we cannot evaluate) that does not affect our optimization to learn qθ(x).
Therefore, an equivalent objective function for us to minimize is

L(θ) = −H(qθ(x)) + β Eqθ [E(x)]. (3)
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Relating KL Divergence to a Helmholtz Free Energy: In the BRAIN framework, the problem
statement above has a natural interpretation in statistical mechanics. The objective:

θ∗ = argmin
θ

KL(qθ ∥ p) = argmin
θ

[
−H(qθ(x)) + β Eqθ [E(x)]

]
is nothing but the minimization of the Helmholtz free energy of an equivalent physical system that
is kept at a constant temperature β.

F = Eqθ [E(x)]− TH(qθ(x)) = U − TS, (4)

where U is the expected internal energy, S the entropy, and T = 1/β the temperature. Minimiz-
ing the KL divergence is therefore equivalent to minimizing the free energy, and the equilibrium
distribution of configurations is given by the Boltzmann distribution.

Learning with noisy or non-differential rewards using REINFORCE: To optimize the model
qθ(x), when the energy E(x) may be non-differentiable or noisy, we adopt the score-function trick
Williams (1992), also known as the REINFORCE algorithm, a variant of policy-gradient reinforce-
ment learning. This method allows us to estimate gradients of an expectation over a parameterized
distribution without requiring differentiability of the reward (here, E(x)).

Starting from the loss function:

L(θ) = −H(qθ(x)) + β Eqθ [E(x)].

the gradient is
∇θL = ∇θEq[βE(x)]−∇θH(qθ(x))

which can be written using the score-function trick as:

∇θL = Eq[βE(x)∇θ log(qθ(x))]−∇θH(qθ(x))

While the REINFORCE gradient estimator is unbiased Williams (1992), its variance can be large,
especially when rewards (here, energies E(x)) are noisy. A standard technique to reduce this vari-
ance is to subtract a baseline b from the reward, yielding the modified gradient estimator:

∇θEqθ [E(x)] = Eqθ [(E(x)− b)∇θ log qθ(x)]. (5)

Subtraction of a baseline does not introduce bias but can significantly improve the stability of learn-
ing, see Appendix A.2. Putting everything together, our complete algorithm is presented below:

Algorithm 1 BRAIN - Boltzmann Reinforcement for Analog Ising Networks
Input: Parameterized state generator qθ(x), inverse temperature β, noise level σ
Parameters: Number of samples per batch S, learning rate η
Output: Learned parameters θ of qθ(x)

1: for each gradient step do
2: Sample S configurations x1, . . . , xS ∼ qθ(x)
3: for each sampled configuration xs do
4: Measure noisy energy: Ẽ(xs) and compute reward: r(xs) = βẼ(xs)
5: end for
6: Compute baseline: b = 1

S

∑S
s=1 r(xs)

7: Compute batch gradient estimate:

∇θL ≈
1

S

S∑
s=1

(r(xs)− b)∇θ log qθ(xs)−∇θH(qθ(x))

8: Update parameters: θ ← θ − η∇θL
9: end for

10: return θ

This learning scheme finds the optimal θ, such that qθ(x) approximates the Boltzmann distribution.

Instantiating qθ(x) with a factorized Bernoulli distribution: The BRAIN algorithm is agnostic
to the specific choice of the parameterized state generator qθ(x). In principle, qθ(x) can be any
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distribution capable of representing the solution space, such as autoregressive models Hibat-Allah
et al. (2021b), normalizing flows Noé et al. (2019b), or graph neural networks Fan et al. (2023b).
For the specific case of an analog Ising machine, we choose qθ(x) to be a fully-factorized Bernoulli
distribution over individual spins.

qθ(x) =

N2∏
j=1

qθ(xj), qθ(xj) = m
1+xj

2
j (1−mj)

1−xj
2 , mj ∈ [0, 1].

where each spin generator qθ(xj) is a Bernoulli distribution with local magnetization mj . This
formulation converts the problem of generating an N × N spin configuration into generating N2

local magnetizations {mj}, which comprise the parameter vector θ. For this choice, the gradient of
the loss with respect to each mj can be computed analytically, see Appendix A.1 for details.

∇mj
L = Eqθ

[
βE(x)

xj − (2mj − 1)

2mj(1−mj)
+ log

mj

1−mj

]
. (6)

Noisy Analog Ising Machines: The noise in an Analog Ising machine can be observed in every
measurement of the energy of a state x, Ẽ(x), and can be defined as: Ẽ(x) = E(x)(1 + ηx), where
E(x) is described by equation 1, and ηx = N(0, σ2);σ ≈ 0.03(3%). This noise is characterized in
Appendix A.7. The BRAIN algorithm outlines a procedure for handling noisy rewards, where we
find that subtracting a baseline from the measured energies is critical to reducing the variance in the
gradients, and result in stable learning, see Appendix A.2 for details.

4 EXPERIMENTS

We systematically benchmark BRAIN against a traditional MCMC algorithm (Metropolis et al.
(1953); Hastings (1970)) under noisy energy evaluations across four problems of increasing com-
plexity and dimensionality. For a fair comparison, we assume deployment on an analog Ising ma-
chine where parallel evaluation of multiple spin states may be prohibitive, thus excluding any par-
allelization advantages BRAIN might have over the intrinsically sequential MCMC algorithm when
evaluated on a GPU. Since evaluation of energies is the rate-limiting step, we used it as our pri-
mary metric for comparing convergence time across methods to solve each problem. Appendix A.3
discus theoretical estimates of the time to convergence. In the following sections we benchmark
BRAIN against MCMC in terms of i) fidelity of solution, ii) resilience to noisy energy evaluations,
iii) scalability, and iv) time-to-solution for 4 types of problems with increasing complexity in energy
landscape and high-dimensional interactions.

4.1 BENCHMARKS WITH LOW-DIMENSIONAL ENERGY LANDSCAPES

We begin by evaluating BRAIN on a set of benchmarks with increasing complexity in their noisy en-
ergy landscapes E(x), see Figure 1. The first benchmark is a standard double well energy landscape
E(x) = A(x2−x2

0)
2+Bx, where A,B, x0 are constants determining the barrier of the double-well,

the offset between the two energy minima, and the location of the minima respectively (See Figure
1 (a) ) Also shown is the corresponding probability density p(x) = e−βE(x)/Z, for two different
inverse temperatures β. The addition of 10% noise to the energy function produces a highly irregular
energy landscape away from local minima. This structural noise manifests in the probability dis-
tribution p(x) as increased variability, particularly evident in the high-temperature regime. At low
temperatures, however, the noise doesn’t affect the likelihood of observing states significantly. Fig-
ure 1 (c) compares BRAIN and MCMC in their ability to recover p(x) at both temperatures, where
we find that both BRAIN and MCMC successfully recover p(x) at high temperatures. However, at
low temperatures, MCMC oversamples the state with lower probability, while BRAIN captures p(x)
correctly. The second benchmark we benchmark against is a one-dimensional six-spin case, as used
in Torlai & Melko (2016b). This benchmark allows us to measure performance on an Ising system
where the partition function can be evaluated exactly, allowing us to visualize and compare p(x)
for BRAIN and MCMC, Figure 1 (b) and (d). We find that both BRAIN and MCMC adequately
sample p(x) at a low temperature where two states are more likely than other states. Note that p(x)
is symmetric with respect to a sign inversion operation here, i.e., flipping the sign of all spins results
in a state with equal p(x). Therefore, when BRAIN and MCMC recover one of the two likely states,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

they automatically recover the other likely state as well, via a sign inversion. The noiseless versions
of these benchmarks are shown in Appendix A.5.

Figure 1: (a) A noisy double-well energy landscape E(x), and associated probability p(x) of observ-
ing state x. (b) The energy landscape E(x) and associated probability p(x) for a one-dimensional
six spin system. (c) Comparing BRAIN and MCMC to the ground truth p(x) for two different tem-
peratures. We find that both MCMC and brain perform adequately at high temperature but MCMC
performs worse at low temperatures (d) Comparing BRAIN and MCMC to the ground truth at a
single temperature, where we find both algorithms to be equally adequate at representing p(x).

4.2 EVALUATING BRAIN ON HIGH-DIMENSIONAL ANALOG ISING NETWORKS

4.2.1 NOISY CURIE-WEISS ISING HAMILTONIAN

We first evaluate BRAIN using the Curie-Weiss Hamiltonian, a canonical Hamiltonian for under-
standing collective magnetic phenomena and phase transitions Kochmański et al. (2013). The Curie-
Weiss Hamiltonian is given by:H = − 1

2N

∑
i̸=j Jijσiσj where σi, σj , N, and Jij(= 1) represents

spin i, spin j, total number of spins, and the spin-spin coupling strength, respectively. This mean-
field model exhibits a well-characterized second-order phase transition at the critical temperature
Tc ≈ J , making it ideal for algorithmic benchmarking. Figure 2(a) illustrates the all-to-all coupled
network topology of the Curie-Weiss system, where every spin interacts with every other spin re-
gardless of spatial distance. Such a configuration creates a homogeneous interaction landscape that
eliminates geometric frustration effects.

Noise Resilience in tracking Phase Transitions: Under noisy conditions, the temperature-
dependent magnetization profiles (Figures 2(b-c) reveal a fundamental advantage of using BRAIN
over MCMC, where we see that MCMC fails catastrophically, while BRAIN shows remarkable
noise resilience. In the noiseless case, see Appendix A.5, both algorithms accurately capture the
thermodynamic landscape and achieve high fidelity to converge to theoretical ground state magne-
tization |M | = 1. Figure 2(b) shows that even with minimal (1%) noise, MCMC achieves only
|M | = 0.76 instead of the theoretical |M | = 1 at low temperatures. This failure stems from the
breakdown of the Metropolis acceptance criterion when measurement noise approaches or exceeds
energy differences between competing configurations. In such condition, the acceptance probabil-
ity becomes essentially random, violating the detailed balance condition necessary for Boltzmann
sampling Metropolis et al. (1953); Hastings (1970). In stark contrast, Figure 2(c) shows BRAIN’s
remarkable noise resilience, maintaining accurate identification of Tc and achieves near-optimal
magnetization even with 9% noise - a performance level unprecedented for optimization algorithms
operating under such severe measurement uncertainty.
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Figure 2: (a) All-to-all coupled Ising network representing the Curie-Weiss Hamiltonian where
every spin on the network is coupled every other spin independent of the distance between the spins.
Temperature-dependent magnetization profile for (b) MCMC and (c) BRAIN under various noise
levels. The inset in (b) and (c) represents the ground-state magnetization of the spin state at T = 0.33
with 3% noise. (d) Convergence dynamics of MCMC and BRAIN at at T=0.33 under 3% noise,
shown in terms of the number of energy evaluations required to reach optimal solutions. (e) Plot
tracking the increase in the minimum number of samples needed for BRAIN to maintain the fidelity
of the solution as the %noise increases in the analog Ising machine. (f) Scalability analysis across
system sizes (N) ranging from 1,024 to 65,536 spins. The left axis displays the number of energy
evaluations at T=0.33 under both noiseless and 3% noise conditions, while the right axis shows the
corresponding magnetization values.

The |M |−T profile generated using MCMC and BRAIN reveal that noise has the most pronounced
impact at low temperatures, where both algorithms struggle to reach ground state configurations,
resulting in reduced magnetization accuracy. Under realistic 3% noise conditions, representative
of current photonic hardware, BRAIN achieves |M | = 0.98 compared to MCMC’s |M | = 0.51,
representing 97% versus 51% fidelity approaching the theoretical optimum. Corresponding spin
states (green and yellow represents spin up and spin down states respectively, where the ground
state solution should be all green or all yellow) at low temperature (T=0.33) are given as insets of
Figure 2(b, c). In the absence of noise, both MCMC and BRAIN achieve magnetization values
close to unity. However, MCMC’s performance deteriorates sharply under noise, exhibiting a 75%
fidelity loss in magnetization at 20% noise. Additionally, even advanced Monte Carlo methods, such
as parallel tempering, perform poorly under noisy conditions (Appendix A.10). In contrast, BRAIN
maintains robustness with only 13% degradation under the same conditions, see Appendix A.9.

Figure 2(d) quantitatively compares convergence behavior under realistic 3% noise conditions, re-
vealing a critical computational advantage of BRAIN’s distribution learning approach. BRAIN
reaches optimal solutions within 105 energy evaluations, while MCMC remains trapped in subop-
timal states even after 5 × 106 evaluations with 36× more energy evaluations. This comparison
uses energy evaluations as the fundamental computational metric, which is particularly relevant for
analog Ising systems where each energy measurement represents the rate-limiting hardware opera-
tion. We quantify the computational advantage of BRAIN over MCMC in Table 1 as a function of
increasing noise in the energy evaluations.

Scalability and Noise Tolerance Trade-offs: Figure 2(e) reveals a critical insight into BRAIN’s
adaptive sampling strategy: as noise levels increase, the algorithm increases the number of sam-
ples per batch to maintain solution fidelity. We observe a quadratic dependence on the num-
ber of additional samples required by BRAIN to maintain high-fidelity solution as % Gaussian

7
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noise (ϵ) increases. Specifically we fit the second-order polynomial y = aϵ2 + bϵ + c where
a = 339.9, b = 416.7,& c = 1190.5. At 1% noise, BRAIN requires approximately 1.5× more
energy evaluations compared to noiseless conditions. This requirement grows to 2× at 3% noise
and 3× at 6% noise, see Appendix A.6. This behavior reflects the fundamental statistical require-
ment: higher noise demands more samples to achieve equivalent signal-to-noise ratios in gradient
estimates, following our theoretical analysis.

The scalability analysis (Figures 2(f)) demonstrates BRAIN’s favorable scaling properties across
system sizes from 32×32 to 256×256 (65,536 spins) while revealing important trade-offs between
system size, noise tolerance, and computational requirements. Under noiseless conditions, con-
verged magnetization remains constant across all system sizes, indicating dimension-independent
performance quality. However, under 3% noise, some degradation occurs with increasing system
size, with magnetization dropping to 0.85 for the largest system—representing a 15% deviation
from theoretical optimum while maintaining unprecedented performance at these scales under noisy
conditions. The computational scaling across system size exhibits: 63.6N0.94 for noiseless systems
and 0.2N1.55 for noisy systems. The noise-induced overhead increases systematically with sys-
tem size—from 25% additional evaluations at 1,024 spins to 100% at 65,536 spins—reflecting the
fundamental challenge of signal discrimination in high-dimensional noisy landscapes. This scaling
analysis reveals BRAIN’s practical advantage for analog Ising machines: while noise increases com-
putational requirements, the algorithm’s inherent parallelizability on GPUs can offset these costs
through simultaneous evaluation of hundreds or thousands of configurations, an impossibility for
sequential MCMC approaches.

Table 1: Comparison of MCMC and BRAIN Methods on 1024 spin system
Fidelity Gain Time to reach MCMC solution Acceleration

Noise MCMC BRAIN BRAIN/MCMC MCMC BRAIN MCMC/BRAIN
3% 51% 98% 1.9× 1.0× 106 5.2× 103 192×
6% 37% 98% 3.3× 1.1× 106 4.5× 103 244×
9% 29% 98% 3.9× 1.0× 106 3.5× 103 285×

12% 27% 98% 4.5× 0.9× 106 2.4× 103 408×

4.2.2 LENZ–ISING MODEL: GENERALIZATION BEYOND MEAN-FIELD ISING NETWORKS

In order to demonstrate the agnostic nature of BRAIN, we evaluate performance on the 2D nearest-
neighbor Ising model - a system with local interactions that serves as a benchmark for NP(non
deterministic polynomial time)-hard combinatorial optimization problems where the energy of the
spin-state is given by H = −J

∑
i,j∈N(i) σiσj .

Figure 3: (a) Schematic representing a 2D square array of spins emulating the classic Ising Hamil-
tonian with nearest-neighbor interactions (arrows). Temperature-dependent magnetization for the
2D nearest-neighbor Ising model, comparing MCMC (b) and BRAIN (c) under increasing noise for
energy evaluations.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3(a) confirms excellent agreement between BRAIN and MCMC under noiseless conditions,
with both methods accurately capturing the Tc ≈ 2.2 predicted by Onsager’s exact solution Aharoni
(2000). This validates BRAIN’s correct reproduction of phase transition behavior in systems with
local spatial correlations maintaining high-fidelity. Under noisy conditions, the algorithms again
show divergent behavior. Figure 3(b) reveals MCMC’s complete breakdown even at 1% noise, trap-
ping the system in a fully disordered state (M ≈ 0) across all temperatures - despite strong ordering
expected at low T. The noise renders the Metropolis acceptance criterion essentially random, reduc-
ing sophisticated statistical mechanical sampling to random walk behavior. Figure 3(c) demonstrates
BRAIN’s resilience across noise levels from 0% to 6%. At all noise levels, the algorithm maintains
the characteristic sigmoid magnetization-temperature curve and successfully identifies phase tran-
sitions. However, a systematic and physically meaningful trend emerges: the apparent Tc shifts to
higher values with increasing noise level at the rate of ∂Tc/∂ϵ ≈ 8.48J . This upward shift re-
flects noise acting as an additional source of disorder competing with thermal fluctuations, requiring
stronger thermal driving to achieve equivalent magnetic correlation—analogous to quenched disor-
der effects in spin glassesAizenman & Contucci (1998).

5 DISCUSSION AND OUTLOOK

BRAIN introduces a useful approach for optimization on analog hardware by reformulating the
problem from noisy state sampling to robust distribution learning. Its core strength lies in its abil-
ity to handle noisy, non-differentiable, oracle evaluations—a good match for the characteristics of
physical computing systems where energy landscapes are measured, not calculated analytically. The
most notable impact is BRAIN’s unprecedented performance with noise. Unlike MCMC, which fails
under even low noise, BRAIN’s performance degrades more slowly, and its relative advantage grows
with the noise level. With 3% noise, BRAIN achieves 98% fidelity while MCMC only reaches 51%,
and it finds the MCMC-level solution 192 times faster. This resilience makes it a practical solution
for emerging analog hardware.

While BRAIN demonstrates several advantages over conventional MCMC, in terms of fidelity, ac-
celeration, and resilience to noise, the current implementation has a few limitations. First, the choice
of a fully-factorized Bernoulli distribution for the state generator qθ(x) assumes spin independence
and may not fully capture the long-range correlations present in the Boltzmann distributions of more
complex Hamiltonian. This choice was made in part to explore simple models, and let the REIN-
FORCE learning process, driven by an energy function that rewards correlations, drive the model
to produce them. REINFORCE drives the set of independent local magnetization (mj) to converge
to states with highly correlated spin configurations, ensuring that state generator does not bias the
learning algorithm. Future work could explore more expressive models such as normalizing flows,
or graph neural networks, to generate spatially correlated spin-states at the cost of increased com-
putational complexity. Second, our analysis is confined to a multiplicative Gaussian noise, which
is representative of most hardware but may not encompass all noise sources in different analog
systems. Real-world devices can exhibit non-Gaussian noise or systematic biases, or temporally
correlated noise which are not explored here. Finally, the algorithm’s performance relies on suffi-
cient sampling to ensure the convergence and stability of policy gradient estimates. As shown in
the Appendix A.6, too few samples can lead to suboptimal solutions, creating a practical trade-off
between the acceleration and the fidelity of the learned distribution.

We demonstrated the generalization and scalability of BRAIN across multiple problems of increas-
ing complexity in energy landscapes. Its effectiveness on both fully-connected (Curie-Weiss) and
locally-connected (2D nearest-neighbor) Ising models demonstrates its model-agnostic nature. The
favorable N1.55 scaling with noisy evaluations up to 65,536 spins positions BRAIN as a viable tool
for tackling large-scale, combinatorial optimization problems on next-generation hardware. Look-
ing ahead, the BRAIN framework opens several promising research avenues. Extending the algo-
rithm beyond classical Hamiltonian to quantum systems could enable novel methods for variational
quantum algorithms. A particularly impactful application of BRAIN lies in hardware-in-the-loop
co-design, where the learning algorithm adapts not to a simulated noise model but to the unique,
real-time characteristics of a specific physical device. By embracing hardware imperfections, this
approach may help realize the full potential of large-scale analog systems for both fundamental
scientific discovery and complex optimization challenges.
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A APPENDIX

A.1 GRADIENT EXPRESSION FOR THE BERNOULLI DISTRIBUTION

When qθ(x) is the composition of independent Bernoulli distributions per spin, we can write:

qθ(x) =

N2∏
j=1

qθ(xj), qθ(xj) = m
1+xj

2
j (1−mj)

1−xj
2 , mj ∈ [0, 1].

Substituting this choice of qθ(x) into our KL-based loss, we have:

L(θ) = −H(qθ(x)) + β Eqθ [E(x)]

= −
∑
x

(∏
j

qθj (xj)
)
log
(∏

j

qθj (xj)
)
+ β Eqθ [E(x)]

=
∑
j

[
mj logmj + (1−mj) log(1−mj)

]
+ β Eqθ [E(x)]. (7)

Given this loss function, we can efficiently learn θ using policy-gradient reinforcement learning or
REINFORCE Williams (1992). This approach is particularly useful when E(x) is non-differentiable
or noisy, as in measurements from an analog Ising machine, where backpropagation is not applica-
ble.

For this choice, the gradient of the loss with respect to each mj can be computed analytically as:

∇mj
L = Eqθ

[
βE(x)

xj − (2mj − 1)

2mj(1−mj)

]
+ log

mj

1−mj
. (8)

A.2 REDUCING THE VARIANCE IN THE GRADIENTS BY SUBTRACTING A BASELINE

Theorem 1 (Reducing the variance in gradients with noise by subtracting a baseline):

Let the gradient of the loss with respect to the parameters θ be defined by g(s)(θ), as a function of
the number of samples s in a batch. Following the main manuscript, we have:

g(s)(θ) =
1

s

s∑
i=1

[
βẼ(xi)∇θ log qθ(xi)−∇θH(qθ)

]
, xi ∼ qθ(x),

where Ẽ(xi) = E(xi)(1 + ηi) includes multiplicative noise ηi with Var[ηi] = σ2. Define the
baseline b = 1

s

∑s
j=1 Ẽ(xj) and the corresponding baseline-subtracted gradient

g(s,b)(θ) =
1

s

s∑
i=1

[
β(Ẽ(xi)− b)∇θ log qθ(xi)−∇θH(qθ)

]
.

Then the baseline-subtracted gradient has strictly smaller variance:

Var[g(s,b)(θ)] < Var[g(s)(θ)].

Proof: We begin by analyzing g(s)(θ).

g(s)(θ) =
1

s

s∑
i=1

[
βẼ(xi)∇θ log qθ(xi)−∇θH(qθ)

]
, xi ∼ qθ(x)

Under the assumption of multiplicative noise, one can write:

g(s)(θ) =
1

s

s∑
i=1

βE(xi)∇θ log(qθ(xi)) +
1

s

s∑
i=1

βηiE(xi)∇θ log(qθ(xi))−
1

s

s∑
i=1

∇θH(qθ)

We have two sources of variance in this gradient, limited sampling s, and noise per sample ηi, which
are both independent. Dropping the deterministic entropy term, we have

Var[g(s)(θ)] = Var[

s∑
i=1

β

s
E(xi)∇θ log(qθ(xi))] + Var[

s∑
i=1

β

s
ηiE(xi)∇θ log(qθ(xi))]

12
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For the variance arising from sampling, we have

Var[

s∑
i=1

β

s
E(xi)∇θ log(qθ(xi))] =

β2

s
Var[E(x)∇θ log(qθ(x))]

For the variance arising from noise, we have

Var[

s∑
i=1

β

s
ηiE(xi)∇θ log(qθ(xi))] =

β2σ2

s2

s∑
i=1

E(xi)
2(∇θ log qθ(xi))

2

where we use Var[ηi] = σ, and that the noise for each sample i is independent. Putting them
together, we have:

Var[g(s)(θ)] =
β2

s
Var[E(x)∇θ log(qθ(x))] +

β2σ2

s2

s∑
i=1

E(xi)
2(∇θ log qθ(xi))

2

This variance in the gradients g(s)(θ), can be reduced by using a baseline correction [see ref 25 of
prl]. Let’s begin by writing the gradient with the baseline

g(s,b)(θ) =
1

s

s∑
i=1

[
β(Ẽ(xi)− b)∇θ log qθ(xi)−∇θH(qθ)

]
where b = 1

s

∑s
j=1 Ẽ(xj). Once again assuming multiplicative noise, we have:

g(s,b)(θ) =
1

s

s∑
i=1

β(E(xi)− Ē)∇θ log qθ(xi)

+
1

s

s∑
i=1

β
(
ηiE(xi)−

1

s

s∑
j=1

ηjE(xj)
)
∇θ log qθ(xi)−

1

s

s∑
i=1

∇θH(qθ)

where Ē = 1
s

∑s
j=1 E(xj). Separating the variance arising from sampling, the variance from noise,

and dropping the entropy term we have:

Var[g(s,b)(θ)] = Var
[β
s

s∑
i=1

(E(xi)− Ē)∇θ log qθ(xi)
]

+Var
[β
s

s∑
i=1

(
ηiE(xi)−

1

s

s∑
j=1

ηjE(xj)
)
∇θ log qθ(xi)

]
.

For the variance arising from the sampling, we have (analogous to before):

Var[

s∑
i=1

β

s
(E(xi)− Ē)∇θ log(qθ(xi))] =

β2

s
Var[(E(x)− Ē)∇θ log(qθ(x))]

To analyze the variance arising from noise, we introduce ai =
β
s∇θ log(qθ(xi)), δi = ηiE(xi) −

1
s

∑s
j=1 ηjE(xj), such that Σiδi = 0.

Varnoise[g
(s,b)(θ)] = Var[

s∑
i=1

aiδi] =

s∑
i=1

a2i Var[δi] +
∑
i̸=j

aiaj Cov[δi, δj ]

One can then show that the variance is:

Var[δi] = Var
[
ηiE(xi)−

1

s

s∑
j=1

ηjE(xj)
]
= σ2E(xi)

2(1− 2

s
) +

σ2

s2

s∑
k=1

E(xk)
2

and the covariance is:

Cov[δi, δj ] = −
σ2

s
(E(xi)

2 + E(xj)
2) +

σ2

s2

s∑
k=1

E(xk)
2
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Putting it all together, we have:

Var[g(s,b)(θ)] =
β2

s
Var[(E(x)− Ē)∇θ log qθ(x)]

+

s∑
i=1

a2i

(
σ2E(xi)

2
(
1− 2

s

)
+

σ2

s2

s∑
k=1

E(xk)
2

)

+
∑
i̸=j

aiaj

(
− σ2

s
(E(xi)

2 + E(xj)
2) +

σ2

s2

s∑
k=1

E(xk)
2

)

The reduction in variance is given by Var[g(s)(θ)]−Var[g(s,b)(θ)]. Since reducing the mean Ē from
E(x) reduces the variance, we know that the variance arising from the sampling is reduced when
subtracting a baseline (although the reduction can be marginal for large s).

We now focus on the reduction in variance due to noise, where

Varnoise[g
(s)(θ)]−Varnoise[g(s,b)(θ)] =

β2σ2

s2

s∑
i=1

a2iE(xi)
2−

s∑
i=1

a2i Var[δi]−
∑
i̸=j

aiaj Cov[δi, δj ]

plugging in expressions from above, and collecting terms:

Varnoise[g
(s)(θ)]−Varnoise[g

(s,b)(θ)] =

s∑
i=1

a2i σ
2

(
2

s
E(xi)

2 − 1

s2

s∑
k=1

E(xk)
2

)

− 2σ2

s

s∑
i=1

aiE(xi)
2
∑
j ̸=i

aj −
σ2

s2

s∑
k=1

E(xk)
2
∑
i̸=j

aiaj

Simplifying this further results in:

Varnoise[g
(s)(θ)]−Varnoise[g

(s,b)(θ)] =
2σ2

s

s∑
i=1

(∇θ log qθ(xi))
2E(xi)

2 > 0

An order of magnitude estimate for an analog Ising machine and a Bernoulli distribution can be
obtained by establishing that E ∼ N and ∇θ log qθ(xi)

2 ∼ m2
j ∼ O(1).

Var[g(s)(θ)] ∼ O
(β2N2

s
+

β2σ2N2

s

)
Var[g(s,b)(θ)] ∼ O

(β2N2

s
+

β2σ2N2

s2

)
However, if the spins are partially correlated due to the Hamiltonian, Var[E] could change from
∼ N2 to ∼ Nx, making

Var[g(s)(θ)] ∼ O
(β2Nx

s
+

β2σ2Nx

s

)
Var[g(s,b)(θ)] ∼ O

(β2Nx

s
+

β2σ2Nx

s2

)
A.3 ESTABLISHING ORDER OF CONVERGENCE TIMES FOR BRAIN COMPARED TO MCMC

Theorem 2: The convergence time for BRAIN under noisy evaluations is τBRAIN ∼ O
(

β2N2

sϵ2 +

β2σ2N2

s2ϵ2

)
while the time to converge to a solution for MCMC, at low temperatures, is τMCMC ∼

O
(

N
|β−1|e

|β−1|2N
)

Proof: A classic result from the convergence of stochastic gradient descent algorithms Garrigos &
Gower (2023) states that the number of steps τ needed to reach an accuracy ϵ is given by

τ ∼ O(
Var[g]

ϵ2
)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where we assume a constant, small learning rate. Plugging in the order of magnitude estimates from
Theorem 1, we get a general estimate as:

τBRAIN ∼ O
(β2Nx

sϵ2
+

β2σ2Nx

s2ϵ2

)
where we see the utility of subtracting a baseline from the gradient, which is to reduce the affect of
noisy energy measurements on the convergence time of BRAIN.

In contrast, for MCMC, a well known result Ding et al. (2009) is that the mixing time of the chain,
for the analog Ising machine Hamiltonian considered in this work, is

τMCMC ∼ O
( N

|β − 1|
e|β−1|2N

)
at low temperatures. While higher temperature offer O(N logN) or even O(N1.5) scaling, we are
interested in capturing metastable states at all temperatures with BRAIN.

A.4 VALIDATING BRAIN ON NOISELESS SYSTEMS

Figure 4: (a) A noiseless double-well energy landscape E(x), and associated probability p(x)
of observing state x. (b) The energy landscape E(x) and associated probability p(x) for a one-
dimensional six spin system. (c-d) Comparing BRAIN and MCMC to the ground truth p(x) for two
different temperatures.

Analogous to Fig. 1, Fig. 4 demonstrates the performance of BRAIN and MCMC on the test cases
discussed in the main manuscript. We find that both BRAIN and MCMC are adequate at capturing
p(x) in the double-well energy case and the one-dimensional six-spin case.

A.5 VALIDATING BRAIN ON NOISELESS ISING MACHINES

Figure 5(a) demonstrates demonstrates the fundamental validation of BRAIN against the established
Monte Carlo Markov Chain (MCMC) method for the Curie-Weiss model on a 32×32 lattice under
noiseless conditions. Both algorithms exhibit identical temperature-dependent magnetization pro-
files, accurately capturing the second-order phase transition at the critical temperature Tcsc ≈ 0.87.
The sigmoid-shaped transition curve confirms proper thermodynamic behavior, with both methods
achieving complete ferromagnetic ordering (|M | = 1) at low temperatures and complete disorder
(M ≈ 0) at high temperatures. The excellent quantitative agreement across the entire temperature
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range validates that BRAIN correctly implements the underlying statistical mechanics, reproduc-
ing the Boltzmann distribution with the same fidelity as the gold-standard Monte Carlo (MCMC)
method (Figure 5(a)). This agreement is particularly significant because it demonstrates that the
policy gradient approach maintains thermodynamic consistency despite using a fundamentally dif-
ferent optimization paradigm. The qualitative similarity between MCMC and BRAIN configura-
tions at each temperature point confirms that BRAIN samples from the same statistical ensemble
as MCMC (Figure 5(b) and 5(c)), demonstrating proper ergodic behavior and avoiding systematic
biases that could lead to artificial ordering or disorder. This configurational equivalence is crucial
for applications requiring accurate representation of the full Boltzmann distribution, not just ground
state optimization.

Figure 5: (a) Temperature-dependent magnetization comparison between MCMC and BRAIN for
the Curie-Weiss model on a 32×32 lattice. Representative spin configurations at three temperatures:
T > Tc (disordered), T ≈ Tc (critical fluctuations), and T < Tc (ordered) for (b) MCMC and (c)
BRAIN.

A.6 OPTIMIZING SAMPLE SIZE

Figure 6 investigates the relationship between sample size and optimality for the Curie-Weiss model
at low temperature (T = 0.33) on a 32×32 system. For very small sample sizes (n ¡ 1,000), the algo-
rithm shows suboptimal convergence, achieving magnetizations significantly below the theoretical
optimum of |M | = 1. This poor performance reflects insufficient sampling for accurate gradient es-
timation in the BRAIN algorithm - the policy gradient estimates become too noisy to drive effective
learning when based on too few samples. Then with increase in sample size, magnetization reaches
the optimal value. For sample sizes, n greater than 1000, the curve plateaus near the theoretical
optimum, indicating convergence to the true ground state.

A.7 CHARACTERIZING THE NOISE IN THE ANALOG ISING MACHINE

Figure 7(a) presents direct experimental evidence of energy measurement fluctuations for a fixed
spin configuration in a spatial photonic Ising machine (SPIM). Figure 7(b) shows the corresponding
distribution of measured energies across multiple measurements, revealing the Gaussian noise, char-
acteristics inherent to photonic hardware. The bell-shaped distribution confirms that measurement
noise follows a normal distribution. The width of the distribution provides direct measurement of
the noise standard deviation σ, which appears consistent with the 3% relative noise level used in our
model.

A.8 COMPREHENSIVE NOISE RESILIENCE ANALYSIS

Figure 8 provides a systematic investigation of BRAIN performance across an extreme range of
noise levels, from perfect (noiseless) conditions to severe 40% noise that would render most algo-
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Figure 6: Effect of number of samples on the optimality of Curie-Weiss solution at T = 0.33 for a
32x32 system.

Figure 7: (a) Fluctuation in energy observed for a fixed spin configuration using the Spatial Photonic
Ising Machine (SPIM) across 500 experimental trials. (b) Histogram illustrating the distribution of
measured energy values.

rithms completely ineffective. This comprehensive analysis, conducted within the framework of
the Curie-Weiss Hamiltonian, reveals the remarkable robustness of the BRAIN under conditions
that far exceed realistic hardware specifications. At low noise levels (0-9%), the algorithm main-
tains near-perfect performance, with magnetization-temperature curves virtually indistinguishable
from the noiseless case. The critical temperature remains accurately identified, and the transition
sharpness is preserved, indicating that moderate noise levels pose minimal challenge to the algo-
rithm. Even under severe noise conditions (10-40%), the algorithm continues to exhibit recognizable
phase transition behavior, albeit with increased transition broadening and reduced low-temperature
magnetization. The persistence of ordered phases under such extreme conditions demonstrates the
fundamental robustness of BRAIN.

A.9 COMPARATIVE ALGORITHM PERFORMANCE UNDER NOISE

Figure 9 provides a direct quantitative comparison between MCMC and BRAIN as a function of
noise level in Curie-Weiss Hamiltonian at low temperature (T = 0.33). The contrasting behavior of
the two algorithms reveals fundamental differences in their noise handling capabilities. The MCMC
curve shows catastrophic degradation even at minimal noise levels. At just 1% noise, the magnetiza-
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Figure 8: (a) Temperature-dependent magnetization profile for BRAIN under various noise levels
ranging from 0 to 40% for a 32x32 system

tion drops quickly from the theoretical optimum of M = 1.0 to approximately M = 0.5, representing a
50% loss in optimal solution. Further increases in noise level cause continued degradation, with the
algorithm essentially failing to distinguish between random and ordered configurations at higher
noise levels. This failure stems from the fundamental mechanics of the Metropolis acceptance
criterion, which relies on accurate energy difference calculations (∆E). When noise magnitude
approaches or exceeds the energy differences between competing configurations, the acceptance
probability becomes essentially randomized, violating the detailed balance condition necessary for
proper Boltzmann sampling. In stark contrast, the BRAIN maintains robust performance across the

Figure 9: Comparing converged magnetization at low temperature (T=0.33) as a function of noise
for MCMC and BRAIN.

entire noise range. Even at 20% noise—a level that would be considered extreme in any practi-
cal implementation—BRAIN achieves magnetization values above 0.8, representing less than 20%
degradation from the optimal solution. The shallow slope of BRAIN’s performance curve indicates
that the algorithm’s noise resilience scales gracefully with noise level, rather than exhibiting the
abrupt failure characteristic of MCMC methods. This behavior reflects the algorithm’s ability to ag-
gregate information across multiple samples and adapt to noise-corrupted energy landscapes through
gradient-based learning.

A.10 PARALLEL TEMPERING FAILS WITH NOISE ON THE CURIE-WEISS HAMILTONIAN

We implemented parallel tempering Earl & Deem (2005) as an advanced Monte Carlo baseline to
investigate whether sophisticated sampling enhancements could overcome noise limitations in com-
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puting the Curie-Weiss Hamiltonian. The algorithm employed 30 replicas spanning temperatures
from 0.33 to 2, with replica exchange attempts every 4,000 Monte Carlo steps over 400,000 total time
steps per replica. While the method performed well under noiseless conditions, achieving efficient
sampling across the temperature range with successful configuration exchanges between adjacent
replicas (Figure 10), it failed completely under 3% noise conditions. All replicas remained trapped
in disordered states (M ≈ 0) despite the extended simulation time and frequent swap opportuni-
ties, with successful exchange events becoming extremely rare due to corrupted energy evaluations.
This systematic failure across multiple temperature levels and extended sampling demonstrates that
the fundamental limitation is not specific to simple Monte Carlo, but extends to advanced variants
that still rely on single-measurement decision criteria incompatible with noisy energy evaluations.
The contrast between noiseless success and noisy failure (Figure 10) confirms that measurement
uncertainty, rather than algorithmic sophistication, represents the critical bottleneck for traditional
statistical mechanical approaches on analog computing platforms.

Figure 10: Magnetization as a function of temperature for the parallel tempering algorithm, com-
paring performance under noiseless (0% noise) and noisy (3%) energy evaluations.
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