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ABSTRACT

Vision-Language Large Models (VLLMs) faces significant efficiency challenges
when processing high-resolution inputs. The quadratic complexity in attention
and autoregressive generation, as well as the constantly growing key value (KV)
cache size, severely hinder the prefilling and decoding stages. Recent efforts have
attempted to compress KV cache by identifying and pruning KV cache of less
important tokens, but these methods typically rely on attention scores to estimate
token importance, making them incompatible with efficient attention mechanisms
such as FlashAttention and Sparse Attention, which do not explicitly compute
attention matrices. Moreover, existing methods overlook how sparse attention,
while accelerating the prefilling stage, alters the information structure of the KV
cache—thereby compromising the effectiveness of downstream KV cache com-
pression strategies. To address this issue, we propose PureKV, a plug-and-play
framework for joint optimization of sparse attention and KV cache compression.
We first introduce a KV cache compression strategy that is fully compatible with
efficient attention accelerators. Our method utilizes lower layer attention scores to
estimate the importance of high layers’ KV cache, enabling active pruning without
compromising accuracy. In addition, we have designed a Spatial-Temporal Sparse
Attention (ST-SpAttn) module specifically tailored for video KV cache compres-
sion algorithms. This module combines spatial and temporal attention sparsity
to improve the compression efficiency of KV cache optimization algorithms by
purifying spatial noise and temporal redundancy in KV cache. At the same time,
ST-SpAttn also accelerated the prefilling stage of VLLMs. Extensive experiments
on VLLMs (VideoLLaMA2, Qwen2.5-VL) have shown that PureKV achieves 5.0
× KV cache compression and 3.16 × prefill acceleration, with negligible quality
degradation. By seamlessly integrating with sparse attention optimization, our
work unlocks scalable deployments for real-time multimodal applications.

1 INTRODUCTION

Vision-Language Large Models (VLLMs) (Liu et al., 2023; 2024a; Li et al., 2024a) have emerged
as a cornerstone in multimodal artificial intelligence, enabling sophisticated understanding and rea-
soning over both visual and textual modalities. These models have demonstrated remarkable per-
formance across a wide range of applications, including video understanding, visual question an-
swering, and multimodal content generation. However, the increasing demand for high-resolution
visual inputs has led to a dramatic surge in the number of visual tokens processed by VLLMs, posing
severe challenges in terms of memory footprint and computational efficiency during inference.

The primary bottleneck for efficient execution of VLLMs stems from the autoregressive nature of
large language models (LLMs) (Achiam et al., 2023; Alexandre et al., 2023; Meta, 2024), which
leads to a continuous increase in KV cache size and a quadratic growth in computational complexity
during the prefilling and decoding stages. The KV cache, essential for maintaining past key-value
pairs to accelerate autoregressive generation (Li et al., 2024b), becomes a critical resource bottle-
neck, especially when handling long visual sequences.
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(a) KV cache compression based on attention score (b) PureKV: Cross-Layer Importance Estimation (c) Dense Attention (d) ST-SpAttn
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Figure 1: (a) The traditional KV cache compression method based on attention score calculates
attention weights at each layer to evaluate tokens importance, which is not compatible with efficient
attention mechanisms such as FlashAttention and Sparse Attention. (b) PureKV utilizes lower layer
attention scores to identify critical KV cache in high layers, and is compatible with efficient attention
mechanisms in the high layers, accelerating the prefilling stage. (c) Dense Attention leads to the
gradual confusion of important and unimportant information at high layer. (d) ST-SpAttn generates
cleaner and more structured KV, reducing noise while preserving key spatiotemporal dependencies.

To alleviate this issue, recent efforts (Tang et al.; Ge et al., 2023) have focused on compress-
ing the KV cache by identifying and pruning less important tokens. While promising, these ap-
proaches (Zhang et al., 2023; Wan et al., 2024; Li et al., 2024e) typically rely on attention scores
to estimate token importance — a strategy that inherently conflicts with modern efficient attention
mechanisms such as FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) and Sparse At-
tention (Xu et al., 2025). These mechanisms, designed to accelerate attention computation, do not
explicitly generate attention matrices, thereby rendering traditional attention-score-based pruning
incompatible. Moreover, these methods fail to account for how sparse attention alters the informa-
tion structure of the KV cache, which can affect the effectiveness of KV cache compression.

Recent works, such as StreamingLLM (Xiao et al., 2023) and window-based KV cache manage-
ment (Beltagy et al., 2020; Han et al., 2023; Zuo et al., 2025), propose to compress the KV cache by
retaining only the latest fixed length window or initial token, without this limitation. While effective
in reducing memory consumption and enabling compatibility with efficient attention implemen-
tations, these methods lack the ability to dynamically preserve semantically critical tokens, often
leading to the premature eviction of important information and consequent degradation in model
performance.

In this paper, we tackle the fundamental challenge of how to effectively identify and retain impor-
tant KV cache entries while remaining fully compatible with efficient attention mechanisms. In
addition, we recognize that sparse attention can alter the information structure of KV cache. There-
fore, we design a structured sparse pattern for video KV cache, which improves the effectiveness of
KV cache compression strategy. The ultimate goal is to reduce memory usage in VLLMs and speed
up the decoding stage while reducing the Time To First Token (TTFT) (Horton et al., 2024) in the
prefilling stage.

To this end, we propose PureKV, a plug-and-play, efficient KV cache compression strategy that
seamlessly integrates with modern attention accelerations. At the core of PureKV lies a lightweight
KV cache importance estimator that leverages lower layer attention scores to approximate the impor-
tance of tokens in high layers. Through statistical analysis, we show that lower layer attention
scores serve as a sufficient statistic for estimating high-layer token importance. This insight
allows us to decouple the KV cache compression strategy from the computation of attention scores
in high layers, thereby enabling full compatibility with efficient attention mechanisms.

In addition, as shown in Figure 1 (c), we find that dense attention (Vaswani et al., 2017) leads to
the gradual confusion of important and unimportant information at high layers. This entanglement
has a negative impact on the accuracy of high layer KV cache importance estimation. Therefore,
we introduce a novel Spatial-Temporal Sparse Attention (ST-SpAttn) mechanism tailored to the
inherent spatiotemporal redundancy in VLLMs. ST-SpAttn not only accelerates the prefill phase
by exploiting spatial and temporal attention sparsity patterns, but also performs KV cache purifica-
tion by suppressing background noise and redundant information across both spatial and temporal
dimensions. Specifically, for spatial sparsity, we retain attention links to the first frame and within
the current frame; for temporal sparsity, we preserve attention to the first frame and to the corre-
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sponding tokens in the previous frame. This dual-path design ensures that only the most salient and
temporally coherent tokens are preserved in the KV cache.

Our contributions are summarized as follows:

• We propose a lightweight, attention-score-free token importance estimator compatible with
efficient attention mechanisms, enabling effective KV cache pruning without sacrificing
generation quality.

• We design a Spatial-Temporal Sparse Attention mechanism that not only accelerates prefill
computation but also purifies the KV cache, enhancing the effectiveness of cache eviction
policies.

• We conduct extensive experiments on large-scale VLLMs, including VideoL-
LaMA2 (Cheng et al., 2024) and Qwen2.5-VL (Bai et al., 2025), demonstrating that
PureKV significantly reduces memory consumption and first-token latency while main-
taining competitive performance across various video understanding tasks.

Our work bridges the gap between KV cache compression and efficient attention computation in
VLLMs, offering a practical and scalable solution for real-world deployment of VLLMs under
resource-constrained environments.

2 RELATED WORK

VLLMs (Li et al., 2023; 2024d; Xu et al., 2024) have emerged as a cornerstone of multimodal
AI, unifying visual and linguistic modalities within a shared semantic space to enable cross-
modal understanding and reasoning. Recent advanced models include LLaVA (Li et al., 2024a),
which pioneers a lightweight ”vision-as-language” interface via visual token projection; VideoL-
LaMA2 (Cheng et al., 2024), which extends temporal modeling with spatiotemporal attention for
long-form video understanding; and Qwen2.5-VL (Bai et al., 2025), a scalable framework featuring
dynamic resolution adaptation, fine-grained spatial perception, and built-in visual agent capabili-
ties. These models exemplify the trend toward greater generality, higher input fidelity, and broader
functional integration. To address the growing computational demands of such models, efficient
inference techniques have become critical. Approaches include quantization (Abreu et al., 2025;
Tan et al., 2024), which reduces parameter precision with minimal accuracy loss; KV cache op-
timization (Kwon et al., 2023; Feng et al., 2024; Liu et al., 2024b; Ge et al., 2023), which im-
proves memory efficiency during autoregressive generation; and system-level innovations such as
FlashAttention-2 (Dao, 2023) and asynchronous scheduling in frameworks like vLLM (Kwon et al.,
2023), which significantly accelerate end-to-end throughput.

Autoregressive decoding in LLMs (Touvron et al., 2023) faces severe memory bottlenecks due to
the linear growth of the KV cache with sequence length (Shi et al., 2024; Feng et al., 2025), which
requires efficient KV cache management for long-context inference. Existing methods (Tu et al.,
2024; Wan et al., 2024) primarily fall into attention-score-based (He et al., 2024; Liu et al., 2024c)
pruning and window-based (Xiao et al., 2023) retention, each addressing memory overhead but with
different trade-offs. Traditional pruning techniques like H2O (Zhang et al., 2023) and SnapKV (Li
et al., 2024e) dynamically evict KV cache by computing per-layer attention scores, yet their depen-
dency on full attention matrices renders them incompatible with hardware-optimized kernels such as
FlashAttention and Sparse Attention (Roy et al., 2021; Lou et al., 2024), diminishing their practical
utility. In contrast, StreamingLLM (Xiao et al., 2023) uses a fixed-length sliding window strategy,
retaining only initial ”attention sink” tokens and recent tokens, thereby avoiding score-calculation
and ensuring compatibility with modern accelerators. Despite reducing memory consumption and
enhancing system compatibility, these windowed approaches suffer from static retention policies
that indiscriminately evict tokens beyond the window, often discarding semantically critical infor-
mation. Hybrid solutions like adaptive budget allocation (Feng et al., 2024) attempt to dynamically
adjust compression per attention head, yet introduce latency overheads that negate efficiency gains.
Consequently, the compatibility of dynamic KV cache importance recognition with efficient atten-
tion mechanisms has not been resolved, which has prompted the proposal of PureKV.

Self-Attention (Vaswani et al., 2017), while foundational to Transformer success, suffer from
quadratic computational and memory complexity with respect to sequence length. Sparse Atten-
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Figure 2: Overview of our PureKV method. PureKV is a plug-and-play framework for KV cache
optimization, compatible with efficient attention mechanisms. PureKV introduces a lightweight
importance estimator that utilizes layer attention scores and the L2 norm of high V vectors to esti-
mate KV cache importance, avoiding explicit computation of high attention. By combining Spatial-
Temporal Sparse Attention, PureKV suppresses background noise and irrelevant visual interference,
eliminates redundancy in consecutive frames, and the resulting purified KV cache significantly im-
proves the accuracy and robustness of subsequent KV cache compression strategies.

tion (Tay et al., 2020; Yuan et al., 2025; Xi et al., 2025) addresses this bottleneck by selectively com-
puting attention scores over a subset of token pairs, thereby reducing complexity to sub-quadratic or
even linear scales. Recent innovations include fixed-pattern sparsity (e.g., sliding window in Long-
former (Beltagy et al., 2020), block-sparsity in Sparse Transformer (Child et al., 2019)), content-
aware approximations (e.g., LSH-based Reformer (Chen et al., 2020), clustering in Routing Trans-
former (Roy et al., 2021)), and kernelized methods (e.g., Linear Transformer (Wang et al., 2020)).
Hybrid approaches like BigBird (Zaheer et al., 2020) further combine local, random, and global
attention to theoretically preserve expressiveness. However, these methods predominantly focus on
optimizing training-time efficiency and long-context modeling capabilities. While they effectively
reduce FLOPs and memory footprints during forward passes, their implications for inference-time
optimizations—particularly the interaction with KV cache compression algorithms—remain largely
unexplored. No existing sparse attention scheme explicitly designs sparsity patterns to enhance or
synergize with dynamic KV cache pruning, quantization, or eviction strategies.

3 METHOD

3.1 LIGHTWEIGHT KV CACHE IMPORTANCE ESTIMATOR

Traditional attention-score-based KV cache compression methods rely on computing attention
weights at every layer to assess token importance, which inherently prevents compatibility with
highly optimized attention implementations such as FlashAttention and Sparse Attention——these
efficient kernels do not expose or compute explicit attention matrices during inference. To overcome
this limitation, we propose a lightweight KV cache importance estimator that can accurately estimate
KV cache importance while maintaining compatibility with state-of-the-art attention accelerators.
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We have demonstrated through experiments and statistical analysis that the lower layer attention
scores of VLLMs can serve as effective proxies for estimating the cache importance of high layer
KV cache. Inspired by this observation, our method, PureKV, computes attention scores only in
the lower layer and leverages them to estimate the importance of KV cache in subsequent layers,
thereby enabling the integration of efficient attention mechanisms in high layers.

Given an input sequence of length l, for lower layers, we retain a recent window of size w and
additionally retain the top h most important KV cache in non-recent segment. To estimate the
importance of KV cache, we calculate the attention score matrix:

Alow = softmax(
QKT

√
dk

), (1)

where Q denotes the query matrix of the input tokens, dk is the dimension of K. Most existing meth-
ods (Zhang et al., 2023; Li et al., 2024e) rely on accumulated attention scores to identify important
tokens. However, due to the lower-triangular structure of the attention matrix, such approaches in-
herently bias toward earlier tokens (He et al., 2024). As illustrated in Figure 2 (b), to mitigate this
bias, PureKV computes the cumulative attention score of tokens in the recent window with respect
to those in the non-recent segments:

Clow =

i<l∑
i=l−w

Ai,j , 0 ≤ j < l − w. (2)

Previous work mainly rely on attention based metrics to evaluate the importance of KV cache, ignor-
ing the impact of V vectors on output. As shown in Figure 3, the size of the V significantly affects
the output of the attention mechanism. To consider the influence of V, we weight the accumulated
attention scores based on the L2 norm of the corresponding V vector:

Slow = Clow ⊙
∥∥V low

0:l−w

∥∥ . (3)

where Slow denotes the final importance score for tokens in the non-recent segment. We retain the
recent w tokens (recent window) and select the top h most important tokens from the non-recent
segment based on Slow.

In high layers, we similarly retain a recent window of size w, as well as the top h most important KV
cache from non-recent segment. For high layers that adopt efficient attention mechanisms, PureKV
reuses the lower layer accumulated attention score Clow and calculates the L2 norm of V vector to
estimate KV cache importance:

Ŝhigh = Clow ⊙
∥∥∥V high

0:l−w

∥∥∥ . (4)

This cross-layer importance estimation enables accurate KV cache selection without computing
attention scores in high layers, thus preserving full compatibility with FlashAttention and other
high-performance attention backends.

3.2 SPATIAL-TEMPORAL SPARSE ATTENTION

Although previous sparse attention mechanisms accelerated the prefilling stage by only focusing on
a portion of the input elements during computation, they often alter the information structure of the
generated KV cache, potentially degrading the effectiveness of downstream KV cache selection and
compression. Existing KV cache pruning strategies fail to account for such structural modifications,
leading to suboptimal performance. Due to causal attention, the KV cache at position j in layer i
aggregates information from the first j + 1 tokens in layer i − 1, resulting in progressive mixing
of important and unimportant information. This entanglement adversely impacts the accuracy of
importance estimation in high layers.

To mitigate this issue, we propose Spatial-Temporal Sparse Attention (ST-SpAttn), designed to
purify the KV cache by disentangling informative signals from spatial and temporal noise. As
illustrated in Figure 2 (c), ST-SpAttn consists of two components—spatial and temporal spar-
sity—specifically tailored for video understanding tasks.

5
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Figure 4: Cross-Layer importance Estimation correlation analysis.
The experiment shows that the high layer KV cache importance es-
timation based on lower layer attention scores is significantly pos-
itively correlated with the true high layer KV cache importance.
(VideoLLaMA2 uses Group query attention, divides the heads into
4 groups, with each group sharing KV cache.)

For spatial purification, we employ spatial sparse attention by preserving only two types of interac-
tions: (1) attention between each token and the first frame (capturing long-range visual consistency),
and (2) intra-frame attention within the current frame (retaining local spatial context). This effec-
tively suppresses background noise and irrelevant visual distractions.

For temporal purification, we introduce temporal sparsity by retaining each token’s attention only
to its corresponding token in the previous frame, enhancing temporal coherence, while maintaining
connections to the first frame for global context anchoring. This reduces redundancy from highly
similar consecutive frames.

Overall, this dual path sparsity generates cleaner and more structured KV cache, reduces noise, ac-
celerates the prefilling stage of VLLMs, while preserving key spatiotemporal dependencies. The
resulting purified KV cache significantly improves the accuracy and robustness of subsequent com-
pression strategies.

3.3 STATISTICAL VALIDATION OF CROSS-LAYER IMPORTANCE ESTIMATION

To verify PureKV’s core hypothesis that KV cache importance in high layers can be effectively
estimated using lower layer attention score, we formalized the following hypothesis: the KV cache
importance ranking obtained by weighting lower layer cumulative attention scores with L2 norm of
high layer V is similar to the ranking obtained by weighting high layer cumulative attention scores
with L2 norm of high layer V. Specifically, our goal is to prove:

rank(Ŝhigh) ≈ rank(Shigh), (5)

Shigh = Chigh ⊙
∥∥∥V high

0:l−w

∥∥∥ , (6)

where rank(S) = {rs0 , rs1 , ...rsl−w−1
}, rsj denotes the rank of sj in sequence S.

To quantify the agreement between these two rankings, we employ Spearman’s rank correlation
coefficient (Sedgwick, 2014), which measures the monotonic relationship between two ranked vari-
ables:

ρ(Ŝhigh, Shigh) = 1−
6
∑n

j=0(rŝhigh
j

− rshigh
j

)2

n(n2 − 1)
, (7)

where n = l − w. The coefficient ρ ∈ [−1, 1], with values closer to 1 indicating strong rank
consistency.

We use the cumulative attention scores from the layer 1 to compute the estimated importance scores
Ŝhigh for high layers, and compute the Spearman rank correlation between Ŝhigh and the ground-
truth scores Shigh (computed using the respective layer’s own attention). As shown in Figure 4,
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Table 1: Performance of KV cache compression strategy based on Qwen2.5-VL-7B on MVBench.
The best results are highlighted in bold. The second result is highlighted with an underline.

AS AP UA OI OS AL ST SC CO CI Avg.

Full Cache 0.7215 0.6995 0.5559 0.7014 0.1674 0.5052 0.7249 0.2859 0.3145 0.4595 0.5136

20% Cache Budget

H2O 0.6919 0.6812 0.4202 0.7025 0.1851 0.4587 0.6873 0.2672 0.3151 0.2852 0.4695
SnapKV 0.6838 0.6933 0.4781 0.7153 0.1799 0.4595 0.7000 0.2924 0.2934 0.3124 0.4808
StreamingLLm 0.6665 0.7005 0.5056 0.7563 0.1867 0.4675 0.7519 0.2046 0.3216 0.3802 0.4941
FastV 0.7273 0.6973 0.5581 0.7127 0.1742 0.5111 0.7002 0.3095 0.3274 0.4366 0.5154
LOOK-M 0.0074 0.0126 0.1268 0.0187 0.0014 0.0948 0.0292 0.0267 0.0000 0.2929 0.0610
PureKV 0.7490 0.7142 0.5624 0.7956 0.1957 0.5562 0.7242 0.3488 0.3086 0.4749 0.5429

10% Cache Budget

H2O 0.6794 0.6715 0.3488 0.7145 0.1594 0.4751 0.5982 0.2005 0.2278 0.1586 0.4234
SnapKV 0.7041 0.6726 0.4180 0.7253 0.1869 0.4570 0.6854 0.2554 0.2421 0.1579 0.4505
StreamingLLm 0.6790 0.7001 0.4835 0.7645 0.2263 0.4689 0.7637 0.1915 0.2238 0.2996 0.4801
FastV 0.7210 0.6896 0.5826 0.7266 0.1979 0.5086 0.7093 0.2588 0.2558 0.4219 0.5072
LOOK-M 0.0097 0.0119 0.0722 0.0167 0.0014 0.0913 0.0268 0.0283 0.0000 0.1309 0.0389
PureKV 0.7399 0.7167 0.4999 0.7865 0.2281 0.6091 0.7902 0.3760 0.2847 0.3289 0.5360

across most layers, the Spearman correlation exceeds 0.4, and even in the highest layers, the majority
of correlations remain above 0.2. Furthermore, the correlations are statistically significant (p <

0.05) in most cases, indicating a significant positive rank agreement between Ŝhigh and Shigh.

These results provide strong empirical support for the validity of our cross-layer importance esti-
mation strategy: despite not computing attention in high layers, PureKV can reliably identify
important KV cache based on lower layer attention score and L2 norm of high layer V.

4 EXPERIMENTS

4.1 SETTING

MVBench (Li et al., 2024c) is a comprehensive multimodal video understanding benchmark that
covers 20 challenging video understanding tasks. We extracted 14 tasks from them to validate our
algorithm, namely: Action Sequence (AS), Action Prediction (AP), Unexpected Action (UA), Ob-
ject Interaction (OI), Object Shuffle (OS), Action Localization (AL), Scene Transition (ST), Action
Count (AC), State Change (SC), Object Existenc (OE), Moving Count (MC), Moving Attribute
(MA), Egocentric Navigation (EN), Counterfactual Inference (CI). We use ROUGE as the experi-
mental evaluation metric.

To evaluate PureKV, we conduct extensive experiments on two advanced VLLMs: VideoL-
LaMA2 (Cheng et al., 2024) and Qwen2.5-VL-7B (Bai et al., 2025). We compare against five
representative KV cache compression strategies: H2O (Zhang et al., 2023), SnapKV (Li et al.,
2024e), and StreamingLLM (Xiao et al., 2023), which are originally designed for text-based scenar-
ios, as well as FastV (Chen et al., 2024) and LOOK-M (Wan et al., 2024), tailored for visual tasks.
We conduct experiments on a NVIDIA A100 with 40GB memory.

4.2 MAIN EXPERIMENT RESULTS

We conducted a comprehensive evaluation of PureKV in video understanding scenarios. As shown
in Table 1 and 2, PureKV achieved efficient memory reduction while maintaining strong task perfor-
mance within budget constraints. Specifically, compared to full cache, PureKV reduces KV cache
memory usage by 80% with only a slight decrease in performance, demonstrating PureKV’s ability
to significantly reduce memory usage with minimal performance cost.

Moreover, PureKV outperforms other baseline methods in most video understanding tasks. Previous
methods typically relied solely on attention scores to evaluate KV cache importance, while ignoring
the impact of the V vector on the final output of the attention mechanism. This has led to biased
estimates of importance. In contrast, PureKV obtains a more accurate and robust importance score

7
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Table 2: Performance of KV cache compression strategy based on VideoLLaMA2 on MVBench.
The best results are highlighted in bold. The second result is highlighted with an underline.

AS AP UA AC SC OE MC MA EN CI Avg.

Full Cache 0.7676 0.6883 0.7851 0.5000 0.6869 0.6600 0.4750 0.6800 0.6117 0.7805 0.6635

20% Cache Budget

H2O 0.5947 0.5388 0.3204 0.3500 0.1752 0.1350 0.2426 0.0552 0.4381 0.2342 0.3084
SnapKV 0.7288 0.6375 0.5844 0.4846 0.4102 0.2919 0.2933 0.2673 0.4470 0.6660 0.4811
StreamingLLm 0.7588 0.6622 0.6916 0.4764 0.4409 0.3400 0.3104 0.3603 0.5053 0.7276 0.5274
FastV 0.7357 0.6667 0.617 0.4415 0.4488 0.3779 0.3322 0.3147 0.4201 0.7135 0.5068
PureKV 0.7588 0.6930 0.6975 0.4850 0.4751 0.7206 0.4650 0.5814 0.5875 0.7248 0.6189

10% Cache Budget

H2O 0.4015 0.4697 0.1406 0.3900 0.1224 0.1500 0.2852 0.0991 0.1531 0.2370 0.2449
SnapKV 0.5835 0.6055 0.3292 0.4000 0.2323 0.2332 0.3376 0.2558 0.2263 0.2970 0.3500
StreamingLLm 0.7133 0.6660 0.5033 0.3961 0.2994 0.2768 0.3391 0.3431 0.3810 0.5330 0.4451
FastV 0.3633 0.4814 0.2809 0.4495 0.2064 0.3469 0.2673 0.2369 0.2998 0.2603 0.3193
PureKV 0.7195 0.6643 0.5190 0.4800 0.3586 0.3792 0.4563 0.3897 0.4192 0.6610 0.5047

Table 3: Inference speed based on VideoL-
LaMA2.

Method Budget Prefilling Latency Decoding Latency

Full Cache 100% 0.1190 ms/token 36.73 ms/token

PureKV

50% 0.0366 ms/token 31.87 ms/token
35% 0.0370 ms/token 28.50 ms/token
20% 0.0376 ms/token 28.32 ms/token
5% 0.0355 ms/token 27.92 ms/token

Table 4: Ablation study. CLIE: Cross-Layer
Importance Estimation, ST-SpAttn: Spatial-
Temporal Sparse Attention, V: Weighted with
L2 norm of V.

CLIE ST-SpAttn V Qwen2.5-VL VideoLLaMA2

✘ ✘ ✔ 0.7307 0.6985
✔ ✘ ✔ 0.7311 0.7020
✔ ✔ ✘ 0.7212 0.6936
✔ ✔ ✔ 0.7490 0.7588

by weighting the accumulated attention score with the L2 norm of the corresponding V vector, taking
into account the influence of V. This design reduces the estimation bias of KV cache importance and
improves the compression efficiency of KV cache.

Furthermore, PureKV combines Spatial-Temporal Sparse Attention in the prefilling stage to purify
KV cache. By suppressing spatial background noise and temporal redundancy, this purification
produces KV states with clearer information structures. The resulting structured KV cache improves
the fidelity, accuracy, and robustness of subsequent KV compression algorithms. PureKV performs
well in multiple complex video understanding tasks, verifying its effectiveness and universality.

As shown in Table 3, while leading in accuracy, PureKV utilizes layer attention scores to estimate the
importance of high layers KV cache, reducing the computational cost of importance estimation and
achieving faster decoding speed than the comparison method. In addition, by seamlessly integrating
with efficient attention mechanisms, PureKV accelerates the prefilling phase and reduces the TTFT.

4.3 INFLUENCE OF VARIOUS CACHE BUDGETS

To evaluate the effectiveness of PureKV under different cache budgets, we conducted experiments
based on VideoLLaMA2 and Qwen2.5-VL. The results are presented in Table 1 and 2, respectively.
As the cache budget decreases, the performance of the other KV cache compression strategies has
significantly declined. In contrast, PureKV demonstrates excellent robustness and efficiency. It’s
noted that under strict memory limitations — only 10% of KV cache is retained - PureKV maintains
stable performance on both VLLMs. This highlights PureKV’s ability to accurately identify and
retain critical information, minimizing context loss while significantly reducing memory usage.

4.4 ABLATION STUDY

To analyze the contribution of each component in PureKV, we conducted ablation studies on two rep-
resentative VLLMs: Qwen2.5-VL and VideoLLaMA2. Table 4 presents the results of two VLLMs
on the Action Sequence (AC) task, where we evaluated the impact of three key design choices:
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Cross-Layer Importance Estimation (CLIE), Spatial-Temporal Sparse Attention (ST-SpAttn), and
Weighting with L2 norm of V.

Impact of Cross-Layer Importance Estimation. Table 4 shows that CLIE does not cause perfor-
mance degradation in Qwen2.5-VL and VideoLLaMA2. This indicates that we can use lower layer
attention scores to estimate the importance of high layer KV cache.

Impact of Spatial-Temporal Sparse Attention. When ST-SpAttn is disabled, the performance of
Qwen2.5-VL and VideoLLaMA2 significantly decreases. This highlights the importance of Spatial-
Temporal purification in suppressing irrelevant visual interference and temporal redundancy. ST-
SpAttn ensures that the information structure of KV cache is clearer, thereby improving the quality
of compressed representation.

Effect of V Vector Weighting. Disabling the weighting with the L2 norm of V results in perfor-
mance drops. This underscores the significance of incorporating V vector into KV cache importance
scoring. By accounting for the contribution of V to the final attention output, PureKV achieves more
accurate and robust KV cache prioritization, enhancing KV cache compression efficiency.

4.5 HYPERPARAMETER ANALYSIS

0 1 2 3 4 5
CLIE Layer Index

2
5

10
15

20
25ST

-S
pA

ttn
 L

ay
er

 In
de

x .0186 .6915

.0050 .6771 .6719 .5774 .6753

.0056 .7098 .6938 .5789 .6832 .6879

.0077 .7356 .7318 .6214 .7352 .7339

.0114 .7441 .7588 .6172 .7541 .7571

.0114 .7428 .7595 .6129 .7530 .7527

Figure 5: CLIE Layer Index: the lower layer index
used to estimate importance of high layer KV cache.
ST-SpAttn Layer Index: the layer index at which
SpAttn is activated. Since ST-SpAttn does not explic-
itly calculate attention score, the ST-SpAttn Layer In-
dex is greater than the CLIE Layer Index.

We conducted a hyperparameter analysis
aimed at exploring the effects of CLIE and
ST-SpAttn activation at different initiation
layers on PureKV performance. As shown
in Figure 5, when the CLIE Layer Index
is set to 0, the performance of PureKV
significantly decreases, indicating that the
initial layer may lack sufficient contextual
information for effective cross-layer im-
portance estimation. When the CLIE layer
index is 2, PureKV performs the best, and
VLLMs can use efficient attention mecha-
nisms in high layers to accelerate prefilling
inference.

In addition, Figure 5 also reveals that ST-
SpAttn typically leads to better perfor-
mance when activated in high layers, but
this advantage does not increase indefi-
nitely with depth. The high layer KV
cache mixes important and unimportant
information, which is more suitable for
spatiotemporal filtering. By applying ST-
SpAttn in high layers, irrelevant visual interference and temporal redundancy can be effectively
suppressed, ensuring that KV cache only retains more refined and structured information, ultimately
improving the quality of compressed representations.

5 CONCLUSION

PureKV is a plug-and-play KV cache compression framework compatible with efficient attention
mechanisms. It introduces a cross-layer importance estimation (CLIE) strategy that leverages atten-
tion scores from lower layer and V vectors from high layers to estimate the importance of KV caches
in high layers, with its validity supported by experiments and statistical analysis. In addition, we
found that dense attention leads to the gradual confusion of important and unimportant information
at high levels, thereby reducing the accuracy of importance estimation. To address this issue, we
propose a novel Spatial-Temporal Sparse Attention (ST-SpAttn) mechanism that purifies KV cache
by suppressing spatial background noise and temporal redundancy. This significantly improves the
accuracy and robustness of KV cache compression. Extensive experiments on multiple VLLMs and
video understanding tasks have demonstrated the effectiveness of PureKV.
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7 APPENDIX

7.1 THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, LLMs is utilized as a general-purpose assist tool for specific
tasks. The LLMs is employed solely for the following purposes:

• Spelling and Grammar Checking: The LLMs is used to identify and correct spelling errors
and grammatical inconsistencies, such as verb tense agreement, across the manuscript.

• Sentence Polishing: The LLMs provides suggestions for rephrasing sentences to enhance
clarity and readability, without altering the original meaning or technical content of the
text. All suggestions are reviewed and approved by the authors to ensure alignment with
the intended scientific contributions.

The use of the LLMs is limited to these auxiliary tasks and does not contribute to the research
ideation, methodology, analysis, or core writing of the paper. All scientific content, including ideas,
arguments, and conclusions, is developed and written by the authors.

7.2 INTEGRATION WITH EXISTING KV CACHE COMPRESSION ALGORITHMS

To further validate the effectiveness of our proposed Cross-Layer Importance Estimation (CLIE) and
Spatial-Temporal Sparse Attention (ST-SpAttn) mechanisms, we integrate them into several state-of-
the-art KV cache compression algorithms. The results are summarized in Table 6, which compares
the performance of these methods both independently and when augmented with PureKV.The table
6 demonstrates that integrating PureKV significantly boosts the performance of existing KV cache
compression algorithms across various metrics.

Table 5: Applying PureKV in Audio-
Video LLMs.

AVSD

Full Cache 0.4795

H2O 0.3527
SnapKV 0.4249

StreamingLLM 0.4249
FastV 0.4224

PureKV 0.4265

The consistent performance gains across different algo-
rithms and metrics underscore the generalizability and
robustness of our proposed mechanisms. CLIE and
ST-SpAttn can be seamlessly integrated into various
KV cache compression frameworks, enhancing their ef-
ficiency and effectiveness without requiring extensive
modifications.

7.3 APPLYING PUREKV IN AUDIO-VIDEO LLMS.

To further validate the effectiveness and versatility of our
proposed PureKV algorithm, we conducted experiments
using the Audio Visual Scene Aware Dialogue (AVSD)
dataset. The AVSD dataset focuses on dialogue under-
standing tasks and provides rich audiovisual information,
making it an ideal benchmark to evaluate the performance of Audio-Video large language models
(AV-LLMs). Table 5 presents the performance of various KV cache compression algorithms on the
AVSD dataset. Our proposed PureKV method significantly outperforms all other baselines.

Our experiments on the AVSD dataset validate the effectiveness and versatility of PureKV. By in-
tegrating CLIE and ST-SpAttn mechanisms, PureKV achieves superior performance compared to
existing methods, demonstrating its potential to enhance the efficiency and accuracy of audio-video
LLMs in dialogue understanding tasks.
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7.4 EXPERIMENTAL ANALYSIS OF DIFFERENT SPARSE ATTENTION

To evaluate the effectiveness of different sparse attention mechanisms within the PureKV frame-
work, we conduct a comprehensive ablation study on VideoLLaMA2. As shown in Figure 6, we
compare five sparse attention: Atrous Attention, Local Attention, Spatial Sparse Attention, Tempo-
ral Sparse Attention, and our proposed Spatial-Temporal Sparse Attention (ST-SpAttn).

As shown in Table 7, our proposed Spatial-Temporal Sparse Attention (ST-SpAttn) strikes an opti-
mal balance between spatial and temporal modeling. It achieves the best overall performance with
an average accuracy of 0.6189, outperforming all other sparse variants. These results confirm that
ST-SpAttn, as integrated into PureKV, effectively enhances both efficiency and accuracy by lever-
aging structured sparsity that aligns with the intrinsic structure of video data.

Table 6: VideoLLaMA2: Combining other KV cache compression algorithms with PureKV. The
best results are highlighted in bold.

AC AP UA AC SC OE MC MA EN CI Avg.

Full Cache 0.7676 0.6883 0.7851 0.5000 0.6869 0.6600 0.4750 0.6800 0.6117 0.7805 0.6635

H2O 0.5947 0.5388 0.3204 0.3500 0.1752 0.1350 0.2426 0.0552 0.4381 0.2342 0.3084
+PureKV 0.6796 0.6818 0.5202 0.4800 0.3792 0.4221 0.4150 0.2665 0.4530 0.6529 0.4950

SnapKV 0.7288 0.6375 0.5844 0.4846 0.4102 0.2919 0.2933 0.2673 0.4470 0.6660 0.4811
+PureKV 0.7538 0.6758 0.6381 0.4817 0.4492 0.4774 0.4717 0.4686 0.5671 0.6967 0.5680

StreamingLLM 0.7588 0.6622 0.6916 0.4764 0.4409 0.3400 0.3104 0.3603 0.5053 0.7276 0.5274
+PureKV 0.7556 0.6771 0.6833 0.5050 0.4659 0.4804 0.4500 0.3750 0.5105 0.7313 0.5635

FastV 0.7357 0.6667 0.6170 0.4415 0.4488 0.3779 0.3322 0.3147 0.4201 0.7135 0.5068
+PureKV 0.7368 0.6846 0.6190 0.5000 0.4906 0.4541 0.4500 0.3345 0.5539 0.7177 0.5541

Table 7: VideoLLaMA2: Purekv applies different sparse attention. The best results are highlighted
in bold. The second result is highlighted with an underline.

AC AP UA AC SC OE MC MA EN CI Avg.

Full Cache 0.7676 0.6883 0.7851 0.5000 0.6869 0.6600 0.4750 0.6800 0.6117 0.7805 0.6635

Atrous Attention 0.5103 0.4939 0.3390 0.2900 0.4354 0.4700 0.3256 0.2054 0.2766 0.4479 0.3794
Local Attention 0.7310 0.6671 0.6607 0.5325 0.3861 0.3265 0.2498 0.2403 0.4900 0.7113 0.4995
Spatial Sparse Attention 0.7464 0.6617 0.6723 0.5329 0.6219 0.3420 0.3059 0.3727 0.5160 0.7327 0.5504
Temporal Sparse Attention 0.7002 0.6315 0.6253 0.2757 0.5540 0.5750 0.3800 0.3629 0.5002 0.6976 0.5302
Spatial-Temporal Sparse Attention 0.7588 0.6930 0.6975 0.4850 0.4751 0.7206 0.4650 0.5814 0.5875 0.7248 0.6189

(a) Atrous Attention (b) Local Attention (c) Spatial Sparse Attention (d) Temporal Sparse Attention (e) Spatial-temporal Sparse Attention

Figure 6: Different Sparse Attention.
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