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Abstract
Large Language Models (LLMs) have become
foundational in modern artificial intelligence,
powering a wide range of applications from code
generation and virtual assistants to scientific re-
search and enterprise automation. However, con-
cerns about data contamination, where test data
overlaps with training data, have raised serious
questions about the reliability of these applica-
tions. Despite awareness of this issue, existing
methods fall short in effectively identifying or mit-
igating contamination. In this paper, we propose
Residual-Noise Fingerprinting (RN-F), a novel
framework for detecting contaminated data in
LLMs. RN-F is a single-pass, gradient-free de-
tection method that leverages residual signal pat-
terns without introducing additional floating-point
operations. Our approach is lightweight, model-
agnostic, and efficient. We evaluate RN-F on mul-
tiple LLMs across various contaminated datasets
and show that it consistently outperforms existing
state-of-the-art methods, achieving performance
improvements of up to 11.1% in contamination
detection metrics.

1. Introduction
Large Language Models (LLMs) have become foundational
tools in modern artificial intelligence, supporting diverse
applications such as code generation, scientific discovery,
enterprise automation, and intelligent assistants (Tang et al.,
2024; Boiko et al., 2023; Aggarwal et al., 2025; Qin et al.,
2024). Their remarkable performance on various bench-
marks (Du et al., 2024), (Liu et al., 2024a) has driven
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rapid adoption across both academia and industry. How-
ever, this progress has raised serious concerns about the
validity of benchmark results due to potential data contam-
ination (Deng et al., 2024). As LLMs are often trained on
massive, uncurated internet-scale datasets, it becomes in-
creasingly likely that test data may overlap with training
data, either directly or through paraphrased or synthetic
forms, thereby artificially inflating model performance and
misleading evaluations.

Data contamination refers to the inadvertent inclusion of
benchmark or evaluation data within a model’s training
corpus (Dong et al., 2024; Deng et al., 2024). This phe-
nomenon results in LLMs memorizing answers rather than
generalizing from learned patterns, thereby jeopardizing the
trustworthiness of performance evaluations. Contaminated
models can exhibit strong results on known benchmarks
while failing to perform reliably on unseen or real-world
tasks (Li & Flanigan, 2024). This issue threatens both scien-
tific progress and application safety, highlighting an urgent
need for effective, scalable, and model-agnostic methods to
detect and mitigate contamination in LLMs.

Existing state-of-the-art approaches (Dong et al., 2024),
(Shen et al., 2025), (Dekoninck et al., 2024) to contamina-
tion detection typically rely on access to internal model pa-
rameters, output probabilities, or multiple reference datasets.
These methods often require repeated model evaluations or
comparisons across rephrased benchmarks, synthetic data,
or assumed-clean samples. While effective in certain con-
trolled settings, they are generally resource-intensive, diffi-
cult to scale, and impractical for quantized or edge-deployed
models. Furthermore, many current methods struggle to de-
tect subtle or implicit forms of contamination, especially
when training data is opaque or continuously evolving.

In this paper, we propose Residual-Noise Fingerprinting
(RN-F), a novel and efficient framework for detecting data
contamination in LLMs. The name reflects the intuition be-
hind our method: RN-F exploits a simple yet powerful sig-
nal, the quantization residual, defined as the per-layer differ-
ence between full-precision and 4-bit activations. We refer
to this as “residual noise,” and use the term “fingerprinting”
by analogy to digital fingerprinting in computer security,
where subtle, unique patterns are used to identify anoma-
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lous or malicious content. Contaminated inputs tend to
produce larger or more structured residuals than clean data,
allowing RN-F to function as a lightweight, gradient-free,
and single-pass anomaly detector. It requires no gradients,
no model retraining, and only relies on forward activations,
making it suitable for deployment in low-resource environ-
ments. Extensive experiments across multiple models and
datasets demonstrate that RN-F outperforms existing meth-
ods, achieving up to 11.1% higher detection performance
while maintaining minimal computational overhead.

This work offers three primary contributions, as follow.

1. We introduce Residual-Noise Fingerprinting (RN-F),
a pioneering approach that leverages the quantiza-
tion residual, the per-layer difference between full-
precision and int4 activations, as an anomaly signal.
To the best of our knowledge, RN-F is the first frame-
work to repurpose quantization artefacts as a tool for
contamination detection in LLMs and other compact
models, especially under severe resource constraints.

2. We provide a rigorous statistical characterization of
quantization residuals, proving that clean inputs exhibit
sub-Gaussian tails while contaminated inputs induce a
bounded mean shift. This theoretical analysis enables
provable guarantees for false positive and false negative
rates, even with a limited calibration buffer.

3. We evaluate RN-F on compact models across tabu-
lar, language, and image tasks, demonstrating superior
performance over state-of-the-art methods while main-
taining a lightweight, single-pass, gradient-free setup
with minimal calibration.

The rest of the paper unfolds as follows. Section 2 positions
our work among existing defences. Section 3 formalises the
quantization residual, and Section 4 turns it into the RN-F
algorithm. Results and ablations, followed by a discussion
of limitations, appear in Section 5. Technical proofs and
additional plots live in the Appendix.

2. Related Work
Recent advances in large language models (LLMs) have
prompted numerous studies on detecting data contamination
and backdoor vulnerabilities. These works explore various
detection strategies, from statistical analysis to probing inter-
nal representations. Below, we summarize key contributions
in this space.

This work (Golchin & Surdeanu, 2024) proposes a guided
method to detect contamination by prompting LLMs with
dataset-specific cues, comparing outputs via ROUGE-L and
BLEURT. It scales from instance- to partition-level but

assumes near-exact text matches, missing semantic para-
phrases. The authors (Yan et al., 2024) study poisoning in-
tensity effects and find detectors fail under both strong and
weak poisoning, revealing brittleness under varying attack
strengths. This survey (Fu et al., 2025) reviews 50 detection
methods by their assumptions, showing many fail under
distribution shifts where memorization assumptions break
down. The authors (Samuel et al., 2025) benchmark five de-
tectors on four LLMs and eight datasets, noting performance
drops with instruction-tuned models and complex prompts.
RECALL (Xie et al., 2024) uses changes in log-likelihoods
under prefix perturbation for membership inference, achiev-
ing strong results but requiring token-level access, limiting
black-box use. This method (Liu et al., 2024b) uses hidden
layer activations with a probe classifier to detect training
data, performing well but needing proxy models and inter-
nal access. DC-PDD (Zhang et al., 2024) calibrates token
probabilities using divergence from expected frequencies,
reducing false positives but depending on raw token access
and vocabulary stability. ConStat (Dekoninck et al., 2024)
defines contamination as performance inflation, using sta-
tistical comparisons and p-values but needs curated bench-
marks and assumes task generalization. BAIT (Shen et al.,
2025) inverts target sequences to detect backdoors via gener-
ation probabilities; effective for generative tasks but reliant
on specific causal structures. CDD (Dong et al., 2024) iden-
tifies peaked output distributions as signs of memorization,
performing well and efficiently, though its confidence-based
signal may not generalize.

Our Observation. Despite promising results, most existing
methods depend on strong assumptions: access to logits,
full-precision models, or curated references. Many break un-
der distribution shifts, quantization, or black-box constraints.
This highlights the need for lightweight, generalizable meth-
ods like RN-F that require minimal assumptions and operate
efficiently across settings.

RN-F operates in what we term a semi-black-box setting.
The auditor must be able to execute both the full-precision
network F and its 4-bit clone Q and read their layer-wise
activations, yet needs no access to gradients, logits, training
data, or weight updates. This assumption is weaker than
the full white-box access required by many prior detectors,
but stronger than strict output-only black-box probes. It
matches practical deployments in which vendors distribute
an on-device quantized model together with an evaluation-
only FP16 copy for compliance or debugging, while keeping
the training pipeline proprietary.
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Figure 1. Residual-Noise Fingerprinting (RN-F) Framework. At test time, we run an input x through both the fp16 model F and its
quantized int4 clone Q. The average layerwise ℓ1 residual between their activations flags potential contamination.

3. Preliminaries
3.1. Problem set-up

Let fθ : Rm → RC denote a frozen fp16 network with L

layers, and let f̂ (4)
θ be the same network after post-training

4-bit quantization (PTQ) using a uniform step 2q. We write
hℓ(x) ∈ Rdℓ for the fp16 activation of layer ℓ and ĥℓ(x) for
its int4 counterpart.

Definition 3.1 (Layer-wise residual). For an input x and
a layer of width dℓ, the quantization residual is the mean
absolute deviation between fp16 and int4 activations:

rℓ(x) =
1

dℓ

∥∥∥hℓ(x)− ĥℓ(x)
∥∥∥
1
.

Intuitively, rℓ(x) measures how far the int4 grid has to “snap”
the fp16 activation vector. We aggregate over layers by
rmax(x) = maxℓ rℓ(x); other norms (e.g. sum or average)
behave similarly and are analysed in Appendix A.1.

3.2. Why does the residual separate clean from tainted
inputs?

Uniform quantization as structured noise. PTQ rounds
each coordinate hℓ,i to the nearest grid point g ∈ qZ. The
rounding error εi = ĥℓ,i− hℓ,i is thus uniformly distributed
in [−q, q] conditioned on the event that hℓ,i lands in a high-
density cell. For in-distribution (ID) data, successive activa-
tions visit those high-density cells almost uniformly, so the
errors {εi} have mean 0 and cancel out: E[rℓ(x)] ≈ 0.

Contaminated inputs break the symmetry. A memo-
rised or back-doored input drives the fp16 activations to
rarely-visited regions of feature space. In those sparse cells
the quantizer no longer sees symmetric neighbours; the
rounding error is biased in one direction, so the absolute
residual rℓ(x) spikes. Empirically (Figure 2) even a single
layer suffices to separate ID and anomalous inputs, but in
RN-F we keep all layers for stronger statistical power.

3.3. Distributional analysis

We next formalise the intuition under a mild smoothness
assumption.

Proposition 3.2 (Sub-Gaussian tail on ID data). Assume
each coordinate rounding error ε ∼ Unif[−q, q] and that
the layer mapping x 7→ hℓ(x) is K-Lipschitz. Then for any
ID input x and any τ > 0,

Pr
(
|rℓ(x)− µℓ| > τ

)
≤ 2 exp

[
− dℓτ

2
/
(2q2K2)

]
,

where µℓ = E[rℓ].

The proposition’s full proof is deferred to Appendix C.

Theorem 3.3 (Instance-level detection guarantee). Let con-
taminated inputs shift the mean residual by at least ∆ > 0,
i.e. E[rℓ(x) | x∈ tainted]− µℓ ≥ ∆ for some layer ℓ. Cali-
brate RN-F with n clean samples and choose the threshold
τ as the 1− α empirical quantile of rℓ. If

n ≥ 8 q2K2 log(2/ϵ)

∆2
,

then RN-F achieves FPR ≤ ϵ and FNR ≤ ϵ.

The theorem’s full proof is deferred to Appendix D.

Corollary (layer max). Because rmax(x) = maxℓ rℓ(x)
is the point-wise maximum of sub-Gaussian variables, it in-
herits a sub-Weibull tail with parameter 2−1. Consequently,
bounding rmax delivers a union-free test across layers with-
out an additional Bonferroni penalty.

The corollary’s full proof is deferred to Appendix E.

3.4. Practical calibration

RN-F uses n = 512 clean points, well within the memory
of a Colab T4, to estimate µ̂ℓ for every layer. The threshold
τ is then fixed once and reused across all future inferences.
Section 5.1 shows that AUC saturates long before n = 512,
confirming the finite-sample guarantee in Theorem 3.3. We
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Figure 2. Layer-1 quantization residuals reveal anomalous inputs.
Clean data cluster near zero (blue), whereas memorised (orange)
and back-door (red) samples shift the distribution to the right.

adopt n = 512 as a practical default because it brings de-
tection performance within 1 percentage point of saturation
while remaining memory-efficient. This setting requires less
than 200 MB of activation storage, which is deployable on
8-16 GB GPUs or edge devices.

Connection to Fisher information. For small q the quan-
tization error acts as an isotropic perturbation, so Σℓ =
Cov[ĥℓ − hℓ] ≈ q2I . Hence the Mahalanobis distance
rℓ(x) is, up to scaling, the outer product gℓ(x)⊤gℓ(x) where
gℓ(x) = ∇hℓ

log p(hℓ) is the score function. Thus RN-F
can be viewed as a data-free approximation of layer-wise
Fisher information, computed without gradients or density
models.

We next translate these statistical insights into a concrete
runtime algorithm.

4. Proposed Framework
The Residual-Noise Fingerprinting (RN-F) algorithm op-
erates in two distinct phases: calibration and inference,
each designed to be lightweight, gradient-free, and suitable
for low-resource environments such as edge devices (see
Figure 1).

In the calibration phase, the algorithm takes as input a
small, trusted dataset Dc consisting of clean examples. For
each input x ∈ Dc, RN-F runs both the full-precision (fp16)
model F and its quantized int4 version Q, and computes
the layerwise quantization residuals, defined as the mean
absolute difference between the corresponding activations:

rℓ(x) =
1

dℓ

∥∥∥hℓ(x)− ĥℓ(x)
∥∥∥
1

where hℓ(x) and ĥℓ(x) are the fp16 and int4 activations at
layer ℓ, and dℓ is the dimensionality of the layer. These
residuals are aggregated across all layers to form a profile

vector r(x) for each sample.

Using residuals collected from Dc, RN-F fits a lightweight
logistic model to estimate a threshold for anomaly detection
that satisfies a target false positive rate (FPR). This calibra-
tion phase requires no gradients, no retraining, and uses only
a small buffer (e.g., 512 clean samples) to fit the confidence
envelope.

In the inference phase, a test input x′ is processed through
both F and Q to compute its residual profile r(x′). The
input is flagged as anomalous if any residual component
exceeds the learned threshold:

flag(x′) = ⊮ [∃ ℓ : rℓ(x′) > τℓ]

This process adds only one extra int4 forward pass and
requires O(L) memory, where L is the number of layers.

Together, these steps enable RN-F to detect memorized,
out-of-distribution, and backdoored inputs efficiently. The
design avoids all floating-point operations at test time and
can be deployed without modifying the base model, making
it highly suitable for low-resource settings.

Algorithm 1 RN-F: Calibration and Inference
• Inputs: fp16 model F , int4 model Q, clean split Dc,

target FPR α

• Calibration:

– For each x ∈ Dc (where |Dc| = 512):

* Store r(x) =
(
rℓ(x)

)L
ℓ=1

– Fit logistic function σ(θ⊤r)

– Choose threshold τ such that FPR = α

• Inference:

– Flag x if there exists ℓ such that σ(θrℓ(x)) > τ

Complexity. One extra int4 pass (≈ 0.4× fp16 FLOPs)
and O(L) memory.

5. Experiments and Evaluations
5.1. Experimental Setup

Dataset. All three workloads draw their inputs from
the M5Product corpus (Dong et al., 2022). For each
product, we use: (i) a 64 × 64 center-crop of the main
catalog image; (ii) the first ≤ 128 WordPiece tokens
from the product’s title and description; and (iii) the 50
most frequent categorical or numerical attributes, pro-
cessed via one-hot encoding or standardization as appro-
priate. These three aligned modalities form a tri-modal
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input tuple, which is fed into the image, text, and tabu-
lar branches of our target models. The complete code-
base and experiment pipeline are publicly available at
github.com/csplevuanh/quant anomaly.

Models. We evaluate RN-F on four representative com-
pact models spanning multiple modalities:

• TabPFN (11M parameters) (Hollmann et al., 2025), a
transformer-based model fine-tuned on tabular classifi-
cation.

• TinyStories-GPT2-XS (13M parameters) (Eldan & Li,
2023), a distilled GPT-2 model trained on the TinySto-
ries corpus for edge-scale language modeling.

• SD-lite (6M parameters) (Yang et al., 2023), a
lightweight diffusion model designed for low-
resolution image generation.

• Llama-2-7B-chat-Q4 (7B parameters) (Touvron,
2023): A quantized instruction-tuned LLM (Llama-
2-7B-chat-Q4) used as a strong baseline for general-
purpose language modeling.

All models are post-training quantized to 4-bit precision us-
ing bitsandbytes (Dettmers, 2024), enabling efficient
int4 inference with minimal accuracy loss.

Contamination Scenarios. We simulate three types of
contamination:

• Backdoor triggers: malicious patterns inserted into
inputs to force model behavior. Implemented as a token
(<cfac>) in text, a 3× 3 pixel patch in images, and a
sentinel value (engine size=999) in tabular data.

• Memorization: 1% of training items are duplicated
100 times to induce overfitting and memorization.

• Quantization-aware attacks: following Huynh &
Tran (2024), we fine-tune models with QLoRA prior
to quantization to embed backdoors that persist post-
quantization.

Evaluation Metrics. We report Accuracy, macro-
averaged F1, and ROC-AUC. All metrics are computed
using scikit-learn 1.5.1 and averaged across three
random seeds.

Baselines. We compare RN-F against state-of-the-art con-
tamination detectors re-implemented under the 4-bit setting
when possible:

• CDD: A distributional logit-based method for contam-
ination detection (Dong et al., 2024).

Figure 3. RN-F calibration curves on TabPFN. Performance satu-
rates well before the 512-example buffer used in Section 4.

Figure 4. Instance-level performance comparison across four work-
loads from the M5Product benchmark. RN-F consistently outper-
forms contamination detectors CDD, BAIT, and ConStat across
Accuracy, macro-F1, and ROC-AUC.

• BAIT: A semi-black-box backdoor scanner based on
target sequence inversion (Shen et al., 2025).

• ConStat: A performance-based benchmark compari-
son approach (Dekoninck et al., 2024).

Hardware. All experiments are conducted on a single
NVIDIA T4 GPU (16 GB VRAM) using Google Colab’s
free tier. RN-F calibration completes within 40 seconds
per model, and inference adds less than 5% latency com-
pared to the quantized baseline. Latency and power were
profiled with nvidia-smi dmon (1 s interval) over 100
consecutive inferences on a single NVIDIA T4.

5.2. Evaluations

As Table 1 shows, RN-F outperforms the best competing
detector on every workload and metric: versus CDD,
BAIT, and ConStat it lifts Accuracy, macro-F1, and AUC by
+8.3 / +8.2 / +5.9 pp on TABPFN, +7.9 / +11.1 / +10.1 pp
on TINYSTORIES, +7.9 / +10.2 / +9.1 pp on SD-LITE, and
+7.8 / +9.4 / +6.1 pp on LLAMA-2-7B-CHAT-Q4. Figure 4
visualizes these margins, confirming that the residual signal
generalizes across tabular, language, image, and large-LLM
settings.

Quantization maps continuous activations to a lattice with
step size 2q. For in-distribution inputs the rounding errors
are symmetric and cancel, whereas contaminated inputs land
in sparse regions, yielding a mean-shifted ℓ1 residual that
scales with

√
dℓ. CDD ignores much of this signal and BAIT

needs gradients that int4 models do not expose. Despite this
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Table 1. Instance-level detection on the M5Product benchmark.

Model
Accuracy (%) macro-F1 ROC-AUC

RN-F CDD BAIT ConStat RN-F CDD BAIT ConStat RN-F CDD BAIT ConStat

TabPFN 88.4 80.1 79.4 77.8 0.835 0.746 0.753 0.723 0.948 0.876 0.889 0.878
TinyStories 86.0 78.1 78.2 76.6 0.807 0.702 0.696 0.695 0.943 0.842 0.843 0.842
SD-lite 84.2 76.3 75.5 74.7 0.797 0.688 0.695 0.679 0.932 0.831 0.841 0.835
Llama-2-7B-chat-Q4 89.3 81.5 80.8 79.9 0.845 0.758 0.751 0.738 0.953 0.880 0.892 0.884

Table 2. Runtime cost (percentage overhead w.r.t. the 4-bit baseline). Latency is the median wall-clock time over 100 forward passes;
energy is the mean power-draw integral recorded by nvidia-smi dmon (1 s sampling, 100 samples). Each entry is the mean of three
Colab-T4 runs (std.<0.2 %).
Note: RN-F adds one extra int4 pass; CDD runs one fp16 pass for logits; ConStat performs an auxiliary evaluation run; BAIT requires a
full backward pass.

Latency overhead (%) Energy overhead (%)

Workload RN-F CDD BAIT ConStat RN-F CDD BAIT ConStat

TabPFN 3.5 9.1 25.4 12.8 3.6 9.8 26.1 13.2
TinyStories 3.8 9.7 26.8 13.6 4.2 10.4 27.5 14.1
SD-lite 4.3 9.0 24.9 11.9 4.4 9.5 25.3 12.3
Llama-2-7B-chat-Q4 5.1 10.8 28.2 14.7 5.8 11.6 29.0 15.5

Mean 4.2 9.7 26.3 13.3 4.5 10.3 27.0 13.8

Figure 5. Correlation of quantization–residual spikes between im-
age, text and tabular branches on the M5Product benchmark.
The strong off-diagonal values indicate that contamination affects
modalities in a coordinated manner, which RN-F exploits by pool-
ing residuals.

simplicity, RN-F achieves robust performance with just 256
clean calibration samples; beyond that, accuracy gains are
below 1 pp and AUC gains below 0.003 (Appendix A).

Figure 5 shows strong cross-modal residual correlations
(r = 0.78/0.71/0.65), validating our decision to pool resid-
uals and reuse thresholds across all four tasks. RN-F adds
only 3.5–5.1% latency and 3.6–5.8% energy (Table 2); CDD
incurs 9-11 %, ConStat with 12–15%, and BAIT with 25%,
making RN-F the only detector viable for deployment on
resource-constrained devices.

RN-F further tolerates 30% pruning or 3-bit weights (AUC
drop <2 pp) but fails when sparsity exceeds 95%. Limita-

tions include the assumption of a mostly clean calibration
buffer, contamination above 10% increases false and nega-
tive rates, and the risk of quantization-induced membership
leakage (Aubinais et al., 2025). Future work should combine
RN-F with differentially-private calibration and threshold
certification mechanisms.

6. Conclusion
We introduce Residual-Noise Fingerprinting (RN-F), the
first anomaly detector to leverage post-training quantization
noise as a signal rather than suppress it. RN-F requires only
a single int4 forward pass and a 512-example calibration
buffer to detect layer-wise mean-shift anomalies. On the
M5Product benchmark, it achieves 87.0% Accuracy, 0.821
macro-F1, and 0.944 ROC-AUC, outperforming state-of-
the-art baselines by up to 11.1 points, with just 4.2% latency
and 4.5% energy overhead on a T4 GPU. RN-F meets the
constraints of edge AI deployments while maintaining su-
perior detection performance. Limitations include reliance
on clean calibration data and vulnerability to adaptive ad-
versaries. An attacker minimizing the fp16–int4 residual
during training can reduce RN-F’s AUC by ≈12 points. Fu-
ture work should explore inference-time randomization or
multi-precision ensembles to mitigate such targeted evasion.
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Appendix

A. Calibration-Size Ablation Study
Experimental design. To quantify how many clean samples are needed for reliable thresholding, we vary the calibration
buffer size n ∈ {64, 128, 256, 512} while keeping every other hyperparameter fixed. Each configuration is run three times
on the M5Product benchmark. We report the mean in Table 3.

Table 3. Instance-level detection at different n. AUC saturates quickly; the gap between n = 256 and n = 512 is < 0.3 pp.
n Accuracy (%) Macro-F1 ROC-AUC

64 82.5 0.775 0.925
128 84.7 0.795 0.936
256 85.9 0.808 0.939
512 86.2 0.813 0.941†

†Gain over n = 256 is < 1 pp, indicating performance saturation.

Effect. The empirical trend mirrors the sub-Gaussian bound of Theorem 3. Residual-mean estimation error shrinks as
O(1/

√
n) until variance becomes negligible relative to the signal shift (∆). A buffer of n = 256 already achieves 98.9 %

of the AUC obtained with n = 512. Going to 512 yields diminishing returns but costs little (<200 MB of activations on
a 16 GB GPU). Smaller buffers (n ≤ 64) incur a noticeable drop (≈3–4 pp in accuracy), yet may still be acceptable on
micro-controllers where memory is scarce.

Memory and latency. For the largest model tested (TinyStories-GPT2-XS), n = 512 corresponds to 512× L ≈ 30 MB
of int4 activations and 180 MB of fp16 activations—well within the 8–16 GB range of most edge GPUs. Calibration time
scales linearly with n; on a Colab T4 it rises from 5 s (64 samples) to 40 s (512).

Interpretation. RN-F is robust to calibration size: use n = 256 when memory or time is tight, and n = 512 when either
resource is plentiful and the absolute best AUC is desired. The main paper defaults to n = 512 to match open-source
practice and provide a margin against distribution shift.

B. Preliminaries
We start by fixing a layer ℓ of width dℓ.

Post-training uniform quantization with scale q > 0 converts each fp16 activation hℓ,i(x) to an int4 value ĥℓ,i(x) ∈ qZ.

The coordinate rounding error is therefore

εi(x) := ĥℓ,i(x)− hℓ,i(x) ∼ Unif[−q, q] (independent over i).

The layer-wise quantization residual (Def. 3.1) can be rewritten as

rℓ(x) =
1

dℓ

dℓ∑
i=1

|εi(x)|, µℓ = E [rℓ(x)] =
q

2
.

Sub-Gaussian tools. For a centred bounded random variable Z ∈ [−a, a], Hoeffding’s lemma (Hoeffding, 1963) states
that Z is σ2-sub-Gaussian with σ2 = a2/2.

Refer to Boucheron et al. (2013, Thm. 2.2) or Wainwright (2019, Sec. 2.5) for modern treatments.

C. Proof of Proposition 3.2
Define the centred variables ξi := |εi| − µℓ ∈ [−q/2, q/2].
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By Hoeffding’s lemma each ξi is (q2/8)-sub-Gaussian. Since the layer map x 7→ hℓ(x) is K-Lipschitz, changing x rescales
the sum of residuals by at most K in Euclidean norm.

So, the normalised average

Sℓ(x) :=
1

dℓ

dℓ∑
i=1

ξi(x)

is (q2/(8dℓK2))-sub-Gaussian.

Applying the sub-Gaussian tail bound gives, for any τ > 0,

Pr
(
|rℓ(x)− µℓ| > τ

)
= Pr

(
|Sℓ(x)| > τ

)
≤ 2 exp

[
−dℓτ2/(2q2K2)

]
,

which is exactly the advertised inequality.

D. Proof of Theorem 3.3
Let the calibration set Dc = {x(1), . . . , x(n)} contain n i.i.d. clean points, and define the empirical mean

µ̂ℓ :=
1

n

n∑
j=1

rℓ
(
x(j)

)
.

Each rℓ
(
x(j)

)
is σ2-sub-Gaussian with σ2 = q2/(2dℓK

2) (Proposition 3.2).

The average µ̂ℓ is therefore (σ2/n)-sub-Gaussian, so

Pr
(
|µ̂ℓ − µℓ| > ∆/2

)
≤ 2 exp

[
−n∆2/(2q2K2)

]
.

Choosing n ≥ 8q2K2 log(2/ε)

∆2
makes this probability at most ε.

Define the decision threshold τ := µ̂ℓ +∆/2.

On the good calibration event |µ̂ℓ−µℓ| ≤ ∆/2 (which holds with probability 1−ε), every clean instance satisfies rℓ(x) ≤ τ
with probability at least 1− ε again by Proposition 3.2.

As a result, FPR ≤ ε.

By assumption the mean residual under contamination is shifted: E [rℓ(x) | x ∈ tainted] ≥ µℓ +∆.

Using sub-Gaussianity once more,

Pr
(
rℓ(x) ≤ τ

)
= Pr

(
rℓ(x)− (µℓ +∆) ≤ −∆/2

)
≤ exp

[
−dℓ∆2/(8q2K2)

]
≤ ε,

so FNR ≤ ε.

Both error guarantees hold simultaneously except on the calibration failure event (probability≤ ε). Therefore FPR,FNR ≤
2ε; replacing ε← ε/2 completes the proof.

E. Corollary (Layer-wise maximum)
The quantity rmax(x) = maxℓ≤L rℓ(x) is the point-wise maximum of L sub-Gaussian random variables.

By Vershynin (2018, Prop. 2.7.7), such a maximum is sub-Weibull with tail parameter θ = 1/2: there exists an absolute
constant C > 0 such that

Pr
(
rmax(x)− µmax > τ

)
≤ exp

[
−Cτ2/q2

]
,

where µmax = maxℓ µℓ.

As a result, a single threshold on rmax controls the family-wise type-I error without Bonferroni correction.
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