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Abstract: End-to-end learning approaches offer great potential for robotic manip-2

ulation, but their impact is constrained by data scarcity and heterogeneity across3

different embodiments. In particular, diverse action spaces across different end-4

effectors create barriers for cross-embodiment learning and skill transfer. We ad-5

dress this challenge through diffusion policies learned in a latent action space that6

unifies diverse end-effector actions. We first show that we can learn a semantically7

aligned latent action space for anthropomorphic robotic hands, a human hand, and8

a parallel jaw gripper via contrastive learning. Second, we show that by using our9

proposed latent action space for co-training on manipulation data from different10

end-effectors, we obtain capable policies that can control different robotic embod-11

iments and obtain up to 28% improved manipulation success rates through cross-12

embodiment skill transfer. Our approach using latent cross-embodiment policies13

presents a new method to unify different action spaces across embodiments, en-14

abling efficient multi-robot control and data sharing across robot setups. This15

unified representation significantly reduces the need for extensive data collection16

for each new robot morphology, accelerates generalization across embodiments,17

and is an important step towards more scalable and efficient robotic learning.18

Keywords: Imitation Learning, Cross-Embodiment Learning, Manipulation19
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Figure 1: We introduce a framework for learning cross-embodied manipulation policies through
latent action diffusion. First, a shared latent action space is discovered through contrastive learning
from pairs of aligned end-effector poses. Training diffusion policies with latent actions enables
multi-embodiment control with a single policy and realizes skill transfer between embodiments.

1 Introduction20

Robotic manipulation holds vast transformative potential to address global labor shortages through21

easy-to-deploy robotic workers able to adapt to different settings. End-to-end learning of manipu-22

lation policies is set to equip robots with the necessary skill set and intelligence. The end-to-end23

learning paradigm has proven its success in high-data regimes for language and vision models.24
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Robot learning, however, presents novel challenges: imitation learning models are still in a data-25

bound regime where real-world performance is largely dictated by the volume and diversity of the26

training data. Scaling up both of these factors inevitably requires pooling together data from dif-27

ferent robotic embodiments. However, while it is possible to increase data volume and diversity28

through cross-embodiment learning, the heterogeneity across observation and action spaces of dif-29

ferent robotic embodiments poses significant barriers for skill transfer across embodiments (the30

“embodiment gap“).31

Recent works on cross-embodiment learning have largely avoided explicitly addressing the problem32

of the embodiment gap in action spaces by only using data with a shared action space for pre-/co-33

training [1, 2, 3]. Other works showing pretraining on human manipulation datasets have relied on34

explicitly aligning the human action space to the robot action space [4, 5, 6, 7]. In this work, instead35

of using an explicit action space, we introduce a learned latent action space which can encode36

diverse action spaces from different end-effectors into a unified, semantically aligned latent action37

space. To achieve semantic alignment within the latent action space, we utilize retargeting methods,38

which enable precise alignment of different end-effector action spaces. For policy learning with39

latent actions, we factorize policies into an embodiment-agnostic policy trained on latent actions40

and multiple embodiment-specific decoders that are trained separately. Our proposed framework41

combines the simplicity of training policies with aligned observation and action spaces while still42

enabling learning from diverse robotic embodiments.43

We focus on embodiment transfer among single-arm robots with different end-effectors: the Faive44

robotic hand [8], the mimic hand [9] and a Franka parallel gripper. Across three experiments, we45

compare co-trained latent policies against single-embodiment policies. Our findings show that our46

proposed methodology enables both multi-robot control and positive skill transfer across embodi-47

ments with up to 28% (15.2% average) absolute success rate improvement.48

Our results indicate the potential of utilizing contrastive learning to bridge heterogeneous action49

via learned action spaces. As increasingly dexterous, human-like end-effectors become more com-50

mon, our methodology provides a path forward for effectively sharing and reusing datasets across51

embodiments with diverse end-effectors through a unified latent action space.52

2 Methodology53

We propose a two-stage framework for cross-embodied latent space imitation learning. First, we54

learn a shared latent action space via contrastive learning, framing the problem as multimodal rep-55

resentation learning task. Then, we learn policies in the shared latent space via cotraining.56

2.1 Creating Aligned Action Pairs57

Multimodal representation learning architectures for M modalities generally rely on tuples con-58

taining paired data of the form xi =
(
x1
i , x

2
i , . . . , x

M
i

)
, where there is some form of cross-modal59

correspondence between the elements of each tuple [10, 11]. In the context of robotics, our data con-60

sists of different end-effector poses that we can align via retargeting functions from human hands to61

robotic end-effectors:62

xi = (xH
i , fR1

H

(
xH
i

)
, . . . , fRM

H

(
xH
i

)
) (1)

where f
Rj

H , j ∈ {1, . . . ,M} are retargeting functions from human hands to the j-th robot embodi-63

ment. More details about the retargeting functions are described in Section 6.3.64

2.2 Contrastive Latent Space Learning65

For a shared latent action space, it is crucial that 1) for each modality, sufficient information is66

encoded such that we can precisely reconstruct end-effector poses and 2) the latent space has a co-67

herent structure, meaning that the cross-modal alignment present in the model inputs during training68
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Figure 2: Qualitative evaluation of the joint latent action space. We encode normalized gripper
widths W ∈ [0, 1] (from closed to open) and perform cross-modal reconstruction by decoding them
into human hand poses (colored lines on left) and poses for the Faive hand (grey model on right).

is upheld in the learned latent space. To achieve both of these goals, we propose a two-step learning69

procedure: first, using batches with B aligned end-effector poses, M modality-specific encoders70

qm,m ∈ 1 . . .M are trained that project actions xm from each end-effector into a shared latent71

space, where we utilize a pairwise InfoNCE loss [12] to ensure alignment within the batch:72

Lcontrastive =
1

M(M − 1)

M∑
i=1

M∑
j=i+1

(
− 1

B

B∑
n=1

log
exp(qi(x

n
i ) · qj(xn

j )/τ)∑B
k=1 exp(qi(x

n
i ) · qj(xk

j )/τ)

)
(2)

where τ denotes the temperature. In the second stage, we train M modality-specific decoders73

pm,m ∈ 1 . . .M , which learn to reconstruct ground truth actions x̂i from their latent represen-74

tations. Additionally, the encoders qm are fine-tuned with a lower learning rate. The total loss Ltotal75

backpropagated through the encoders and decoders is a combination of a reconstruction loss Lrecon76

and the previous contrastive loss Lcontrastive, where the hyperparameter λ can be used to control the77

trade-off in between alignment and self-reconstruction:78

Lrecon =
1

M

M∑
i=1

B∑
n=1

||pi (qi (xn
i ))− x̂n

i ||
2
2 (3)

Ltotal = Lrecon + λLcontrastive (4)

Training details can be found in Section 6.5. We show a qualitative evaluation in Fig. 2.79

3 Experimental Results80

We conduct experiments covering three different end-effectors and three tasks across two setups:81

one with the Faive hand and the Franka gripper and one setup with the mimic hand and the Franka82

gripper. In the experiments shown in Fig. 4b and Fig. 3a, we utilize one external camera view as83

observation, whereas in Fig. 4a, we utilize an additional wrist camera of the mimic hand which84

is replaced by zero-padding for the Franka hand. For each end-effector in each setup, we com-85

pare a single-embodiment diffusion policy with a latent diffusion policy co-trained on data from all86

end-effectors in each respective setup. Encoders and decoders for the contrastive action model are87

parameterized by lightweight MLP networks. Additionally, we validate our design choices for our88

contrastive action model through an ablation study (Table 1).89

3.1 Discussion and Conclusion90

Latent action representations enable multi-robot control and cross-embodiment skill trans-91

fer. Across all experiments, we find that, a single latent policy can control two highly different92

end-effectors. Furthermore, latent policies learn helpful shared representations that we observe in93
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(a) Task stage completion rates for each task stage
for single-embodiment diffusion policy versus cross-
embodied latent diffusion policy (ours).

(b) Task stages: i) initial setup ii) picking the first
block iii) stacking/inserting it on top of the second
block iv) putting both into the box.

Figure 3: We evaluate our methodology across 70 trials per policy per embodiment on a highly
challenging block stacking task, comprised of three stages. 200 demonstrations were used per em-
bodiment.

(a) Pick-and-place of a plastic cube into a box in differ-
ent locations with the mimic hand and Franka gripper
using asymmetric observations. 200 demonstrations
were used per embodiment.

(b) Pick-and-place of a plush toy into a bowl in dif-
ferent locations with the Faive hand and Franka grip-
per using symmetric observations. 100 demonstrations
were used per embodiment.

Figure 4: We compare latent diffusion policies co-trained on cross-embodiment data (ours) with
single-embodiment diffusion policies. The task setups are shown in Fig. 5.

improved success rates when co-training on data from different end-effectors for both coarse and94

fine-grained manipulation tasks (Fig. 3). Further, the benefit of co-training seems to increase with95

the number of demonstrations utilized, indicating promising scaling behavior.96

Learning with asymmetric observations remains challenging. We attribute the performance drop97

of the Franka gripper in Fig. 4a to the asymmetric observations: co-training with missing camera98

views remains an open challenge (similar to [3]). We hypothesize that the slight performance de-99

crease for the mimic hand in Fig. 3a for fine-grained manipulation could be explained by occlusion100

of the object by the mimic hand that is not present with the Franka gripper.101

4 Conclusion102

In summary, our approach successfully demonstrates that latent action spaces can unify con-103

trol across diverse robotic embodiments while enabling improved performance through cross-104

embodiment skill transfer. The performance improvement of up to 28% (average: 15.2%) indi-105

cates that our method facilitates skill transfer between end-effectors with a large embodiment gap106

and underlines its potential for wider use across a broader range of robot morphologies. Future work107

includes scaling our method to internet-scale datasets and large-scale cross-embodiment pretraining.108
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5 Limitations109

Grasping Failure Modes The most common failure mode is that the policy fails to position the110

wrist in a suitable position to grasp the object. The positioning of the end-effector is especially111

important for the comparatively small Franka gripper, which explains the consistently lower manip-112

ulation performance compared to the humanoid hands. If the wrist is correctly positioned, grasps113

are typically successful. For the block stacking task, the most common failure mode lies in failure114

to align the pins of the block accurately.115

Asymmetric Dataset Sizes We find that adding datasets such as BridgeV2 [13] or DexYCB [14]116

does not yet improve the performance of the policy. While their diverse respective action spaces can117

be unified through our method, visual differences and the highly asymmetric scale in dataset sizes118

still present significant challenges for achieving skill transfer via co-training.119

Asymmetric Observations Skill transfer in the presence of asymmetric observations (e.g. one120

embodiment has an additional camera view) remains an open challenge for future work, which is121

reflected in our experiments.122

Ambiguity in Action Space Mapping The current contrastive learning method for learning joint123

action spaces does not automatically guarantee high quality reconstruction for all embodiments.124

Presently, it is crucial to empirically evaluate the encoders and decoders to verify that reconstruction125

and cross-reconstruction errors are low, before beginning policy training.126

Latent Space Regularization Given that our method for contrastive latent space learning has no127

implicit latent space regularization (unlike VAE-based methods), there is a risk that the latent space128

might be suboptimally non-smooth and hard to model for the downstream policy. Future work129

is needed to guarantee the smoothness of the latent space while maintaining alignment and high130

reconstruction accuracy.131

Future work: Larger scale experiments and more embodiments Present results are still limited132

to small-scale experiments on a relatively low number of embodiments (albeit a higher diversity133

of end-effector morphology compared to other cross-embodiment works). We leave larger-scale134

experiments to future work.135
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6 Appendix205

6.1 Pick and Place Task Setups206

We show the rollout environment for the two pick and place tasks in Fig. 5.207

6.2 Ablation Study: Contrastive Action Model208

To validate our design choices, we compare several versions of the contrastive action model (Ta-209

ble 1). As metrics, we utilize self-reconstruction (SR) and cross-reconstruction (CR, Equation (7))210

validation losses. The ablation without temperature annealing keeps the temperature constant at the211

previous final value. The ablation without finetuning freezes the encoders in the second training212

step while the decoders are being trained. Both temperature annealing and finetuning the encoders213

substantially improve both self- and cross-reconstruction metrics, with finetuning being the most214

important addition to the pipeline.215

6.3 Retargeting216

For retargeting, we follow the technique introduced by Sivakumar et al. [15], which utilizes keyvec-217

tors for both the human and robot hand. The keyvectors v{H,M}
i (θ{H,M}) are vectors from the palm218

to each fingertip and from each fingertip to all other fingertips and provide a unifying representation219

that can be defined for any hand with a notion of fingertips. For example, to map from human hand220

poses θH to joint angles for a mimic hand θM , we optimize the following differentiable objective221

using keyvector scaling factors si:222

θM (θH) = argminθF

15∑
i=1

∣∣∣∣vHi (θH)− siv
F
i (θM )

∣∣∣∣2
2

(5)

For parallel jaw grippers, we take the minimum of all keyvectors originating at the thumb and223

normalize it by a standard gripper width W such that θP ∈ [0, 1]:224

θP (θH) = min
θP

(
min
i

∣∣∣∣vHi (θH)
∣∣∣∣

W
, 1

)
(6)

6.4 Policy Architecture225

In the following, we provide more implementation details on our Latent Diffusion Policies.226

Figure 5: Cross-embodiment policy rollouts for two pick and place tasks in different settings. The
robots in each setting (left: Franka gripper, Faive hand, right: Franka gripper, mimic hand) are
controlled by a single policy, demonstrating multi-robot control.
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Figure 6: Overview of our proposed framework for semantic alignment of end-effector actions via
retargeting (stage 1), training contrastive encoders and decoders for the learned latent action space
(stages 2 and 3) and policy learning in latent space (stage 4) with data from the Faive hand, human
hands and parallel gripper data. In our experiments, we do not yet utilize human data for policy
learning due to challenges with highly asymmetric dataset sizes.

Table 1: Ablation study of the contrastive action model components.

Model Configuration SR-Loss CR-Loss
mimic Franka mimic→ Franka Franka→ mimic

Full Model (ours) 0.762 3.7e-8 0.002 214.20
w/o Temperature Annealing (TA) 0.948 1.5e-8 0.007 286.64
w/o Finetuning (FT) 44.76 2.6e-8 0.013 391.85
w/o FT and TA 49.765 2.1e-8 0.02 397.23

6.4.1 Network Architecture and Observations227

Transformer-based Diffusion Policy The transformer-based diffusion policy utilized several in-228

put tokens that encompass both observations and latent actions. Observations are limited to a single229

external RGB camera, images of which are encoded by a ResNet18 [16]. The image embeddings,230

diffusion timestep, and the noisy latent actions are projected into tokens and concatenated with the231

encoded image representation to assemble the input sequence to the diffusion transformer. Sinu-232

soidal positional embeddings are added to the input sequence. The diffusion objective is applied in233

the shared latent action space as opposed to the individual explicit action spaces.234

U-Net-based Diffusion Policy The U-Net-based (U-Net [17]) diffusion policy follows the imple-235

mentation shown in [18] closely, utilizing FiLM layers to condition the action denoising process on236

observations. To encode image observations, we use small vision transformer networks pretrained237

following [19]. Observations for the experimental setting with the mimic hand and the Franka grip-238

per include the arm pose relative to its position at the beginning of each action chunk and an external239

RGB camera. In Fig. 4a, to investigate learning with asymmetric observations, we utilize an RGB240

wrist camera for the mimic hand, which is replaced by zero-padding for data collected with the241

Franka gripper. Such asymmetry in observations often occurs in cross-embodiment settings and242

provides us with the opportunity to study its impact on skill transfer.243

Contrastive Encoders and Decoders For the contrastive action model, we utilize standard multi-244

layer-perceptrons (MLPs) as encoders and decoders. After the input layer, for each hidden layer,245

we first have a normalization layer, then a linear layer, followed by a ReLU (rectified linear unit)246

activation and a dropout layer. The hidden layers are followed by a another layer normalization and247

a linear layer.248
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Figure 7: Detailed overview over the policy network architecture for an action chunk size k, action
dimension dact, an observation history Thist, a token dimension dtoken, a batch size B, and Nenc
transformer encoder layers. The observations are fixed as global conditioning during the diffusion
process whereas the noisy latent actions are updated with each denoising step.

6.4.2 Arm Pose Representation249

Setup #1: Faive Hand and Franka Gripper We represent the actions for the arm as deltas δarm ∈250

R6 in translation and rotation. The delta action for a given timestep t is computed as the difference251

of the reached poses at time t + 1 and t. The reached poses are all expressed in the base frame of252

the arm. For the end-effector poses, we use our proposed latent representation.253

Setup #2: mimic Hand and Franka Gripper We follow Chi et al. [20] by representing target254

arm poses as poses relative to the initial arm pose at the beginning of each action chunk. Target arm255

poses are obtained from the reached poses of the arm.256

6.5 Training Details257

Cross-Embodiment Training For co-training on differently sized datasets, we assign normalized258

weights wj to all datasets. During training, we seek to combine samples from all datasets to fill259

batches with B samples in total. We sample per-dataset sub-batches with appropriately rounded260

sizes round( B
wj

), project the actions into the shared latent action space, normalize the sub-batches,261

and then concatenate them into a single batch for efficient training. Through this mechanism, the262

weight of each dataset approximately represents a sampling probability for each training step. For263

all experiments, we utilize equal weights for all datasets that are used, such that the model is exposed264

to the same number of episodes from each embodiment.265

Contrastive Action Model: Human + Faive + Franka For training encoders, we found that a266

batch size of 4096 worked well with a learning rate of 0.001 using the Adam [21] optimizer. We used267

a weight decay of 0.0001. The temperature followed an exponentially decaying schedule, starting268

from 0.4 and reducing to 0.2. For training the decoders in a second step, the same hyperparameters269

were used, but with frozen weights for all encoders. A latent space dimension of 128 worked well270

to encode 189-dimensional human hand poses, 11-dimensional joint angles for the Faive hand, and271

1-dimensional parallel gripper widths. The hidden dimensions for the respective MLP encoders and272

decoders are 64, 24, and 24. We train the encoders for 300 epochs and the decoders for 50 epochs.273

Contrastive Action Model: mimic + Franka For training encoders, we found that a batch size274

of 16384 worked well with a learning rate of 0.00001 using the AdamW [22] optimizer. We used a275

weight decay of 0.001. The temperature followed an exponentially decaying schedule, starting from276

0.25 and reducing to 0.16. To jointly train the encoders and decoders in the second training stage,277

the same optimizer and learning rate were used. A latent space dimension of 16 worked well to278

encode 16-dimensional joint angles for the mimic hand, and 1-dimensional parallel gripper widths.279
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The hidden dimensions for the MLP encoders and decoders are 32, 128, 128, and 32. We train the280

encoders for 5000 epochs and the decoders for 10000 epochs.281

Diffusion Transformer: Faive + Franka We train our diffusion policies with a batch size of282

300 images and their corresponding action chunks with a horizon of 21 timesteps, corresponding283

to 2.1 seconds. The diffusion noise schedule is a squared cosine schedule with βstart = 0.0001 and284

βend = 0.02. The learning rate follows a cosine schedule with a warmup with a peak learning rate of285

0.0001. We utilize the Adam [21] optimizer over 90k gradient steps for single-embodiment policies286

and 120k gradient steps for co-trained policies. For co-training on the two similarly sized datasets287

with the Faive hand and the Franka gripper, we choose equal sampling weights.288

Diffusion U-Net: mimic + Franka We train our diffusion policies with a batch size of 256 images289

for Franka policies with one image observation and a batch size of 128 for cross-embodiment poli-290

cies with two observations. Action chunks are predicted with a horizon of 48 timesteps, correspond-291

ing to 3.2 seconds. The diffusion noise schedule is a squared cosine schedule with βstart = 0.0001292

and βend = 0.02. The learning rate follows a cosine schedule with a warmup with a peak learning293

rate of 0.0001. We utilize the AdamW [22] optimizer, training for 120 epochs for both single-294

embodiment and co-trained policies. For co-training we also choose equal sampling weights.295

6.6 Contrastive Action Model: Training Tips296

Throughout the development of the model architecture, we came across various qualitative insights297

for learning latent spaces with these models.298

Latent Space Dimensionality We found that in general, it is best to choose the largest size for the299

latent action space that the downstream policy can fit. This seems to be the most effective way of300

adding capacity to the action space model, but can conflict with downstream use in policy learning.301

Encoder/Decoder Capacity To add encoding and decoding capacity to the models, increasing302

the depth of the MLPs appears to be more effective than increasing the width. Both help, but we303

recommend to start increasing depth before width.304

Temperature The right temperature choice highly depends on the data that is being fitted. In305

general, higher temperatures may incur a lower contrastive loss, but can hinder the accuracy of self-306

and cross-reconstructions. We recommend to sweep over initial and final temperatures to identify307

values that work well.308

Training Duration With larger latent action space dimensions, the models seem to converge faster309

and require less training. With smaller action spaces, models take significantly longer to train.310

6.7 Additional Definitions311

Cross-Reconstruction (CR) Loss From modality i to j, given paired end-effector poses (xn
i , x

n
j ),312

the CR-Loss is:313

LCR(i,j) =
1

B

B∑
n=1

∣∣∣∣pj (qi (xn
i ))− xn

j

∣∣∣∣2
2

(7)

We encode data from modality xn
i , decode it to modality j and evaluate the result versus the paired314

ground truth data xn
j . The self-reconstruction (SR) loss is equivalent to LCR(i, i).315
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