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Abstract—Federated learning (FL) enables distributed resource-
constrained devices to jointly train shared models while keeping
the training data local for privacy purposes. Vertical FL (VFL),
which allows each client to collect partial features, has attracted
intensive research efforts recently. We identified the main
challenges that existing VFL frameworks are facing: the server
needs to communicate gradients with the clients for each training
step, incurring high communication cost that leads to rapid
consumption of privacy budgets. To address these challenges,
in this paper, we introduce a VFL framework with multiple
heads (VIM), which takes the separate contribution of each client
into account, and enables an efficient decomposition of the VFL
optimization objective to sub-objectives that can be iteratively
tackled by the server and the clients on their own. In particular, we
propose an Alternating Direction Method of Multipliers (ADMM)-
based method to solve our optimization problem, which allows
clients to conduct multiple local updates before communication,
and thus reduces the communication cost and leads to better
performance under differential privacy (DP). We provide the
client-level DP mechanism for our framework to protect user
privacy. Moreover, we show that a byproduct of VIM is that the
weights of learned heads reflect the importance of local clients.
We conduct extensive evaluations and show that on four vertical
FL datasets, VIM achieves significantly higher performance and
faster convergence compared with the state-of-the-art. We also
explicitly evaluate the importance of local clients and show that
VIM enables functionalities such as client-level explanation and
client denoising. We hope this work will shed light on a new way
of effective VFL training and understanding. 1

I. INTRODUCTION

Federated learning (FL) has enabled large-scale training with
data privacy guarantees on distributed data for different applica-
tions [80, 8, 31, 79, 77]. In general, FL can be categorized into
Horizontal FL (HFL) [52] where data samples are distributed
across clients, and Vertical FL (VFL) [77] where features of
the samples are partitioned across clients and the labels are
usually owned by the server (or the active party in two-party
setting [32]). In particular, VFL allows clients with partial
information of the same dataset to jointly train the model, which
leads to many real-world applications [36, 77, 31]. For instance,
a patient may go to different types of healthcare providers,
such as dental clinics and pharmacies for different purposes,

1Our code is available at: https://github.com/AI-secure/VFL-ADMM

and therefore it is important for different healthcare providers
(i.e., VFL clients/data owners/organizations) to “share" their
information about the same patient (i.e., partial features of the
same sample) to better model the health condition of the patient.
In addition, nowadays multimodal data has been ubiquitous,
while usually, each client is only able to collect one or a few
data modalities due to resource limitations. Therefore, VFL
provides an effective way to allow such clients to train a model
leveraging information from different data modalities jointly.

Despite the importance and practicality of VFL, the state-
of-the-art (SOTA) VFL frameworks suffer from notable weak-
nesses: since the clients own the local features and the server
holds the whole labels, the server needs to calculate training
loss based on the labels and then send gradients to clients for
each training step to update their local models [70, 12, 40],
which incurs high communication cost and leads to potential
rapid consumption of the privacy budget.

To solve the above challenges, in this work, we propose
an efficient VFL optimization framework with multiple heads
(VIM), where each head corresponds to one local client. VIM
takes the individual contribution of clients into consideration
and facilitates a thorough decomposition of the VFL optimiza-
tion problem into multiple subproblems that can be iteratively
solved by the server and the clients. In particular, we propose
an Alternating Direction Method of Multipliers (ADMM) [7]-
based method that splits the overall VIM optimization objective
into smaller sub-objectives, and the clients can conduct multiple
local updates w.r.t their local objectives at each communication
round with the coordination of ADMM-related variables. This
leads to faster model convergence and significantly reduces
the communication cost, which is crucial to preserve privacy
because the privacy cost of clients increases when the number of
communication rounds increases [1, 53], due to the continuous
transmission of sensitive local information. We consider two
typical VFL settings: with model splitting (i.e., clients host
partial models) and without model splitting (i.e., clients hold
the entire model). Under with model splitting setting, we
propose an ADMM-based algorithm VIMADMM under VIM
framework. Compared to gradient-based methods, VIMADMM
not only reduces communication frequency but also reduces the
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TABLE I: Comparison between our work and existing VFL studies.
VFL Setup Method Support DNN Support N > 2 parties Labels only held by one party Support multiple local updates Privacy guarantee

w/ model splitting

VAFL [12], VFL-PBM [68] ✓ ✓ ✓ × ✓
Split Learning [70] ✓ ✓ ✓ × ×

FedBCD [48] ✓ ✓ ✓ ✓ ×
CELU-VFL ✓ × ✓ ✓ ×

Flex-VFL [10] ✓ ✓ × ✓ ×
VIMADMM (Ours) ✓ ✓ ✓ ✓ ✓

w/o model splitting

Fu et al. [25], FDML [36] ✓ ✓ × × ×
AdaVFL [83], CAFE [39] ✓ ✓ × ✓ ×
Linear-ADMM [35] × ✓ ✓ ✓ ✓
VIMADMM-J (Ours) ✓ ✓ ✓ ✓ ✓

dimensionality by only exchanging ADMM-related variables.
We provide convergence analysis for VIMADMM and prove that
it can converge to stationary points with mild assumptions. With
modifications of communication strategies and updating rules
for servers and clients, we extend VIMADMM to the without
model splitting setting and introduce VIMADMM-J. Under both
settings, to further protect the privacy of the local features held
by clients, we introduce privacy mechanisms that clip and
perturb local outputs to satisfy client-level differential privacy
(DP) [20, 19, 21, 52] and prove the DP guarantees. Moreover,
we offer a basic solution to separately protect the privacy of
labels owned by server, leveraging the established label-DP
mechanism ALIBI [51] that perturbs the labels. Finally, we
show that a byproduct of VIM is that the weights of learned
heads reflect the importance of local clients, which enables
functionalities such as client-level explanation, client denoising,
and client summarization. Our main contributions are:
• We propose an efficient and effective VFL optimization

framework with multiple heads (VIM). To solve our opti-
mization problem, we propose an ADMM-based method,
VIMADMM, which reduces communication costs by allowing
multiple local updates at each step.

• We theoretically analyze the convergence of VIMADMM and
prove that it can converge to stationary points.

• We introduce the client-level DP mechanism for our VIM
framework and prove its privacy guarantees.

• We conduct extensive experiments on four diverse datasets
(i.e., MNIST, CIFAR, NUS-WIDE, and ModelNet40), and
show that ADMM-based algorithms under VIM converge
faster, achieve higher accuracy, and remain higher utility
under client-level DP and label DP than four existing VFL
frameworks.

• We evaluate our client-level explanation under VIM based
on the weights norm of the heads, and demonstrate the
functionalities it enables such as clients denoising and
summarization.

II. RELATED WORK

a) Vertical Federated Learning: VFL has been well
studied for simple models including trees [13, 74], kernel
models [30], and linear and logistic regression [32, 78, 84,
24, 35, 46]. For instance, Hardy et al. [32] propose secure
logistic regression for two-party VFL with homomorphic
encryption [64, 28] and multiparty computation [4, 6]. However,
a limitation of these methods is the performance constraint
associated with the logistic regression. Subsequent research
has expanded the scope of VFL to encompass Deep Neural

Networks (DNNs), facilitating VFL training with a larger
number of clients and on large-scale models and datasets.
For DNNs, there are two popular VFL settings: with model
splitting [70, 40, 12] and without model splitting [36, 39].

In the with model splitting setting, Split Learning [70]
is the first related paradigm, where each client trains a partial
network up to a cut layer, the server concatenates local
activations and trains the rest of the network. VAFL [12] is
proposed for asynchronous VFL where the server averages
the local embeddings and sends gradients back to clients to
update local models. However, such embedding averaging
might lose the unique properties of each client. FedMVT [40]
focuses on the semi-supervised VFL with multi-view learning.
C-VFL [11] proposes embedding compression techniques to
improve communication efficiency. However, we note that
these methods [70, 12, 40, 11] still require the communication
of gradients (w.r.t embeddings) from server to the client at
each training step, leading to high communication frequency
and communication cost before convergence. Recent research
efforts have sought to reduce VFL communication frequency
by allowing clients to make multiple local updates at each
round. Particularly, in FedBCD [48], after obtaining gradi-
ents from the server, clients update local models using the
same stale gradients for multiple steps. Building upon this,
CELU-VFL [26] enhances the performance of FedBCD by
caching stale gradients from earlier rounds and reusing them to
estimate better model gradients at current round. Nonetheless, it
is limited to supporting only two clients (party A and B, with B
holding the labels) and cannot be directly extended to scenarios
with more than two parties, as our study considers (specifically,
it lacks a design to aggregate information from more parties).
On another note, Flex-VFL [10] allows each party to undergo
a different number of local updates constrained by a set timeout
for every round. Yet, it assumes that clients possess copies of
labels and receive local embeddings from other clients, enabling
them to compute local gradients independently for multi-
step local updates. In contrast, we propose an ADMM-based
framework that enables multiple local updates and assumes
that only the server possesses labels, which cannot be shared
with other clients due to privacy restriction [25].

For VFL without model splitting setting, each client submits
local logits to the server, who then averages over the logits and
send gradients w.r.t logits back to clients, as detailed in Fu et
al. [25]. Several other approaches assume that the server shares
both labels and aggregated logits with the clients, enabling them
to locally compute the gradient [36, 83]. FDML [36] performs
one step of local update at each round for asynchronous and
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distributed SGD. Considering that certain clients might have
slower local computation speeds, AdaVFL [83] optimizes the
number of local updates for each client at each round to
minimize overall time. Meanwhile, CAFE [39] directly applies
FedAvg [52] from Horizonta FL to VFL where all clients
possess the labels and can exchange the model parameters with
others for model aggregation. This deviates from the standard
VFL setup where only the server retains the label and local
models cannot be shared owing to privacy implications [25].

b) Differentially Private VFL: In existing VFL frame-
works, VAFL [12] provides Gaussian DP guarantee [17] and
VFL-PBM [68] quantizes local embeddings into DP integer
vectors. However, they do not calculate the exact privacy budget
in the evaluation. FDML [36] evaluate their framework under
different levels of empirical noises, yet without offering detailed
DP mechanisms or DP guarantee. The ADMM-based linear
VFL framework (abbreviated to Linear-ADMM) [35] provides
(ϵ, δ)-DP guarantee for linear models by calculating the closed-
form sensitivity of each sample and perturbing the linear model
parameters, which is not directly applicable to DNNs whose
sensitivity is hard to estimate due to the nonconvexity. Instead,
we propose to perturb local outputs and provide formal client-
level (ϵ, δ)-DP theoretical guarantee in Section V.

We provide an overall comparison between our work and
existing studies in Table I.

III. VFL WITH MULTIPLE HEADS (VIM)
In this section, we start with the VFL background in

Section III-A, and then discuss VFL with model splitting
setting and introduce our framework VIM and ADMM-based
method VIMADMM in Section III-B. Finally, we show that our
ADMM-based method can be easily extended to VFL without
model splitting setting with slight modifications on commu-
nication strategies and update rules, yielding VIMADMM-J in
Section III-C.

A. VFL Background
Typically in VFL, there are M clients who hold different

feature sets of the same training samples and jointly train the
machine learning models. We consider the classification task
and denote dc as the number of classes. Suppose there is a
training dataset D = {xj , yj}Nj=1 containing N samples, the
server owns the labels {yj}Nj=1, and each client k has a local
feature set Xk = {xkj }Nj=1, where the vector xkj ∈ Rdk denotes
the local (partial) features of sample j. The overall feature
xj ∈ Rd of sample j is the concatenation of all local features
{x1j , x2j , . . . , xMj }, with d =

∑M
k=1 d

k.
Due to the privacy protection requirement of VFL, each

client k does not share raw local feature set Xk with other
clients or the server. Instead, VFL consists of two steps: (1)
local processing step: each client learns a local model that
maps the local features to local outputs and sends them to the
server. (2) server aggregation step: the server aggregates the
local outputs from all clients to compute the final prediction for
each sample as well as the corresponding losses. Depending on
whether or not the server holds a model, there are two popular
VFL settings [25]: VFL with model splitting [12, 70] and VFL

without model splitting [36]: (i) In the model splitting setting,
each client trains a feature extractor as the local model that
outputs local embeddings, and the server owns a model which
predicts the final results based on the aggregated embeddings.
(ii) In the VFL without model splitting setting, the clients
host the entire model that outputs the local logits, and the
server simply performs the logits aggregation operation without
hosting any model.

In both settings, the local model is updated based on SGD
with federated backward propagation [25]: a) server first
computes the gradients w.r.t the local output (either embeddings
or logits) from each client separately and sends the gradients
back to clients; b) each client calculates the gradients of local
output w.r.t the local model parameters and updates the local
model using the chain rule.

B. VFL with Model Splitting
a) Setup: Let f parameterized by θk be the local model

(i.e., feature extractor) of client k, which outputs a local
embedding vector hkj = f(xkj ; θk) ∈ Rdf for each local feature
xkj . We denote the parameters of the model on the server-side
as θ0. Overall, the clients and the server aim to collaboratively
solve the Empirical Risk Minimization (ERM) objective:

min
{θk},θ0

1

N

N∑
j=1

ℓ({h1
j , . . . , h

M
j }, yj ; θ0) +

M∑
k=1

βkR(θk) + βR(θ0) (1)

where ℓ is a loss function (e.g., cross-entropy loss with softmax),
R is a regularizer on model parameters, and βk ∈ R is
the regularization weight for client k, and β is the weight
for server. The local embeddings for each sample j can
be either concatenated together hj = [h1j , . . . , h

M
j ] as in

Split Learning [70] or averaged hj =
∑M
k=1 αkh

k
j with

aggregation weights αk ∈ R as in VAFL [12]. Then hj is
used as the input for server model θ0 to calculate the loss.
For more detailed description of the training algorithm Split
Learning under VFL with model splitting, please refer to
Algorithm 2 in Appendix A1.

However, as outlined in Section III-A, these VFL methods
are based on SGD and depend on the server model θ0 to
complete the loss and gradient calculation using server labels
for updating local models {θk}. Consequently, the server
needs to send the gradient w.r.t embeddings back to clients
at every training step of the local models. Such (1) frequent
communication and (2) high dimensionality of gradients (i.e.,
bdf for b samples) lead to high communication costs.

b) VIM Formulation: To address these challenges, we
propose the VIM framework where the server learns a model
with multiple heads corresponding to multiple local clients.
It takes the separate contribution of each client into account
and facilitates the breakdown of the VFL optimization into
several sub-problems to be solved by clients and the server
independently via ADMM without communicating gradients,
as we will elaborate on later. Specifically, the server’s model
θ0 consists of M heads W1,W2, . . . ,WM where Wk ∈
Rdf×dc , k ∈ [M ]. For the sake of simplicity, we consider
each Wk to be a linear head here, and our formulation can
be easily extended to the non-linear heads by viewing each
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Wk as a non-linear model (see the end of Section III-B
for more details). This is motivated by the recent studies in
representation learning, which have shown that learning a linear
classifier is sufficient to accurately predicting the labels on top
of embedding representations [60, 41], given the expressive
power of the local feature extractor that captures essential
information from raw feature sets. For sample j, the server’s
model outputs ŷj =

∑M
k=1 h

k
jWk as the prediction, yielding

our VIM objective:

min
{Wk},{θk}

LVIM({Wk}, {θk}) :=
1

N

N∑
j=1

ℓ

(
M∑
k=1

f(xkj ; θk)Wk, yj

)

+

M∑
k=1

βkRk(θk) +
M∑
k=1

βkRk(Wk) (2)

c) VIMADMM: Based on the VIM formulation, we
propose an ADMM-based method, reducing the communication
frequency by allowing the clients to perform multiple local
updates w.r.t their ADMM objectives at each round, and
reducing the dimensionality by only exchanging ADMM-
related variables (i.e., (2b + df )dc for b samples where
dc ≪ df , b for most VFL settings today [12, 36]). Specifically,
we note that Eq. 2 can be viewed as the sharing problem [7]
involving each client adjusting its variable to minimize the
shared cost term ℓ(

∑M
k=1 h

k
jWk, yj) as well as its individual

cost R(θk) +R(Wk). Moreover, the multiple heads in VIM
enable the application of ADMM via a special decomposition
into simpler sub-problems that can be solved in a distributed
manner. We begin by rewriting Eq. 2 to an equivalent con-
strained optimization problem by introducing auxiliary variables
z1, z2, . . . , zN ∈ Rdc :

min
{Wk},{θk},{zj}

1

N

N∑
j=1

ℓ(zj , yj) +

M∑
k=1

βkRk(θk) +
M∑
k=1

βkRk(Wk)

s.t.
M∑
k=1

f(xkj ; θk)Wk − zj = 0,∀j ∈ [N ]. (3)

Notably, each constraint implies a consensus between the
server’s output

∑M
k=1 h

k
jWk and the auxiliary variable zj for

each sample j. The augmented Lagrangian, which adds a
quadratic term to the Lagrangian of Eq. 3, is given by:

min
{Wk},{θk},{zj},{λj}

LADMM({Wk}, {θk}, {zj}, {λj})

:=
1

N

N∑
j=1

ℓ(zj , yj) +

M∑
k=1

βkRk(θk) +
M∑
k=1

βkRk(Wk)

+
1

N

N∑
j=1

λ⊤j (

M∑
k=1

f(xkj ; θk)Wk − zj)

+
ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xkj ; θk)Wk − zj

∥∥∥∥∥
2

F

, (4)

where λj ∈ Rdc is the dual variable for sample j, and ρ ∈ R+ is
a constant penalty factor. Recall that ŷj =

∑M
k=1 f(x

k
j , θk)Wk

is the server output (i.e., prediction) for sample xj . VIMADMM
essentially aims to minimize the loss between zj and ground-
truth label yj , as well as the difference between zj and ŷj

during training. Specifically, as shown in the ADMM loss
(Eq. 4), l(zj , yj) is the loss between zj and yj , while ŷj−zj =∑M

k=1 f(x
k
j , θk)Wk − zj appears in the linear constraint and

quadratic constraint terms. The auxiliary variables {zj} and
dual variables {λj} are used to facilitate the training of server
heads {Wk} and local models {θk}.

To solve Eq. 4, we follow standard ADMM [7] and update
the primal variables {Wk} , {θk}, {zj} and the dual variables
{λj} alternatively, which decomposes the problem in Eq. 3
into four sets of sub-problems over {Wk}, {θk}, {zj}, {λj},
and the parameters in each sub-problem can be solved in
parallel. In practice, we propose the following strategy for
the alternative updating in the server and clients: (i) updating
{zj}, {λj} and {Wk} at server-side, (ii) updating {θk} at
the client-side in parallel. Moreover, we consider the realistic
setting of stochastic ADMM with mini-batches. Concretely,
at communication round t, the server samples a set of data
indices, B(t), with batch size |B(t)| = b. Then we describe
the key steps of VIMADMM as follows:

(1) Communication from client to server. Each client k
sends a batch of embeddings {hkj

(t)}j∈B(t) to the server, where

hkj
(t)

= f(xkj ; θ
(t)
k ) ,∀j ∈ B(t).

(2) Sever updates auxiliary variables {zj}. After receiving
the local embeddings from all clients, the server updates the
auxiliary variable for each sample j ∈ B(t) as:

z
(t)
j = argmin

zj

ℓ(zj , yj)−λ(t−1)j

⊤
zj+

ρ

2

∥∥∥∥∥
M∑
k=1

hkj
(t)
W

(t)
k − zj

∥∥∥∥∥
2

F

.

(5)
Since the optimization problem in Eq. 5 is convex and
differentiable with respect to zj , we use the L-BFGS-B
algorithm [85] to solve the minimization problem.

(3) Sever updates dual variables {λj}. The server updates
dual variable for each sample j ∈ B(t):

λ
(t)
j = λ

(t−1)
j + ρ

(
M∑
k=1

hkj
(t)
W

(t)
k − z

(t)
j

)
. (6)

(4) Sever updates the heads {Wk}. Each head Wk,∀k ∈
[M ] of the server is then updated:

W
(t+1)
k = argmin

Wk

βkRk(Wk) +
1

b

∑
j∈B(t)

λ
(t)
j

⊤
hkj

(t)
Wk

+
∑
j∈B(t)

ρ

2b

∥∥∥∥∥∥
∑

i∈[M ],i̸=k

hij
(t)
Wi

(t) + hkj
(t)
Wk − zj(t)

∥∥∥∥∥∥
2

F

.

(7)
For squared ℓ2 regularizer R, we can solve W

(t+1)
k in an

inexact way to save the computation by one step of SGD with
the objective of Eq. 7.

(5) Communication from server to client. After the updates
in Eq. 7, we define a residual variable skj

(t+1) for each sample
j ∈ B(t) of k-th client, which provides supervision for
updating local model:

skj
(t)

≜ zj
(t) −

∑
i∈[M ],i̸=k

hij
(t)
Wi

(t+1) (8)
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Algorithm 1 VIMADMM ( with user-level differential privacy)

1: Input:number of communication rounds T , number of
clients M , number of training samples N , batch size
b , input features {{x1

j}Nj=1, {x2
j}Nj=1, . . . , {xM

j }Nj=1},
the labels {yj}Nj=1, local model {θk}Mk=1; linear heads
{Wk}Mk=1; auxiliary variables {zj}Nj=1; dual variables {λj}Nj=1;

noise parameter σ, clipping constant C
2: for communication round t ∈ [T ] do
3: Server samples a set of data indices B(t) with |B(t)| = b
4: for client k ∈ [M ] do
5: generates a local training batch {xk

j }j∈B(t)

6: computes local embeddings {hk
j

(t) ← f(x
k
j ; θk)}j∈B(t)

7: clips and perturbs local embedding matrix

8: {hk
j

(t)}j∈B(t) ← Clip
(
{hk

j

(t)}j∈B(t), C
)
+N

(
0, σ

2
C

2
)

9: sends local embeddings {hk
j
(t)}j∈B(t) to the server

10: Server updates auxiliary variables {z(t)j }j∈B(t) by Eq. 5
11: Server updates dual variables {λ(t)

j }j∈B(t) by Eq. 6
12: Server updates linear heads {W (t+1)

k }k∈[M ] by Eq. 7
13: Server computes residual variables {skj

(t)}j∈B(t),k∈[M ] by
Eq. 8

14: Server sends {λ(t)
j }j∈B(t) , {skj

(t)}j∈B(t) and corresponding
W

(t+1)
k to each client k, ∀k ∈ [M ]

15: for client k ∈ [M ] do
16: updates local model θ(t+1)

k for τ steps by Eq. 9 via SGD

The server sends the dual variables {λ(t)j }j∈B(t) and the

residual variables {skj
(t)}j∈B(t) of all samples, as well as the

corresponding head W (t+1)
k to each client k.

(6) Client updates local model parameters θk. Finally, every
client k locally updates the model parameters θk as follows:

θ
(t+1)
k =argmin

θk

βkRk(θk) +
1

b

∑
j∈B(t)

λ
(t)
j

⊤
f(xkj ; θk)W

(t+1)
k

+
ρ

2b

∑
j∈B(t)

∥∥∥skj (t) − f(xkj ; θk)W (t+1)
k

∥∥∥2
F
. (9)

Due to the nonconvexity of the loss function of DNNs, we
use τ local steps of SGD to update the local model at each
round with the objective of Eq. 9. We note that multiple
local updates of Eq. 9 enabled by ADMM lead to better local
models at each communication round compared to gradient-
based methods, thus VIMADMM requires fewer communication
rounds to converge as we will show in Section VI-A. These
six steps of VIMADMM are summarized in Algorithm 1.

Note that ADMM auxiliary variables {zj} and dual variables
{λj} are only used during the training phase to help update
server heads and local models. Therefore, in the test phase,
for any sample x, the server directly uses the trained multiple
heads to make prediction ŷ =

∑M
k=1 h

kWk.
d) Extending VIMADMM to multiple non-linear heads:

The server can learn non-linear transformation from the
collected embeddings to uxiliary variables {zj} by employing
multiple non-linear heads. To achieve this, we rewrite all
f(xkj , θk)Wk as a more generalized form g(f(xkj , θk),Wk)
from Eq. 2 to Eq. 9. Here, g can be a non-linear function
parameterized by Wk. Consequently, the prediction for each
sample j becomes ŷj =

∑M
k=1 g(f(x

k
j , θk),Wk). In this

context, VIMADMM still aims to minimize the loss between
zj and ground-truth label yj , as well as the difference between
zj and ŷj during training in Eq. 4.

C. VFL without Model Splitting

a) Setup: Recall the VFL without model splitting setting
described in § III-A. Let g parameterized by ψk be the local
model (i.e., whole model) of client k, which outputs local
logits okj = g(xkj ;ψk) ∈ Rdc for each local feature xkj . The
clients and the server aim to jointly solve the problem

min
{ψk}Mk=1

1

N

N∑
j=1

ℓ({o1j , . . . , oMj }, yj)+βk
M∑
k=1

Rk(ψk),∀k ∈ [M ]

(10)
b) VIMADMM-J: In exisiting VFL frameworks, the server

averages the local logits as final prediction
∑M
k=i o

k
j , but these

methods also suffers from the high communication cost by
sending the gradients w.r.t. local logits to each client at each
training step of the local model [25]. To solve this problem with
our VIM framework, we adapt VIMADMM to the without model
splitting setting and propose VIMADMM-J, where each feature
extractor θk and each head Wk are held by the corresponding
client k, and are always updated locally. The corresponding
Algorithm 3 and detailed description are in Appendix A.

IV. CONVERGENCE ANALYSIS FOR VIMADMM

In this section, we provide the convergence guarantee for
VIMADMM, which is non-trivial due to the complexity of
the alternative optimization between four sets of parameters
{Wk}, {θk}, {zj}, {λj}. To convey the salient ideas of conver-
gence analysis, we consider full batch, i.e., B(t) = [N ] and use
the exact minimization solutions during training (Eq. 5, 6, 7)
following [34].

We present our main results below and defer formal proofs
to Appendix B due to space constraints.

Theorem 1. Assume that LVIM is bounded from below, that
is e := min{θk},{Wk} LVIM({θk}, {Wk}) > −∞. Assume that
ℓ(z; ·) is L-Lipschitz smooth w.r.t z and LADMM loss is strongly
convex w.r.t {zj}, {Wk}, {θk} with constant µz, µW , µθ respec-
tively. Assume that the norm of Wk is bounded ∥Wk∥ ≤ σW ,
the local model f(·; θ) has bounded gradient ∥∇f(·; θ)∥ ≤ Lθ
and bounded output norm ∥f(·; θ)∥ ≤ σθ. If Algorithm 1
is run, and there exists a ρ satisfying max{L, 2L

2

µz
} < ρ <

min{ µθ

L2
θσ

2
W
, µW

σ2
θ
}, then we have the following:

(A) LADMM loss is monotonically decreasing and lower-
bounded:

LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t+1)
j }, {λ(t+1)

j })

< LADMM({W (t)
k }, {θ

(t)
k }, {z

(t)
j }, {λ

(t)
j }) (11)

lim
t→∞

LADMM({W (t)
k }, {θ

(t)
k }, {z

(t)
j }, {λ

(t)
j }) ≥ e (12)

(B) Let ({W ∗k }, {θ∗k}, {z∗j }, {λ∗j}) denote any limit points of the
sequence ({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t+1)
j }) generated

5



by Algorithm 1, then it is stationary:

z∗j ∈ argmin
zj

ℓ (zj ; yj) + λ∗j
⊤

(
M∑
k=1

f(xkj ; θ
∗
k)W

∗
k − zj

)
and

M∑
k=1

f(xkj ; θ
∗
k)W

∗
k = z∗j ,∀j ∈ [N ], and

βk∇Rk(W ∗k ) +
1

N

N∑
j=1

λ∗⊤j f(xkj ; θ
∗
k) = 0 and

βk∇Rk(θ∗k) +
1

N

N∑
j=1

λ∗⊤j ∇f(xkj ; θ∗k)W ∗k = 0, k ∈ [M ].

(13)

Proof Sketch. We obtain Eq. (11) by breaking down the
changes of loss LADMM at each round t into the alternatively
updates of four components: {λ(t+1)

j }, {z(t+1)
j }, {W (t+1)

k },
and {θ(t+1)

k }, respectively. Through our assumptions and the
optimality of the minimizers, we demonstrate that the combined
loss decreases at each round. Next, to derive Eq. (12), we
leverage the Lipschitz continuity of ℓ, the condition ρ ≥ L,
the lower bound of LVIM, and the fact that the quadratic loss
term in LADMM is non-negative. Finally, by letting t → ∞
and examining the optimality conditions of the minimizers, we
drive Eq. (13).

Remark. Theorem 1 (A) shows that VIMADMM converges,
measured by the monotonically decreasing and convergent loss,
and (B) establishes that any limit point is a stationary solution
to the problem 4. Note that we make several assumptions in
Theorem 1 to derive the above guarantees, as often made in
ADMM analysis [34] for alternative optimization of multiple
sets of variables. Specifically, we follow Hong et al. [34]
to assume convexity, Lipschitz smoothness, and the bounded
loss for convergence analysis of VIMADMM. Furthermore, we
acknowledge that analyzing the local model can be challenging,
given the complexity of DNNs, so we introduce an additional
assumption that bounds the norm of the gradient and the output
of local models, which could be practical when the model
training exhibits stability. Similarly, we assume a bounded
norm for the server model. By incorporating these assumptions,
we aim to offer a more comprehensive understanding of the
convergence behavior of VIMADMM.

V. CLIENT-LEVEL DIFFERENTIALLY PRIVATE VIM

While the raw features and local models are kept locally
without sharing in VFL, sharing the model outputs such as
local embeddings or predictions during the training process
might also leak sensitive client information [50, 57]. Therefore,
we aim to further protect the privacy of the local feature set Xk

of each client k against potential adversaries such as honest-
but-curious server and clients, and external attackers.

a) Threat Model: We consider different types of potential
adversaries based on their capabilities: (1) Honest-but-curious
server and clients: they follow the VFL protocol correctly but
might try to infer private client information from information

exchanged between the clients and server [68]. (2) External
attackers: they are not directly involved in the VFL process
but may observe the predicted results from the server and the
communicated information during training, trying to extract
private client information. Regarding attack scenarios, these
attackers may conduct membership inference attacks [65] to
determine whether the data of a specific VFL client was
included during training. Our goal is to protect the local data of
each client against potential attackers so that the attacker cannot
make significant inferences about any single client’s data. Next,
we provide privacy-preserving mechanisms to satisfy client-
level differential privacy (DP) guarantees.

b) Client-level DP: We begin with the (ϵ, δ)-DP def-
inition, which guarantees that the change in a randomized
algorithm’s output distribution caused by an input difference
is bounded.

Definition 1 ((ϵ, δ)-DP [21]). A randomized algorithm M :
Xn 7→ Θ is (ϵ, δ)-DP if for every pair of neighboring
datasets X,X ′ ∈ Xn (i.e., differing only by one sample), and
every possible (measurable) output set E ⊆ Θ the following
inequality holds: Pr[M(X) ∈ E] ≤ eϵ Pr [M (X ′) ∈ E] + δ.

Next, we introduce client-level (ϵ, δ)-DP [54], which guar-
antees that the algorithm’s output would not be changed much
by differing one client.

Definition 2 (Client-level (ϵ, δ)-DP [54]). Let X and X ′ be
adjacent datasets if they differ by all samples associated with a
single client2. The mechanismM satisfies client-level (ϵ, δ)-DP
if it meets Definition 1 with X and X ′ as adjacent datasets.

Remark. (1) Client-level DP protects the privacy of all
local samples of each client [54]. The neighboring datasets in
client-level DP are defined between client-adjacent datasets,
denoted by X = {X1, . . . , Xk, . . . , XM} and X ′ =
{X1, . . . , X

′
k, . . . , XM} for some client k. The algorithm’s

output should not change significantly if a single client’s entire
dataset is changed. (2) User-level DP is another prevalent
privacy notion in FL literature, and its definition depends on
how “user” is interpreted. If a “user” denotes a client/data owner
in FL, then user-level DP aligns with client-level DP [27, 54, 2].
Additionally, a “user” in VFL might refer to an entity con-
tributing different samples with partial features, where M VFL
clients hold disjoint partial features {x1j , x2j , . . . , xMj } about
the same user j [15, 62]. For example, different healthcare
providers (VFL clients such as dental clinics and pharmacies)
can hold different features about the same patient (user). In
such cases, neighboring datasets are defined as those differing
by all local samples associated with one user across all VFL
client datasets. In this work, we focus on client-level DP due
to its widespread adoption in FL [54].

Since the only shared information from clients is their
local outputs, denoted as Ak for k-th client, we leverage
the following DP mechanisms to perturb the local outputs

2We consider the “zero-out” notion for the neighboring dataset, following
[59]: datasets are adjacent if any one client’s local data is replaced with the
special “zero” data (exactly zero for numeric data).

6



of each client k at every round t: (1) clip the whole local
output matrix (either embeddings Ak(t) = {hkj

(t)}j∈B(t) or

logits Ak(t) = {okj
(t)}j∈B(t) ) with threshold C such that

the ℓ2-sensitivity for each client is upper bounded by C.
That is, Clip (Ak, C) = Ak · min

(
1, C
∥Ak∥F

)
where ∥ · ∥F

is the Frobenius norm3. (2) Then we add scalar Gaussian
noise independently to each cell of the matrix. The noise
is sampled from N (0, σ2C2), which is proportional to C
and can randomize the local output matrix of each client:
Ak ← Clip (Ak, C) + N

(
0, σ2C2

)
. Based on the above

modification to Algorithm 1 and 3, we now provide their
privacy guarantee in Theorem 2.

Theorem 2. Given a total of M clients, T communication
rounds, clipping threshold C and noise level σ, DP versions
of Algorithm 1, 3 satisfy client-level ( Tα2σ2 + log α−1

α −
log δ+logα

α−1 , δ)-DP for any α > 1 and 0 < δ < 1.

Proof Sketch. We derive the privacy guarantee using Rényi
Differential Privacy (RDP) [56] as a bridge. We first leverage
the RDP guarantee for the Gaussian mechanism [56] to analyze
the privacy cost for one communication round under local out-
put perturbation. Then we use RDP Composition property [56]
to accumulate the privacy costs over T communication rounds.
Finally, we convert client-level RDP guarantee into client-level
DP guarantee [3]. Detailed proofs are deferred to Appendix C.

Remark. Since DP mechanisms (i.e., clipping and noise
addition), are applied to each client’s outputs (i.e., embedding
or logits matrix) locally, these local outputs satisfy client-level
local DP, protecting against privacy attacks from other clients,
server or external attackers. That is, by observing the local
outputs matrix of one client, other parties cannot determine the
presence of that client’s actual training data. The concatenated
output matrix from all clients satisfies the same client-level
DP guarantee based on DP parallel composition [55], due to
non-overlapping nature of local data among clients.

Note that the aforementioned DP mechanisms do not protect
the privacy of labels held by server. Therefore, we separately
use state-of-the-art label DP mechanism [51] to protects server’s
label privacy via label perturbing, and conduct empirical
evaluations of our method under label DP in Section VI-B2.

VI. EXPERIMENTS

We conduct extensive experiments on four VFL datasets.
We show that our proposed framework VIM achieves signif-
icantly faster convergence and higher accuracy than SOTA
(Section VI-A), maintains higher utility under client-level
DP and label DP (Section VI-B), and enables client-level
explainability (Section VI-C).

1) Data and Models: We consider classification tasks on
four datasets: MNIST [43], CIFAR [42], multi-modality dataset
NUS-WIDE with image and textual features [14], and multi-
view dataset ModelNet40 [66].

3The Frobenius norm for a m × n matrix A is ∥A∥F =√∑m
i=1

∑n
j=1 |aij |

2

• MNIST [43] contains images with handwritten digits. We
create the VFL scenario by splitting the input features
evenly by rows for 14 clients. We use a fully connected
model of two linear layers with ReLU activations as the
local model.

• CIFAR [42] contains colour images. We split each image
into patches for 9 clients. We use a standard CNN
architecture from the PyTorch library 4 as the local model.

• NUS-WIDE [14] is a multi-modality dataset with 634
low-level image features and 1000 textual tag features.
We distribute image features to 2 clients (300 dim and
334 dim), and text features to 2 clients (500 dim and 500
dim). We use a fully connected model of two linear layers
with ReLU activations as the local model.

• ModelNet40 [66] is a multi-view image dataset, containing
the shaded images from 12 views for the same objects. We
use 4 views and distribute them to 4 clients respectively.
We use ResNet-18 [33] as the local model.

We split each dataset into the train, validation, and test sets.
See Table II for more details about the number of samples and
the number of classes for each dataset.

TABLE II: Dataset description.

Dataset # features # classes # clients # samples
dc M train validation test

MNIST 28 × 28 10 14 54000 6000 10000

CIFAR 32 × 32 × 3 10 9 45000 5000 10000

NUS-WIDE 1634 5 4 54000 6000 10000

ModelNet40 224 × 224 × 3 ×12 40 4 8877 966 2468

To prevent over-fitting (due to the potential over-
parameterization with the large number of model parameters
from all clients and server as a global model), we adopt standard
stopping criteria, i.e., stop training when the model converges
or the validation accuracy starts to drop more than 2%. More
details about setups and hyperparameters are in Appendix D.

2) Baselines: We (1) compare VIMADMM with VAFL [12]
Split Learning [70], and FedBCD [48] under w/ model
splitting setting; (2) compare VIMADMM-J with FDML [36]
under w/o model splitting setting. Particularly, in VAFL, the
server aggregates local embeddings using their linear combi-
nation with learnable aggregation weights, and subsequently
use these aggregated embeddings as input for the server model.
Both Split Learning and FedBCD utilize concatenated
local embeddings as server model input. Notably, in VAFL and
Split Learning, the clients only perform one step of local
update based the partial gradients from the server. Conversely,
FedBCD employs the same (stale) partial gradients for τ local
updates. In FDML, the server averages local logits, and sends
aggregated logits back to clients at eatch communication round.
The clients, who owns the copies of labels, can calculate
the local gradient and execute one step of local update. Our
empirical findings suggest that our ADMM-based methods
outperform the aforementioned methods, due to the multiple
local updates that utilize ADMM-related variables.

For fair comparisons, we use the same local models for all
methods. Under w/ model splitting setting, owing to the strong

4https://github.com/pytorch/opacus
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Fig. 1: Test accuracy of VFL methods under with model (first row) and without splitting (second row) settings on four datasets. Our methods
(VIMADMM and VIMADMM-J) outperforms baselines due to multiple local updates enabled by ADMM (τ > 1). Compared with FedBCD
under different number of local steps τ , VIMADMM also achieves faster convergence and higher accuracy, which shows that the strategic
utilization of ADMM-related variables in VIMADMM is more effective than the stale partial gradient in FedBCD for local updates.

feature extraction power of local DNN models, we utilize
the linear model as server model by default. Additionally,
we evaluate all methods with the non-linear server model, as
detailed in Section VI-A2.

We further compare the utility of various VFL methods under
differential privacy. Existing VFL frameworks (see Table I)
focus on sample-level DP [12, 36, 35, 68, 15, 62], where
neighboring datasets are defined as those differing by a single
sample in a client’s local dataset. In particular, VAFL [12]
adds random noise to the output of each local embedding
convolutional layer; VFL-PBM [68] quantizes local embeddings
into differentially private integer vectors; FDML [36] and
Linear-ADMM [35] add noise to local outputs. However, these
methods lack exact privacy budget evaluations, providing only
empirical utility under different levels of noise. Additionally,
[62] perturbs local model weights to satisfy DP. However, it
requires bounding the sensitivity of each layer’s weights in
the local model. To enable a fair comparison of VFL methods
under DP guarantees, we evaluate all methods through our
proposed DP mechanisms with perturbed local outputs to
satisfy client-level (ϵ, δ)-DP guarantee. Notably, a mechanism
satisfying (ϵ, δ) client-level DP also satisfies (ϵ, δ) sample-
level DP based on their definitions. Since client-level DP offers
stronger privacy protection, it has gained widespread adoption
in FL [27, 54, 2, 5, 75]. Furthermore, we evaluate all VFL
methods using label DP mechanism ALIBI [51] to separately
satisfy the ϵ-label DP guarantee. We report the averaged results
of three times of experiments with different random seeds.
A. Evaluation on Vanilla VFL

In this section, we evaluate the ADMM-based methods and
baselines in terms of convergence rate, model performance
and communication costs. Also, we show the generality of
VIMADMM under non-linear server heads, and study VIMADMM
performance under different ADMM penalty factor ρ.

1) Convergence rates and model performance: Figure 1
shows the convergence rates of all methods, where two VIM

algorithms consistently outperform baselines. Concretely, (1)
our ADMM-based methods converge faster and achieve higher
accuracy than gradient-based baselines, especially on CIFAR.
This is because the multiple local updates enabled by ADMM
lead to higher-quality local models at each round, thereby
speeding up the convergence. (2) VIMADMM outperforms
FedBCD under various local steps. This superiority can be
attributed to the use of ADMM-related variables for local
updates τ in VIMADMM, which is more effective than stale
partial gradients in FedBCD. (3) When # of local steps τ is
larger, ADMM-based methods converge faster as the local
models can be trained better with more local updates at each
round.

Moreover, we empirically compare VIMADMM with
Linear-ADMM [35]. While both VFL methods are rooted
in ADMM, we propose new VFL optimization objective
and algorithm with multiple heads that enable the ADMM
decomposition for practical DNN training under model splitting.
Results in Table III show that VIMADMM consistently outper-
forms Linear-ADMM on MNIST and NUS-WIDE. Compared
to DNNs enabled by VIMADMM, the limitations of logistic
regression in Linear-ADMM would be more evident when
applied to more complex datasets like CIFAR and ModelNet40.

TABLE III: Performance comparison between VIMADMM and
Linear-ADMM [35]. VIMADMM achieves higher accuracy.

MNIST NUS-WIDE

VIMADMM 97.13 88.51
Linear-ADMM 91.65 84.63

2) Non-linear server heads: To demonstrate the generality
and applicability of VIMADMM, we evaluate VIMADMM when
the server model is non-linear. Specifically, the head consists of
multiple fully-connected layers accompanied by Dropout layers
with 0.25 dropout rate and ReLu activation functions. For a fair
comparison, we also use MLP server model architecture for
other baseline methods. We use 3 layered MLP for NUS-WIDE
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Fig. 2: Performance comparison when the server has the non-linear MLP model. ADMM-based method still outperforms other baselines
under general architectures with the non-linear server model.
TABLE IV: Communication costs (in megabytes) comparison. VIMADMM requires lower communication costs per round than baselines
under w/ model splitting setting. ADMM-based methods require lower communication costs to achieve the same target accuracy performance.

VFL setup Method
Comm. costs per round Comm. costs to reach target accuracy performance

Each client Server to Total MNIST CIFAR NUS-WIDE ModelNet40
to server each client (≥ 96.0%) (≥ 65.0%) (≥ 85.0%) (≥ 89.0%)

w/ model splitting

VAFL 0.23 0.23 0.46 4520.12 5381.40 397.37 134.96
Split Learning 0.23 0.23 0.46 1738.51 4082.44 198.69 84.35

FedBCD 0.23 0.23 0.46 4867.82 2597.92 397.37 118.09
VIMADMM 0.23 0.08 0.31 233.36 124.54 66.67 11.32

w/o model splitting FDML 0.039 0.039 0.078 405.13 617.76 33.07 89.13
VIMADMM-J 0.039 0.078 0.117 86.81 46.33 24.8 8.42

and 2 layered MLP for other datasets. The evaluation results in
Figure 2 show that our method still outperforms other baselines
under general architectures with the non-linear server model.

3) Communication costs: Here we report the memory of
parameters communicated between clients and the server to
evaluate communication cost in Table IV. We use batch size
1024 and local embedding size 60 for all datasets. The overall
embedding size scales with the number of clients. From
Table IV, we observer that (1) for each round, all methods
under w/ model splitting setting have the same number of
parameters sent from each client to the server (i.e., 0.23 MB for
a batch of embeddings), and VIMADMM has a smaller number of
parameters sent from server to each client (i.e., 0.08 MB in total
for a batch of dual variables, residual variables as well as one
corresponding linear head) than VAFL, Split Learning
and FedBCD (i.e., 0.23 MB for a batch of gradients w.r.t.
embeddings). (2) With smaller # of communicated parameters
at each round and faster convergence (i.e., smaller # of
communicated rounds to achieve a target accuracy), VIMADMM
requires significantly lower communication costs than baselines.
For example, to achieve 65.0% accuracy on CIFAR, VAFL
needs 5381.4 MB while VIMADMM only requires 124.54 MB,
which is about 43x lower costs. Here we use τ = 20, 30, 20, 5
for the four datasets respectively. (3) The results under w/o
model splitting setting demonstrates that VIMADMM-J incurs
lower communication costs than FDML to achieve the same
accuracy, due to faster convergence with multiple local updates.
(4) We note that the communication cost under w/o model
splitting setting is generally lower than w/ model splitting
setting, which is because the local logits have a lower dimension
than local embeddings, i.e., dc < df .

4) Effect of penalty factor ρ: In ADMM-based methods,
we introduce one hyper-parameter – penalty factor ρ. Here
we study the test accuracy of VIMADMM with different penalty
factor ρ. The results in Figure 5 of Appendix D show that
VIMADMM is not sensitive to ρ on four datasets, and we suggest

that the practitioners choose the optimal ρ from 0.5 to 2, which
does not influence the test accuracy significantly.

5) Evaluation on long-tail datasets: Long-tail datasets are
characterized by a significant imbalance, where minority classes
have far fewer samples than majority ones. This horizontal
imbalance is distinct from the challenges addressed by VFL,
where the same sample (whether it belongs to a majority
or minority class) is vertically split across multiple clients.
We compared the VIMADMM model, which consists of M
local models followed by a server model, with a reference
model in a centralized setting. This reference model has the
same model size as one local model coupled with a server
model. The results in Table V demonstrate that VIMADMM
is still effective on challenging long-tail training datasets,
yielding results comparable to those of the reference model in
a centralized setting. We defer more discussion and detailed
experimental setups to Appendix D.
TABLE V: Accuracy and fairness (measured by Standard Deviation
of class-wise accuracy) on balanced data and long-tail data.

balanced MNIST long-tail MNIST balanced CIFAR long-tail CIFAR

VIMADMM 97.13 (0.76) 95.69 (1.58) 75.25 (9.17) 62.81 (15.27)
Reference model in centralized setting 98.19 (0.45) 95.02 (2.70) 77.61 (9.20) 66.11 (15.29)

6) Fairness implication: A common fairness definition is to
enforce accuracy parity between protected groups [82]. Here
we study the fairness implications of VIMADMM on achieving
accuracy parity, at both the class and client levels: (1) when
considering class-level accuracy parity, a fair model should
exhibit equalized accuracy for each class [67, 76], indicating
that the model’s accuracy is statistically independent of the
ground truth label. We use the Standard Deviation of class-
wise accuracy [76] to evaluate fairness, where a lower value
indicates higher fairness. The results in Table V show that
VIMADMM performs comparably or even better in fairness than
the reference model in a centralized setting, across MNIST and
CIFAR10 datasets with both balanced and long-tail distributions.
(2) Furthermore, client-level accuracy parity is a prevalent
criterion for fairness in FL [44, 45], measuring the degree of
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TABLE VI: Utility of VFL methods under user-level DP. ADMM-based methods maintain higher utility.

VFL setup Method MNIST CIFAR NUS-WIDE ModelNet40

ϵ =∞ ϵ = 8 ϵ = 1 ϵ =∞ ϵ = 8 ϵ = 1 ϵ =∞ ϵ = 8 ϵ = 1 ϵ =∞ ϵ = 8 ϵ = 1

w/ model splitting

VAFL 96.86 22.29 11.31 66.39 16.82 14.91 87.81 38.27 38.19 90.07 4.66 4.29
Split Learning 96.92 56.53 16.77 68.32 21.09 15.8 88.25 38.29 33.05 89.98 18.19 6.28

FedBCD 96.59 66.07 65.05 71.2 70.67 55.42 87.59 42.95 41.02 89.87 88.3 87.02
VIMADMM 97.13 92.35 92.09 75.25 73.83 61.65 88.51 83.77 83.51 91.32 91.29 91.18

w/o model splitting FDML 97.06 92.02 85.01 66.8 41.07 35.25 87.67 79.58 67.38 89.86 54.7 43.4
VIMADMM-J 97.37 92.71 92.33 74.48 72.36 58.64 88.46 84.94 84.88 91.13 90.13 89.37

TABLE VII: Utility of VFL methods under label-level DP. ADMM-based methods maintain higher utility.

VFL setup Method MNIST CIFAR NUS-WIDE ModelNet40

ϵ =∞ ϵ = 2.8 ϵ = 1.4 ϵ =∞ ϵ = 2.8 ϵ = 1.4 ϵ =∞ ϵ = 2.8 ϵ = 1.4 ϵ =∞ ϵ = 2.8 ϵ = 1.4

w/ model splitting

VAFL 96.86 94.27 51.68 66.39 54.6 38.44 87.81 85.77 60.41 90.07 45.26 2.59
Split Learning 96.92 94.93 91.75 68.32 57.12 49.71 88.25 85.86 82.3 89.98 65.68 33.79

FedBCD 96.59 94.47 87.95 71.2 61.05 46.14 87.59 85.62 64.01 89.87 65.92 43.15
VIMADMM 97.13 95.48 92.8 75.25 65.07 52.97 88.51 86.62 82.43 91.32 76.70 46.39

w/o model splitting FDML 97.06 94.97 91.87 66.8 58.78 49.83 87.67 85.79 82.37 89.86 64.99 29.74
VIMADMM-J 97.37 95.80 93.25 74.48 64.04 53.49 88.46 86.74 82.71 91.13 77.15 45.22

uniformity in performance across clients. Notably, in VFL, all
clients share the same prediction for each sample, where each
of them contributes partial features. Consequently, all clients
inherently achieve the same accuracy, fulfilling client-level
accuracy parity by the nature of VFL.
B. Evaluation on Differentially Private VFL

We evaluate the utility of ADMM-based methods and
baselines under client-level DP and label DP, which protect
the privacy of local features and server labels, respectively.

1) Utility under client-level DP (privacy of client data):
We report the utility under ϵ = 8 and ϵ = 1 client-level
DP. To ensure fair comparison, we perform a grid search for
the combination of hyperparameters, including noise scale σ,
clipping threshold C, and learning rate η, for all methods
(details are deferred to Appendix D). Table VI shows that
(1) the accuracy of ADMM-based methods under DP is on
par with the non-private accuracy (ϵ =∞) on MNIST, NUS-
WIDE and ModelNet40. Nevertheless, there is a discernible
decrease of 13.6% for VIMADMM on CIFAR when ϵ = 1,
which underscores the inherent privacy-utility trade-off for
algorithms with formal DP privacy guarantees [1]. (2) Our
ADMM-based methods reach significantly higher utility than
gradient-based methods, especially under small ϵ. We attribute
this to the fact that ADMM-based methods converge in fewer
rounds than gradient-based methods at each round, which
is also evident in the non-DP setting as shown in Figure 1.
This rapid convergence is critical for DP, since the privacy
budget ϵ is consumed quickly as communication rounds increase.
The fast convergence and high utility of VIMADMM under DP
compared to other baselines can be interpreted through two
lenses. First, multiple local updates lead to a more effectively
trained local model at each round. As a consequence, both
FedBCD and VIMADMM demonstrate a markedly better DP-
utility tradeoff compared to VAFL and Split Learning, as
illustrated in Table VI. Furthermore, we explicitly investigate
the influence of τ on the utility of VIMADMM under ϵ =
1 in Table VIII. The results show that opting for a τ > 1
yields substantially enhanced accuracy than when τ = 1 (e.g.,
14.68% improvement on CIFAR). Second, update mechanism
of ADMM empowers clients to independently update their

local models w.r.t the ADMM sub-objective (Eq. 9). It is worth
noting that during this local forward/backward computation
based on Eq. 9, clients do not add noise locally, since local
models always remain in their possession without sharing.
Clients only need to perturb local embeddings that are sent
to the server (i.e., output perturbation). Consequently, even
though the server leverages these perturbed embeddings to
derive ADMM-related variables, the clients will re-calculate
clean embeddings during forward pass of Eq. 9 based on the
received ADMM-related variables for local model updates. This
updating mechanism potentially facilitate convergence under
DP. In contrast, gradients-based methods solely rely on the
partial gradients, which are derived from perturbed embeddings,
for local update, leading to compromised utility.
TABLE VIII: A larger number of local steps τ leads to better utility
of VIMADMM under client-level DP ϵ = 1.

MNIST CIFAR NUS-WIDE

τ ϵ = 1 τ ϵ = 1 τ ϵ = 1

1 90.63 1 48.19 1 79.38
5 90.84 10 61.65 3 82.58

20 92.09 30 62.87 10 83.51

Methods w/o model splitting (FDML, VIMADMM-J) gener-
ally performs better than methods w/ model splitting. This is
mainly because the logits have a smaller dimension than the
embeddings, and the total amount of noise added to the logits
output is smaller than the embedding output; thus VFL w/o
model splitting methods retain higher utility under DP.

Additionally, the utility under client-level DP VFL is not
directly comparable to sample-level DP in centralized ML [1]
or client-level DP in standard (horizontal) FL [54] due to the
unique properties of VFL. For instances, (1) the dimension
of DP-perturbed information in VFL can be smaller (e.g., a
batch of local embeddings or local logits) than the existing
centralized learning or FL (e.g., gradients or model updates of
a large model), which could lead to the higher utility under DP
noise. (2) The private local training set of VFL for each user
has a smaller raw feature dimension (i.e., 1/M if features are
divided evenly among M clients) than the entire dataset (or
local dataset) in the central setting (or horizontal FL) and it
does not contain the labels, which leads to a different dataset
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Fig. 3: Client-level explainability of VIM. Row 1 visualizes the input features. Row 2 shows the weights norm of linear heads. Row 3 shows
the test accuracy when each client’s test input features are perturbed (red line denotes the clean test accuracy). Row 4 shows the weights
norm of linear heads under only one noisy client.

notion in DP definition. In our work, we follow existing privacy
notions in VFL to protect each user’s local training set [12, 36]
with proposed client-level DP mechanisms.

2) Utility under label DP (privacy of server labels): To
protect the privacy of the labels in the server with formal
privacy guarantee, we utilize the existing state-of-the-art label
DP mechanism ALIBI [51], which is originally proposed in
centralized learning. We evaluate all methods under label DP
with a privacy budget ϵ = 2.8 and ϵ = 1.4, which are obtained
by adding Laplacian noise with noise parameter λLap = 1
and λLap = 2, respectively, on the labels once before VFL
training, and we use randomized labels for training based
on ALIBI. In particular, ALIBI post-processes the model
predictions through Bayesian inference to improve the model
utility under noisy labels [51]. The results on Table VII show
that ADMM-based methods retain higher utility than gradient-
based methods under the label DP. This could be due to
two potential reasons: (1) the additional variables introduced
by ADMM (i.e., auxiliary variables {zj} and dual variables
{λj}) are dynamically adjusted during training, which might
contribute to a more robust optimization [16] for VFL models
(i.e., {Wk}, {θk}) against label noises, and (2) multiple updates
in each round could result in improved local models. As shown
in Table IX, more local steps τ can significantly enhance the
utility of VIMADMM under label-level DP ϵ = 1.4 (∼10% and
∼13% improvement for CIFAR and NUS-WIDE, respectively).
C. Client-level Explainability of VIM

In this section, we first visualize the local embeddings of
clients, which are diverse, stemming from the distinct input

TABLE IX: A larger number of local steps τ leads to better utility
of VIMADMM under label-level DP ϵ = 1.4.

MNIST CIFAR NUS-WIDE

τ ϵ = 1.4 τ ϵ = 1.4 τ ϵ = 1.4

1 92.28 1 46.08 1 69.41
5 92.51 10 52.97 3 81.43

20 92.8 30 56.13 10 82.43

features of clients. This also justifies the multi-head design
of VIM that can reweight the embeddings based on their
importance. Then, we show that the weights norm of learned
linear heads can indeed reflect the importance of local clients,
which enables functionalities such as test-time noise validation,
client denoising, and summarization.

1) T-SNE of Local Embeddings: In row 1 of Figure 3, we
show the raw feautures of different clients on four datasets.
The quality of features can vary among clients. For instance, in
MNIST, since the digit always occupies the center, clients hold
black background pixels might not provide useful information
for the classification task, and thus are less important. The T-
SNE [69] visualizations in Figure 4 reveal that important clients
learn better local embeddings than unimportant clients on
MNIST, CIFAR and NUS-WIDE. Specifically, in NUS-WIDE,
client #3 produces linear separable local embeddings (left),
which are better than client #4’s embeddings (right) that overlap
different classes. For ModelNet40, since clients with multi-view
data are of similar importance, their local embeddings exhibit
similarities and demonstrate linear separability. A scrutiny of
these local embeddings confirms that the unique characteristic
of input features in each client lead to varied local embeddings.
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Fig. 4: T-SNE visualizations of local embeddings from important client and unimportant client for VIMADMM.

Consequently, we employ multiple heads as the server model,
allowing us to account for the diverse feature quality across
clients and aptly reweight the local embeddings.

2) Client Importance: Given a trained VIMADMM model,
we plot the weights norm of each client’s corresponding linear
heads in Figure 3 row 2. Combining it with row 1, we find
that the client with important local features indeed results
in high weights5. For example, clients #6, #7, #8 in MNIST
holding middle rows of images that contain the center of digits,
have high weights, while clients #1, #14 holding the black
background pixels have low weights. A similar phenomenon is
observed on CIFAR for client #5 (center) and client #1 (corner).
On CIFAR, clients #8, #9 also have high weights, which is
because the objects on CIFAR also appear on the right bottom
corner. On ModelNet40, clients have complementary views of
the same objects, so their features have similar importance,
leading to similar weights norms. Based on our observation,
we conclude that the weights of linear heads can reflect the
importance of local clients. We use this principle to infer that,
for NUS-WIDE, the first 500 dim. of textual features have
higher importance than other multimodality features, resulting
in the high weights norm of client 3.

3) Client Importance Validation via Noisy Test Client: Given
a trained VIMADMM model, we add Gaussian noise to the test
local features to verify the client-level importance indicated by
the linear heads. For each time, we only perturb the features
of one client and keep other clients’ features unchanged. The
results in Figure 3 row 3 show that perturbing the client with
high weights affects more for the test accuracy, which verifies
that clients with higher weights are more important.

4) Client Denoising: We study the denoising ability of
VIM under training-time noisy clients. We construct one
noisy client (i.e., client #7, #5, #2, #3 for MNIST, CIFAR,
NUS-WIDE, ModelNet40 respectively) by adding Gaussian
noise to its local features and re-train the VIMADMM model.
The obtained weights norm in Figure 3 row 4 shows that
VIMADMM can automatically detect the noisy client and lower
its weights (compared to the clean one in row 2). Table XIII in

5Here the weights of clients refer to the weights of the client’s corresponding
linear head owned by the server.

Appendix D shows that VIMADMM outperforms baselines with
faster convergence and higher accuracy under noisy clients.

5) Client Summarization: Regarding client summarization,
(1) we first rank the importance of clients according to their
weights norm (Figure 3 row 2), then we select u% proportion
of the most “important" clients to re-train the VIMADMM model.
We find that its performance is close to the one trained by all
clients. Table X shows that the test accuracy-drop of training
with 50% of the most important clients is less than 1% on
MNIST and NUS-WIDE, and less than 4% on CIFAR; the
accuracy-drop of training with 20% of the most important
clients is less than 10% on all datasets. (2) We select u%
proportion of the least important clients to re-train the model,
and we find that its performance is significantly lower than
the one trained with important clients, which indicates the
effectiveness of VIM for client selection. (3) For the multi-
view dataset ModelNet40, we find that the test accuracy of
models trained with 12, 8, and 4 clients are similar, i.e., 91.04%,
90.69%, and 90.64%, suggesting that a few views can already
provide sufficient training information and the agents with
multiview data are of similar importance which is also reflected
by our linear head weights.

TABLE X: Functionality of client summarization enabled by
VIMADMM.

Client ratio Type MNIST CIFAR NUS-WIDE

100% all 97.13 75.25 88.51

50%
important 96.58 70.28 87.29

unimportant 78.11 62.67 75.80

20%
important 88.72 66.06 80.28

unimportant 29.11 54.99 59.34

VII. CONCLUSIONS

We propose a VFL framework with multiple linear heads
(VIM) and an ADMM-based method (VIMADMM) for efficient
communication. We provide the convergence guarantee for
VIMADMM. We also introduce user-level differential privacy
mechanism for VIM and prove the privacy guarantee. Extensive
experiments verify the superior performance of our algorithms
under vanilla VFL and DP VFL and show that VIM enables
client-level explainability.

12



ACKNOWLEDGEMENT

The authors thank Yunhui Long, Linyi Li, Yangjun Ruan,
Weixin Chen, and the anonymous reviewers for their valuable
feedback and suggestions.

This work is partially supported by the National Science
Foundation under grant No. 1910100, No. 2046726, No.
2229876, DARPA GARD, the National Aeronautics and Space
Administration (NASA) under grant No. 80NSSC20M0229,
Alfred P. Sloan Fellowship, the Amazon research award, and
the eBay research grant.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, pages 308–318, 2016.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Yu,
Sanjiv Kumar, and H Brendan McMahan. cpsgd:
communication-efficient and differentially-private dis-
tributed sgd. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pages 7575–7586, 2018.

[3] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu,
and Tetsuya Sato. Hypothesis testing interpretations and
renyi differential privacy. In International Conference
on Artificial Intelligence and Statistics, pages 2496–2506.
PMLR, 2020.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigder-
son. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proceedings of
the twentieth annual ACM symposium on Theory of
computing, pages 1–10, 1988.

[5] Abhishek Bhowmick, John Duchi, Julien Freudiger,
Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated
learning. arXiv preprint arXiv:1812.00984, 2018.

[6] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In
proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–
1191, 2017.

[7] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed
optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc,
2011.

[8] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex
Olshevsky, Ioannis Ch Paschalidis, and Wei Shi. Federated
learning of predictive models from federated electronic
health records. International journal of medical informat-
ics, 112:59–67, 2018.

[9] Adam Byerly, Tatiana Kalganova, and Ian Dear. No
routing needed between capsules. Neurocomputing,
463:545–553, 2021.

[10] Timothy Castiglia, Shiqiang Wang, and Stacy Patterson.
Flexible vertical federated learning with heterogeneous
parties. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[11] Timothy J Castiglia, Anirban Das, Shiqiang Wang,
and Stacy Patterson. Compressed-vfl: Communication-
efficient learning with vertically partitioned data. In
International Conference on Machine Learning, pages
2738–2766. PMLR, 2022.

[12] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl:
a method of vertical asynchronous federated learning.
arXiv preprint arXiv:2007.06081, 2020.

[13] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian
Chen, Dimitrios Papadopoulos, and Qiang Yang. Secure-
boost: A lossless federated learning framework. IEEE
Intelligent Systems, 36(6):87–98, 2021.

[14] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li,
Zhiping Luo, and Yantao Zheng. Nus-wide: a real-world
web image database from national university of singapore.
In Proceedings of the ACM international conference on
image and video retrieval, pages 1–9, 2009.

[15] Vincent Cohen-Addad, Praneeth Kacham, Vahab Mirrokni,
and Peilin Zhong. Differentially private vertical federated
learning primitives.

[16] Jiahao Ding, Xinyue Zhang, Mingsong Chen, Kaiping
Xue, Chi Zhang, and Miao Pan. Differentially private
robust admm for distributed machine learning. In 2019
IEEE International Conference on Big Data (Big Data),
pages 1302–1311. IEEE, 2019.

[17] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian
differential privacy. arXiv preprint arXiv:1905.02383,
2019.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In Interna-
tional Conference on Learning Representations, 2021.

[19] Cynthia Dwork. A firm foundation for private data
analysis. Communications of the ACM, 54(1):86–95, 2011.

[20] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Advances
in Cryptology – EUROCRYPT, 2006.

[21] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–407,
2014.

[22] Anis Elgabli, Jihong Park, Sabbir Ahmed, and Mehdi
Bennis. L-fgadmm: Layer-wise federated group admm
for communication efficient decentralized deep learning.
In 2020 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6. IEEE, 2020.

[23] Anis Elgabli, Jihong Park, Amrit S Bedi, Mehdi Bennis,
and Vaneet Aggarwal. Gadmm: Fast and communication
efficient framework for distributed machine learning. J.

13



Mach. Learn. Res., 21(76):1–39, 2020.
[24] Siwei Feng and Han Yu. Multi-participant multi-class ver-

tical federated learning. arXiv preprint arXiv:2001.11154,
2020.

[25] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen,
Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X Liu,
and Ting Wang. Label inference attacks against vertical
federated learning. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, August 2022.
USENIX Association.

[26] Fangcheng Fu, Xupeng Miao, Jiawei Jiang, Huanran
Xue, and Bin Cui. Towards communication-efficient
vertical federated learning training via cache-enabled local
updates. Proc. VLDB Endow., 15(10):2111–2120, jun
2022.

[27] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differen-
tially private federated learning: A client level perspective.
arXiv preprint arXiv:1712.07557, 2017.

[28] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on
Machine Learning, pages 201–210. PMLR, 2016.

[29] Prashant Gohel, Priyanka Singh, and Manoranjan Mo-
hanty. Explainable ai: current status and future directions.
arXiv preprint arXiv:2107.07045, 2021.

[30] Bin Gu, Zhiyuan Dang, Xiang Li, and Heng Huang.
Federated doubly stochastic kernel learning for vertically
partitioned data. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 2483–2493, 2020.

[31] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kid-
don, and Daniel Ramage. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv:1811.03604,
2018.

[32] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law,
Richard Nock, Giorgio Patrini, Guillaume Smith, and
Brian Thorne. Private federated learning on vertically
partitioned data via entity resolution and additively ho-
momorphic encryption. arXiv preprint arXiv:1711.10677,
2017.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[34] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn.
Convergence analysis of alternating direction method of
multipliers for a family of nonconvex problems. SIAM
Journal on Optimization, 26(1):337–364, 2016.

[35] Yaochen Hu, Peng Liu, Linglong Kong, and Di Niu.
Learning privately over distributed features: An admm
sharing approach. arXiv preprint arXiv:1907.07735, 2019.

[36] Yaochen Hu, Di Niu, Jianming Yang, and Shengping
Zhou. Fdml: A collaborative machine learning framework
for distributed features. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2232–2240, 2019.

[37] Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gon-
zalo Munilla Garrido, Chang Ge, Bolin Ding, David
Forsyth, Bo Li, and Dawn Song. Sok: Privacy-preserving
data synthesis. S&P, 2024.

[38] Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin,
and Yanmin Gong. Dp-admm: Admm-based distributed
learning with differential privacy. IEEE Transactions on
Information Forensics and Security, 15:1002–1012, 2019.

[39] Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and
Tianyi Chen. Catastrophic data leakage in vertical
federated learning. Advances in Neural Information
Processing Systems, 34, 2021.

[40] Yan Kang, Yang Liu, and Tianjian Chen. Fedmvt: Semi-
supervised vertical federated learning with multiview
training. arXiv preprint arXiv:2008.10838, 2020.

[41] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive
learning. Advances in Neural Information Processing
Systems, 33:18661–18673, 2020.

[42] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[43] Yann LeCun and Corinna Cortes. MNIST handwritten
digit database. 2010.

[44] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia
Smith. Ditto: Fair and robust federated learning through
personalization. In International Conference on Machine
Learning, pages 6357–6368. PMLR, 2021.

[45] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia
Smith. Fair resource allocation in federated learning. In
International Conference on Learning Representations,
2020.

[46] Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong
Cheng, Tianjian Chen, Mingyi Hong, and Qiang Yang. A
communication efficient collaborative learning framework
for distributed features. arXiv preprint arXiv:1912.11187,
2019.

[47] Yang Liu, Zhihao Yi, and Tianjian Chen. Backdoor attacks
and defenses in feature-partitioned collaborative learning.
arXiv preprint arXiv:2007.03608, 2020.

[48] Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian
Chen, Mingyi Hong, and Qiang Yang. Fedbcd: A
communication-efficient collaborative learning framework
for distributed features. IEEE Transactions on Signal
Processing, 70:4277–4290, 2022.

[49] Scott M Lundberg and Su-In Lee. A unified approach
to interpreting model predictions. Advances in neural
information processing systems, 30, 2017.

[50] Aravindh Mahendran and Andrea Vedaldi. Understanding
deep image representations by inverting them. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 5188–5196, 2015.

[51] Mani Malek Esmaeili, Ilya Mironov, Karthik Prasad, Igor
Shilov, and Florian Tramer. Antipodes of label differential

14



privacy: Pate and alibi. Advances in Neural Information
Processing Systems, 34:6934–6945, 2021.

[52] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized
Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages 1273–
1282. PMLR, 20–22 Apr 2017.

[53] H. Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. Learning differentially private recurrent lan-
guage models. In International Conference on Learning
Representations, 2018.

[54] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and
Li Zhang. Learning differentially private recurrent lan-
guage models. In International Conference on Learning
Representations, 2018.

[55] Frank D McSherry. Privacy integrated queries: an
extensible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 19–30, 2009.

[56] Ilya Mironov. Rényi differential privacy. In 2017 IEEE
30th computer security foundations symposium (CSF),
pages 263–275. IEEE, 2017.

[57] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael P Wellman. Sok: Security and privacy in machine
learning. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 399–414. IEEE, 2018.

[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[59] Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin,
Zheng Xu, Carson Denison, H Brendan McMahan, Sergei
Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta.
How to dp-fy ml: A practical guide to machine learning
with differential privacy. Journal of Artificial Intelligence
Research, 77:1113–1201, 2023.

[60] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language
supervision. In International Conference on Machine
Learning, pages 8748–8763. PMLR, 2021.

[61] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[62] Thilina Ranbaduge and Ming Ding. Differentially

private vertical federated learning. arXiv preprint
arXiv:2211.06782, 2022.

[63] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
" why should i trust you?" explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data
mining, pages 1135–1144, 2016.

[64] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz
Koushanfar. DeepSecure: Scalable provably-secure deep
learning. In Proceedings of the 55th Annual Design
Automation Conference, pages 1–6, 2018.

[65] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security
and privacy (SP), pages 3–18. IEEE, 2017.

[66] Jong-Chyi Su, Matheus Gadelha, Rui Wang, and
Subhransu Maji. A deeper look at 3d shape classifiers. In
Second Workshop on 3D Reconstruction Meets Semantics,
ECCV, 2018.

[67] Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong,
Qi Long, and Li Shen. Fairness-aware class imbalanced
learning on multiple subgroups. In Uncertainty in
Artificial Intelligence, pages 2123–2133. PMLR, 2023.

[68] Linh Tran, Timothy Castiglia, Stacy Patterson, and Ana
Milanova. Privacy tradeoffs in vertical federated learning.
In Federated Learning Systems (FLSys) Workshop @
MLSys 2023, 2023.

[69] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research,
9(86):2579–2605, 2008.

[70] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish,
and Ramesh Raskar. Split learning for health: Distributed
deep learning without sharing raw patient data. arXiv
preprint arXiv:1812.00564, 2018.

[71] Rahul Vigneswaran, Marc T Law, Vineeth N Balasub-
ramanian, and Makarand Tapaswi. Feature generation
for long-tail classification. In Proceedings of the twelfth
Indian conference on computer vision, graphics and image
processing, pages 1–9, 2021.

[72] Boxin Wang, Fan Wu, Yunhui Long, Luka Rimanic,
Ce Zhang, and Bo Li. Datalens: Scalable privacy preserv-
ing training via gradient compression and aggregation.
In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pages 2146–
2168, 2021.

[73] Wenju Wang, Yu Cai, and Tao Wang. Multi-view dual
attention network for 3d object recognition. Neural
Computing and Applications, 34(4):3201–3212, 2022.

[74] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen,
and Beng Chin Ooi. Privacy preserving vertical federated
learning for tree-based models. Proceedings of the VLDB
Endowment, 13(12):2090–2103, 2020.

[75] Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li,
Sanmi Koyejo, and Bo Li. Unraveling the connections
between privacy and certified robustness in federated
learning against poisoning attacks. In Proceedings of

15



the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 1511–1525, 2023.

[76] Han Xu, Xiaorui Liu, Yaxin Li, Anil Jain, and Jiliang Tang.
To be robust or to be fair: Towards fairness in adversarial
training. In International conference on machine learning,
pages 11492–11501. PMLR, 2021.

[77] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):12, 2019.

[78] Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping
Liu. Parallel distributed logistic regression for vertical
federated learning without third-party coordinator. arXiv
preprint arXiv:1911.09824, 2019.

[79] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng
Sun, Wei Li, Nicholas Kong, Daniel Ramage, and
Françoise Beaufays. Applied federated learning: Improv-
ing google keyboard query suggestions. arXiv preprint
arXiv:1812.02903, 2018.

[80] Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-
Zhong Xu. Ffd: a federated learning based method for
credit card fraud detection. In International Conference
on Big Data, pages 18–32. Springer, 2019.

[81] Sheng Yue, Ju Ren, Jiang Xin, Sen Lin, and Junshan
Zhang. Inexact-admm based federated meta-learning
for fast and continual edge learning. In Proceedings
of the Twenty-second International Symposium on Theory,
Algorithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing, pages 91–100, 2021.

[82] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Ro-
driguez, and Krishna P Gummadi. Fairness beyond
disparate treatment & disparate impact: Learning classi-
fication without disparate mistreatment. In Proceedings
of the 26th international conference on world wide web,
pages 1171–1180, 2017.

[83] Jie Zhang, Song Guo, Zhihao Qu, Deze Zeng, Haozhao
Wang, Qifeng Liu, and Albert Y Zomaya. Adap-
tive vertical federated learning on unbalanced features.
IEEE Transactions on Parallel and Distributed Systems,
33(12):4006–4018, 2022.

[84] Qingsong Zhang, Bin Gu, Cheng Deng, and Heng Huang.
Secure bilevel asynchronous vertical federated learning
with backward updating. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
10896–10904, 2021.

[85] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge
Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for
large-scale bound-constrained optimization. ACM Trans-
actions on mathematical software (TOMS), 23(4):550–560,
1997.

16



APPENDIX

The Appendix is organized as follows:

• Appendix A provides algorithm details for Split Learning [70](Algorithm 2) and VIMADMM-J (Algorithm 3);
• Appendix B provides the proofs for convergence guarantees in Theorem 1;
• Appendix C provides the proofs for privacy guarantee in Theorem 2;
• Appendix D provides more details on experimental setups and the additional experimental results;
• Appendix E provides additional discussion on ADMM and VFL.

A. Algorithm Details

1) Split Learning [70]: At each communication round t, the server samples a set of data indices, B(t), with batch
size |B(t)| = b. Then we describe the key steps Split Learning (Algorithm 2) as follows:

(1) Communication from client to server. Each client k sends a batch of embeddings {hkj
(t)}j∈B(t) to the server, where

hkj
(t)

= f(xkj ; θ
(t)
k ),∀j ∈ B(t).

(2) Sever updates server model θ0. According to VFL objective in Eq. 1, the server model is updated as:
θ
(t+1)
0 ← θ

(t)
0 − η∇θ(t)0

LVFL(θ
(t)
0 ),∀k ∈ [M ] (14)

where η is the server learning rate, and

∇
θ
(t)
0
LVFL(θ

(t)
0 ) = ∇

θ
(t)
0

 1

N

N∑
j=1

ℓ([h1j
(t)
, . . . , hMj

(t)
], yj ; θ

(t)
0 ) + βR(θ(t)0 )

 . (15)

Here [h1j
(t)
, . . . , hMj

(t)
] denotes the concatenated local embeddings.

(3) Communication from server to client. Server computes gradients w.r.t each local embedding ∇
hk
j
(t)LVFL(θ

(t+1)
0 ) by

the VFL objective in Eq. 1, where
∇
hk
j
(t)LVFL(θ

(t+1)
0 ) = ∇

hk
j
(t)ℓ([h1j

(t)
, . . . , hMj

(t)
], yj ; θ

(t+1)
0 ),∀j ∈ B(t), k ∈ [M ] (16)

Server sends gradients {∇
hk
j
(t)LVFL(θ

(t+1)
0 )}j∈B(t) to each client k,∀k ∈ [M ].

(4) Client updates local model parameters θk. Finally, every client k locally updates the model parameters θk according to
the VFL objective in Eq. 1 as follows:

θ
(t+1)
k ← θ

(t)
k − η

k∇
θ
(t)
k

LVFL(θ
(t+1)
0 ),∀k ∈ [M ] (17)

where ηk is the local learning rate for client k, and

∇
θ
(t)
k

LVFL(θ
(t+1)
0 ) =

1

N

N∑
j=1

∇
θ
(t)
k

hkj
(t)∇

hk
j
(t)LVFL(θ

(t+1)
0 ) + β∇

θ
(t)
k

R(θ(t)k ) (18)

These four steps of Split Learning are summarized in Algorithm 2.

Algorithm 2 Split Learning [70]
1: Input:number of communication rounds T , number of clients M , number of training samples N , batch size b , input features
{{x1

j}Nj=1, {x2
j}Nj=1, . . . , {xM

j }Nj=1}, the labels {yj}Nj=1, local model {θk}Mk=1; linear heads {Wk}Mk=1; server learning rate η; client learning
rate {ηk}Mk=1;

2: for communication round t ∈ [T ] do
3: Server samples a set of data indices B(t) with |B(t)| = b
4: for client k ∈ [M ] do
5: generates a local training batch {xk

j }j∈B(t)

6: computes local embeddings hk
j
(t) ← f(xk

j ; θk),∀j ∈ B(t)

7: sends local embeddings {hk
j
(t)}j∈B(t) to the server

8: Server updates server model θ(t+1)
0 by Eq. 14

9: Server computes gradients w.r.t embeddings ∇
hk
j
(t)LVFL(θ

(t+1)
0 ) by Eq. 16 ,∀j ∈ B(t)

10: Server sends gradients {∇
hk
j
(t)LVFL(θ

(t+1)
0 )}j∈B(t) to each client k,∀k ∈ [M ]

11: for client k ∈ [M ] do
12: updates local model θ(t+1)

k by Eq. 17

2) VIMADMM-J: At each communication round t, the server samples a set of data indices, B(t), with batch size |B(t)| = b.
Then we describe the key steps of VIMADMM-J (Algorithm 3) as follows:

(1) Communication from client to server. Each client k sends a batch of local logits {okj
(t)}j∈B(t) to the server, where

okj
(t)

= f(xkj ; θ
(t)
k )W

(t)
k ,∀j ∈ B(t)
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Algorithm 3 VIMADMM-J (with differentially privacy)

1: Input:number of communication rounds T , number of clients M , number of training samples N , batch size b , input features
{{x1

j}Nj=1, {x2
j}Nj=1, . . . , {xM

j }Nj=1}, the labels {yj}Nj=1, local model {θk}Mk=1; linear heads {Wk}Mk=1; auxiliary variables {zj}Nj=1; dual variables

{λj}Nj=1; noise parameter σ, clipping constant C
2: for communication round t ∈ [T ] do
3: Server samples a set of data indices B(t) with |B(t)| = bs
4: for client k ∈ [M ] do
5: generates a local training batch {xk

j }j∈B(t)

6: computes local logits okj
(t)

= f(xk
j ; θ

(t)
k )W

(t)
k , ∀j ∈ B(t)

7: clips and perturbs local logit matrix {okj
(t)}j∈B(t) ← Clip

(
{okj

(t)}j∈B(t), C

)
+N

(
0, σ

2
C

2
)

8: sends local logits {okj
(t)}j∈B(t) to the server

9: Server updates auxiliary variables z
(t)
j by Eq. 19, ∀j ∈ B(t)

10: Server updates dual variables λ
(t)
j by Eq. 20 , ∀j ∈ B(t)

11: Server computes residual variables skj
(t) by Eq. 21 , ∀j ∈ B(t), k ∈ [M ]

12: Server sends {λ(t)
j }j∈B(t) , {skj

(t)}j∈B(t) to each client k,∀k ∈ [M ]
13: for client k ∈ [M ] do
14: for local step e ∈ [τ ] do
15: updates local linear head W

(t+1)
k by Eq. 22 with SGD

16: updates local model θ(t+1)
k by Eq. 23 with SGD

(2) Sever updates auxiliary variables {zj}. After receiving the local logits from all clients, the server updates the auxiliary
variable for each sample j as:

z
(t)
j = argmin

zj

ℓ(zj , yj)− λ(t−1)j

⊤
zj +

ρ

2

∥∥∥∥∥
M∑
k=1

okj
(t) − zj

∥∥∥∥∥
2

,∀j ∈ B(t) (19)

Since the optimization problem in Eq. 19 is convex and differentiable with respect to zj , we use the L-BFGS-B algorithm [85]
to solve the minimization problem.

(3) Sever updates dual variables {λj}. After the updates in Eq. 19, the server updates the dual variable for each sample j
as:

λ
(t)
j = λ

(t−1)
j + ρ

(
M∑
k=1

okj
(t) − z(t)j

)
,∀j ∈ B(t) (20)

(4) Communication from server to client. After the updates in Eq. 20, we define a residual variable skj
(t+1) for each sample

j of k-th client, which provides supervision for updating local model:
skj

(t)
≜ zj

(t) −
∑

i∈[M ],i̸=k

oij
(t)

(21)

The server sends the dual variables {λ(t)j }j∈B(t) and the residual variables {skj
(t)}j∈B(t) of all samples to each client k.

(5) Client updates linear head Wk and local model θk alternatively. The linear head of each client is locally updated as:

W
(t+1)
k = argmin

Wk

βR(Wk) +
1

b

∑
j∈B(t)

λ
(t)
j

⊤
f(xjk ; θ

(t)
k )Wk +

∑
j∈B(t)

ρ

2b

∥∥∥skj (t) − f(xjk ; θ
(t)
k )Wk

∥∥∥2
F
, ∀k ∈ [M ] (22)

Each client updates the local model parameters θk as follows:

θ
(t+1)
k = argmin

θk

βR(θk) +
1

b

∑
j∈B(t)

λ
(t)
j

⊤
f(xjk ; θk)W

(t+1)
k +

∑
j∈B(t)

ρ

2b

∥∥∥skj (t) − f(xjk ; θk)W
(t+1)
k

∥∥∥2
F
. (23)

Due to the nonconvexity of the loss function of DNN, we use τ local steps of SGD to update Wk and θk alternatively at
each round with the objective of Eq. 22 and Eq. 23. Specifically, at each local step, we first update Wk and then update θk.

These five steps of VIMADMM-J are summarized in Algorithm 3.

B. Convergence Guarantees

1) Additional Notations and Supporting Lemmas: To help theoretical analysis, we denote the objective functions in Eq. (5),
Eq. (7) , Eq. (9) as
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h(zj) = ℓ(zj)− λ
(t)
j

⊤
zj +

ρ

2

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t+1)
k )W

(t+1)
k − zj

∥∥∥∥∥
2

F

gk(Wk) = βkRk(Wk) +
1

N

∑
j∈[N ]

λ
(t)
j

⊤
f(xk

j ; θ
(t)
k )Wk

+
ρ

2N

∑
j∈[N ]

∥∥∥∥∥∥∥∥
∑

i∈[M ],
i ̸=k

f(xi
j ; θ

(t)
i )Wi

(t) + f(xk
j ; θ

(t)
k )Wk − zj

(t)

∥∥∥∥∥∥∥∥
2

F

qk(θk) = βkRk(θk) +
1

N

∑
j∈[N ]

λ
(t)
j

⊤
f(xk

j ; θk)W
(t+1)
k

+
ρ

2N

∑
j∈[N ]

∥∥∥∥∥∥∥∥
∑

i∈[M ],
i ̸=k

f(xi
j ; θ

(t)
i )Wi

(t+1) + f(xk
j ; θk)W

(t+1)
k − zj

(t)

∥∥∥∥∥∥∥∥
2

F

(24)

Before delving into the main proofs, we introduce the bellow supporting lemmas.

Lemma 1.
∇ℓ(z(t)j ) = λ

(t)
j (25)

Proof. According to the optimality of z(t)j Eq. (5)

∇ℓ(z(t)j )− λ(t−1)j − ρ

(
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

)
= 0,∀j ∈ B(t) (26)

then invoke Eq. (6) λ(t)j = λ
(t−1)
j + ρ

(∑M
k=1 f(x

k
j ; θ

(t)
k )W

(t)
k − z

(t)
j

)
, so we have ∇ℓ(z(t)j ) = λ

(t)
j .

Lemma 2.
∥λ(t)j − λ

(t−1)
j ∥ ≤ L∥z(t)j − z

(t−1)
j ∥ (27)

Proof. According to Assumption 1 and Lemma 1, we have
∥λ(t)j − λ

(t−1)
j ∥ = ∥∇ℓ(z(t)j )−∇ℓ(z(t−1)j )∥ ≤ L∥z(t)j − z

(t−1)
j ∥ (28)

Lemma 3. [35, Lemma 3]∥∥∥∥∥
M∑
m=1

xt+1
m − z

∥∥∥∥∥
2

−

∥∥∥∥∥
M∑
m=1

xtm − z

∥∥∥∥∥
2
 (29)

≤
M∑
m=1


∥∥∥∥∥∥∥
M∑
k=1
k ̸=m

xtk + xt+1
m − z

∥∥∥∥∥∥∥
2

−

∥∥∥∥∥
M∑
m=1

xtm − z

∥∥∥∥∥
2
+

M∑
m=1

∥∥xt+1
m − xtm

∥∥2 (30)

2) Proofs for Theorem 1: We restate our assumptions here in Theorem 1:

Assumption 1. ℓ(z; ·) is L-Lipschitz smooth w.r.t z.

Assumption 2. LADMM is strongly convex w.r.t z, W , θ with constant µz , µW , µθ respectively.

Assumption 3. The norm of Wk is bounded ∥Wk∥ ≤ σW . The local model f(·; θ) has bounded gradient ∥∇f(·; θ)∥ ≤ Lθ and
bounded output norm ∥f(·; θ)∥ ≤ σθ.

Assumption 4. The original objective function LVIM is bounded from below over Θ and W , that is e :=
min{θk}∈Θ,{Wk}∈W LVIM({Wk}Mk=1, {θk}Mk=1) > −∞.

3) Proofs for Theorem 1 Part (A): We decompose Theorem 1 part (A) into the below two lemmas and prove them one-by-one.

Lemma 4. Let Assumption 1 to Assumption 3 hold, and there exists a penalty parameter ρ satisfying

max{L, 2L
2

µz
} < ρ < min{ µθ

L2
θσ

2
W

,
µW
σ2
θ

} (31)

then LADMM is monotonically decreasing:
LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t+1)
j })− LADMM({W (t)

k }, {θ
(t)
k }, {z

(t)
j }, {λ

(t)
j }) < 0. (32)
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Lemma 5. Let Assumption 1 to Assumption 4 hold, then the following limit exists and LADMM is lower bounded by e defined
in Assumption 4:

lim
t→∞

LADMM({W (t)
k }, {θ

(t)
k }, {z

(t)
j }, {λ

(t)
j }) ≥ e. (33)

We first present the proof for the monotonically decreasing property of LADMM in Lemma 4.

Proof for Lemma 4.
LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t+1)
j })− LADMM({W (t)

k }, {θ
(t)
k }, {z

(t)
j }, {λ

(t)
j })

=LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t+1)
j }, {λ(t+1)

j })− LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t+1)
j }, {λ(t)j })︸ ︷︷ ︸

T1

+ LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t+1)
j }, {λ(t)j })− LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t)j }, {λ

(t)
j })︸ ︷︷ ︸

T2

+ LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t)j }, {λ
(t)
j } − LADMM({W (t+1)

k }, {θ(t)k }, {z
(t)
j }, {λ

(t)
j })︸ ︷︷ ︸

T3

+ LADMM({W (t+1)
k }, {θ(t)k }, {z

(t)
j }, {λ

(t)
j } − LADMM({W (t)

k }, {θ
(t)
k }, {z

(t)
j }, {λ

(t)
j })︸ ︷︷ ︸

T4

(34)

Recall ADMM objective function

LADMM =
1

N

N∑
j=1

ℓ(zj , yj) +

M∑
k=1

βkRk(θk) +
M∑
k=1

βkRk(Wk)

+
1

N

N∑
j=1

λ⊤j

(
M∑
k=1

f(xkj ; θk)Wk − zj

)
+

ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xkj ; θk)Wk − zj

∥∥∥∥∥
2

F

Then we have
T1 = LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t+1)
j })− LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t)
j })

=
1

N

N∑
j=1

(λ
(t+1)
j − λ

(t)
j )⊤

(
M∑
k=1

f(xk
j ; θ

(t+1)
k )W

(t+1)
k − z

(t+1)
j

)
(a)
=

1

N

N∑
j=1

1

ρ
∥λ(t+1)

j − λ
(t)
j ∥2

(b)

≤
N∑

j=1

L2

ρN
∥z(t+1)

j − z
(t)
j ∥2

where (a) we use the Eq. (6) that 1
ρ (λ

(t)
j − λ

(t−1)
j ) =

(∑M
k=1 f(x

k
j ; θ

(t)
k )W

(t)
k − z

(t)
j

)
; (b) we use Lemma 2.

T2 = LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t+1)
j }, {λ(t)

j })− LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t)j }, {λ(t)
j })

=
1

N

N∑
j=1

(
ℓ(z

(t+1)
j )− ℓ(z

(t)
j )
)
− 1

N

N∑
j=1

λ
(t)
j

⊤ (
z
(t+1)
j − z

(t)
j

)

+
ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t+1)
k )W

(t+1)
k − z

(t+1)
j

∥∥∥∥∥
2

F

−

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t+1)
k )W

(t+1)
k − z

(t)
j

∥∥∥∥∥
2

F


=

1

N

N∑
j=1

(
h(z

(t+1)
j )− h(z

(t)
j )
)

(a)

≤ 1

N

N∑
j=1

(〈
∇h(z

(t+1)
j ), z

(t+1)
j − z

(t)
j

〉
− µz

2
∥z(t+1)

j − z
(t)
j ∥2

)
(b)
= − µz

2N

N∑
j=1

∥z(t+1)
j − z

(t)
j ∥2

where (a) strong convex of h Assumption 2 , (b) optimality of z update at Eq. (5).
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T3 =LADMM({W (t+1)
k }, {θ(t+1)

k }, {z(t)j }, {λ(t)
j } − LADMM({W (t+1)

k }, {θ(t)k }, {z(t)j }, {λ(t)
j })

=

M∑
k=1

βk

(
Rk(θ

(t+1)
k )−Rk(θ

(t)
k )
)
+

1

N

N∑
j=1

λ
(t)
j

⊤
(

M∑
k=1

(
f(xk

j ; θ
(t+1)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t+1)
k

))

+
ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t+1)
k )W

(t+1)
k − z

(t)
j

∥∥∥∥∥
2

F

−

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t+1)
k − z

(t)
j

∥∥∥∥∥
2

F


(a)

≤
M∑
k=1

βk

(
Rk(θ

(t+1)
k )−Rk(θ

(t)
k )
)
+

1

N

N∑
j=1

λ
(t)
j

⊤
(

M∑
k=1

(
f(xk

j ; θ
(t+1)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t+1)
k

))

+
ρ

2N

N∑
j=1

M∑
k=1


∥∥∥∥∥∥∥∥
∑

i∈[M ],
i̸=k

f(xi
j ; θ

(t)
i )Wi

(t+1) + f(xk
j ; θ

(t+1)
k )W

(t+1)
k − zj

(t)

∥∥∥∥∥∥∥∥
2

F

−

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t+1)
k − z

(t)
j

∥∥∥∥∥
2

F


+

ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t+1)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t+1)
k

∥∥∥2
F

=

M∑
k=1

(
qk(θ

(t+1)
k )− qk(θ

(t)
k )
)
+

ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t+1)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t+1)
k

∥∥∥2
F

(b)

≤
M∑
k=1

(〈
∇qk(θ

(t+1)
k ), θ

(t+1)
k − θ

(t)
k

〉
− µθ

2
∥θ(t+1)

k − θ
(t)
k ∥2

)
+

ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t+1)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t+1)
k

∥∥∥2
F

(c)
=

M∑
k=1

−µθ

2
∥θ(t+1)

k − θ
(t)
k ∥2 + ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t+1)
k )− f(xk

j ; θ
(t)
k )
∥∥∥2 ∥W (t+1)

k ∥2

(d)

≤
M∑
k=1

−µθ

2

∥∥∥θ(t+1)
k − θ

(t)
k

∥∥∥2 + ρL2
θ

2

M∑
k=1

∥∥∥θ(t+1)
k − θ

(t)
k

∥∥∥2 ∥W (t+1)
k ∥2

(e)

≤
M∑
k=1

−µθ + ρL2
θσ

2
W

2

∥∥∥θ(t+1)
k − θ

(t)
k

∥∥∥2

where (a) is due to Lemma 3, (b) is due to the strong convex of qk Assumption 2, (c) is due to the optimality of θk in Eq. (9),
(d) is due to the Lipschitz continuity of local model f(θ) Assumption 3 ( bounded gradient implies Lipschitz continuity), and
(e) is due to the upper bound of the linear weights in Assumption 3.
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T4 =LADMM({W (t+1)
k }, {θ(t)k }, {z(t)j }, {λ(t)

j } − LADMM({W (t)
k }, {θ(t)k }, {z(t)j }, {λ(t)

j })

=

M∑
k=1

βk

(
Rk(W

(t+1)
k )−Rk(W

(t)
k )
)
+

1

N

N∑
j=1

λ
(t)
j

⊤
(

M∑
k=1

f(xk
j ; θ

(t)
k )
(
W

(t+1)
k −W

(t)
k

))

+
ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t+1)
k − z

(t)
j

∥∥∥∥∥
2

F

−

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t)
k − z

(t)
j

∥∥∥∥∥
2

F


(a)

≤
M∑
k=1

βk

(
Rk(W

(t+1)
k )−Rk(W

(t)
k )
)
+

1

N

N∑
j=1

λ
(t)
j

⊤
(

M∑
k=1

f(xk
j ; θ

(t)
k )
(
W

(t+1)
k −W

(t)
k

))

+
ρ

2N

N∑
j=1

M∑
k=1


∥∥∥∥∥∥∥∥
∑

i∈[M ],
i̸=k

f(xi
j ; θ

(t)
i )Wi

(t) + f(xk
j ; θ

(t)
k )W

(t+1)
k − z

(t)
j

∥∥∥∥∥∥∥∥
2

F

−

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t)
k − z

(t)
j

∥∥∥∥∥
2

F


+

ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t)
k

∥∥∥2
F

=

M∑
k=1

(
gk(W

(t+1)
k )− gk(W

(t)
k )
)
+

ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t)
k

∥∥∥2
F

(b)

≤
M∑
k=1

(〈
∇gk(W

(t+1)
k ),W

(t+1)
k −W

(t)
k

〉
− µW

2
∥W (t+1)

k −W
(t)
k ∥2

)
+

ρ

2N

N∑
j=1

M∑
k=1

∥∥∥f(xk
j ; θ

(t)
k )W

(t+1)
k − f(xk

j ; θ
(t)
k )W

(t)
k

∥∥∥2
F

(c)

≤
M∑
k=1

−µW

2

∥∥∥W (t+1)
k −W

(t)
k

∥∥∥2 + ρN

2

M∑
k=1

∥∥∥W (t+1)
k −W

(t)
k

∥∥∥2 ∥f(xk
j ; θ

(t)
k )∥2

(d)

≤
M∑
k=1

−µW + ρNσ2
θ

2

∥∥∥W (t+1)
k −W

(t)
k

∥∥∥2

where (a) is due to Lemma 3, (b) is due to strong convex of gk Assumption 2, (c) is because of the optimality of Wk in
Eq. (7) and (d) is due to upper bound of the model outputs in Assumption 3.

Combining the above bounds for T1, T2, T3, T4 together and recall the condition for ρ in Eq. (31), we have
LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t+1)
j })− LADMM({W (t)

k }, {θ(t)k }, {z(t)j }, {λ(t)
j })

=T1 + T2 + T3 + T4

≤ 1

N

N∑
j=1

(
−µz

2
+

L2

ρ

)
∥z(t+1)

j − z
(t)
j ∥2 +

M∑
k=1

−µθ + ρL2
θσ

2
W

2

∥∥∥θ(t+1)
k − θ

(t)
k

∥∥∥2 + M∑
k=1

−µW + ρσ2
θ

2

∥∥∥W (t+1)
k −W

(t)
k

∥∥∥2
<0

Thus, proved.

Then we provide the proof for the lower-bounded property of LADMM for Lemma 5.
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Proof for Lemma 5.
LADMM({W (t)

k }, {θ
(t)
k }, {z

(t)
j }, {λ

(t)
j })

=
1

N

N∑
j=1

ℓ(z
(t)
j , yj) +

M∑
k=1

βkRk(θ(t)k ) +

M∑
k=1

βkRk(W (t)
k )

+
1

N

N∑
j=1

λ
(t)
j

⊤
(

M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

)
+

ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

∥∥∥∥∥
2

F

(a)
=

1

N

N∑
j=1

ℓ(z
(t)
j , yj) +

M∑
k=1

βkRk(θ(t)k ) +

M∑
k=1

βkRk(W (t)
k )

+
1

N

N∑
j=1

∇ℓ(z(t)j )
⊤
(

M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

)
+

ρ

2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

∥∥∥∥∥
2

F

(b)

≥ 1

N

N∑
j=1

ℓ

(
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k , yj

)
+

M∑
k=1

βkRk(θ(t)k ) +

M∑
k=1

βkRk(W (t)
k )

+
ρ− L
2N

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

∥∥∥∥∥
2

F

(c)

≥ 1

N

N∑
j=1

ℓ

(
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k , yj

)
+

M∑
k=1

βkRk(θ(t)k ) +

M∑
k=1

βkRk(W (t)
k )

=LVIM({W (t)
k }, {θ

(t)
k })

≥e
where (a) is due to Lemma 1; (b) is due to Lipschitz continuity of gradient of ℓ in Assumption 1 that

ℓ

(
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t)
k

)
− ℓ
(
z
(t)
j

)
− L

2

∥∥∥∥∥
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t)
k − z

(t)
j

∥∥∥∥∥ ≤

〈
∇ℓ(z

(t)
j ),

(
M∑
k=1

f(xk
j ; θ

(t)
k )W

(t)
k − z

(t)
j

)〉
and (c) is due to ρ ≥ L from the condition Eq. (31).

The result show that LADMM({W (t)
k }, {θ

(t)
k }, {z

(t)
j }, {λ

(t)
j }) is lower bounded. Thus, proved.

Proof for Theorem 1 (A). Combining Lemma 4 and Lemma 5, we show that LADMM({W (t)
k }, {θ

(t)
k }, {z

(t)
j }, {λ

(t)
j }) is

monotonically decreasing and is convergent. This completes the proof.

4) Proofs for Theorem 1 Part (B):

Proofs for Theorem 1 (B). Lemma 4 implies that
LADMM({W (t+1)

k }, {θ(t+1)
k }, {z(t+1)

j }, {λ(t+1)
j })− LADMM({W (t)

k }, {θ
(t)
k }, {z

(t)
j }, {λ

(t)
j })

≤ 1

N

N∑
j=1

(
−µz

2
+
L2

ρ

)
∥z(t+1)
j − z(t)j ∥

2 +

M∑
k=1

−µθ + ρL2
θσ

2
W

2

∥∥∥θ(t+1)
k − θ(t)k

∥∥∥2
+

M∑
k=1

−µW + ρσ2
θ

2

∥∥∥W (t+1)
k −W (t)

k

∥∥∥2
Using the fact that LADMM is monotonically decreasing and lower-bounded (in Lemma 5) as well as the bounds for ρ in

Eq. (31), we have ∀j ∈ [N ], k ∈ [M ],

lim
t→∞

∥∥∥z(t+1)
j − z(t)j

∥∥∥2 → 0, lim
t→∞

∥∥∥θ(t+1)
k − θ(t)k

∥∥∥2 → 0, lim
t→∞

∥∥∥W (t+1)
k −W (t)

k

∥∥∥2 → 0. (35)

By Lemma 2 that ∥λ(t+1)
j − λ(t)j ∥ ≤ L∥z

(t+1)
j − z(t)j ∥, we further obtain

lim
t→∞

∥∥∥λ(t+1)
j − λ(t)j

∥∥∥2 → 0,∀j ∈ [N ] (36)
In light of the dual update step of Algorithm 1, Eq. (36) implies that

lim
t→∞

∥∥∥∥∥
M∑
k=1

f(xkj ; θ
(t+1)
k )W

(t+1)
k − z(t+1)

j

∥∥∥∥∥
2

→ 0,∀j ∈ [N ] (37)

Using the limit points, we have W (t+1)
k →W ∗k , θ

(t+1)
k → θ∗k, z

(t+1)
j → z∗j , λ

(t+1)
j → λ∗j .
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Based on Eq. (37), we have
M∑
k=1

f(xkj ; θ
∗
k)W

∗
k = z∗j (38)

Then, we examine the optimality condition for the {W (t+1)
k } subproblems at iteration t+ 1:

0 =βk∇Rk(W (t+1)
k ) +

1

N

N∑
j=1

λ
(t)
j

⊤
f(xkj ; θ

(t)
k )

+

N∑
j=1

ρ

N

 ∑
i∈[M ],i̸=k

f(xij ; θ
(t)
i )Wi

(t) + f(xkj ; θ
(t)
k )W

(t+1)
k − zj(t)

 f(xkj ; θ
(t)
k ) (39)

According to Eq. (35) and Eq. (37), we have

0 =βk∇Rk(W ∗k ) +
1

N

N∑
j=1

λ∗j
⊤f(xkj ; θ

∗
k) (40)

Similarly, the optimality condition for the {θ(t+1)
k } subproblems at iteration t+ 1 indicates that:

0 =βk∇Rk(θ(t+1)
k ) +

1

N

N∑
j=1

λ
(t)
j

⊤
∇f(xkj ; θ

(t+1)
k )W

(t+1)
k

+

N∑
j=1

ρ

N

 ∑
i∈[M ],i̸=k

f(xij ; θ
(t)
i )Wi

(t+1) + f(xkj ; θ
(t)
k )W

(t+1)
k − zj(t)

∇f(xkj ; θ(t+1)
k )W

(t+1)
k (41)

According to Eq. (35) and Eq. (37), we have

0 =βk∇Rk(θ∗k) +
1

N

N∑
j=1

λ∗j
⊤∇f(xkj ; θ∗k)W ∗k (42)

Based on the optimality condition for the {z(t+1)
j } subproblems at iteration t+ 1, we have

0 = ∇ℓ(z(t)j )− λ(t−1)j − ρ

(
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

)
,∀j ∈ B(t) (43)

Based on the strongly convexity w.r.t zj in Assumption 2, there exists a subgradient η(t) ∈ ∂ℓ
(
z
(t)
j

)
such that〈

z − z(t)j , η(t) −

(
λ
(t−1)
j + ρ

(
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

))〉
≥ 0, ∀z (44)

It implies that

ℓ (z; yj)− ℓ
(
z
(t)
j ; yj

)
+

〈
z − z(t)j ,−

(
λ
(t−1)
j + ρ

(
M∑
k=1

f(xkj ; θ
(t)
k )W

(t)
k − z

(t)
j

))〉
≥ 0,∀z (45)

Taking the limits for Eq. (45) and using the results in Eq. (35) Eq. (36) Eq. (37), we have
ℓ (z; yj)− ℓ

(
z∗j ; yj

)
+
〈
z − z∗j ,−λ∗j

〉
≥ 0,∀z (46)

That is:

ℓ (z; yj) + λ∗j
⊤

(
M∑
k=1

f(xkj ; θ
∗
k)W

∗
k − z

)
≥ ℓ

(
z∗j ; yj

)
+ λ∗j

⊤

(
M∑
k=1

f(xkj ; θ
∗
k)W

∗
k − z∗j

)
It implies that

z∗j ∈ argmin
zj

ℓ (zj ; yj) + λ∗j
⊤

(
M∑
k=1

f(xkj ; θ
∗
k)W

∗
k − zj

)
This completes the proof.

C. Privacy Guarantees

1) Preliminaries: We utilize Rényi Differential Privacy (RDP) to perform the privacy analysis since it supports a tighter
composition of privacy budget [56] than the moments accounting technique [1] for Differential Privacy (DP).

We start by introducing the definition of RDP as a generalization of DP, which leverages the α-Rényi divergence between the
output distributions of two neighboring datasets. The definition of the neighboring dataset in this work follows the client-level
differentially private FL framework [54]. The neighboring datasets would differ in all samples associated with a single client,
that is, one user is present or absent in the VFL global dataset. (Definition 2)
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Definition 3. (Rényi Differential Privacy [56]) We say that a mechanism M is (α, ϵ)-RDP with order α ∈ (1,∞) if for all
neighboring datasets D,D′

Dα (M(D)∥M (D′)) :=
1

α− 1
logEθ∼M(D′)

[(
M(D)(θ)

M (D′) (θ)

)α]
≤ ϵ (47)

RDP guarantee can be converted to DP guarantee as follows:

Theorem 3. (RDP to (ϵ, δ)-DP Conversion [3]) 6 If f is an (α, ϵ)-RDP mechanism, it also satisfies (ϵ+log α−1
α −

log δ+logα
α−1 , δ)-

differential privacy for any 0 < δ < 1.

Here, we highlight three key properties that are relevant to our analyses.

Theorem 4. (RDP Composition [56]) Let f : D 7→ R1 be (α, ϵ1)-RDP and g : R1 × D 7→ R2 be (α, ϵ2)-RDP, then the
mechanism defined as (X,Y ), where X ∼ f(D) and Y ∼ g(X,D), satisfies (α, ϵ1 + ϵ2)-RDP.

Theorem 5. (RDP Guarantee for Gaussian Mechanism [56]) If f is a real-valued function, the Gaussian Mechanism for
approximating f is defined as Gσf(D) = f(D) +N

(
0, σ2

)
. If f has ℓ2 sensitivity 1, then the Gaussian Mechanism Gσf

satisfies (α, α/(2σ2))-RDP.

2) Proof of Theorem 2: We aim to protect the local training data of each client under client-level (ϵ, δ)-DP guarantee
(Definition 2) during VFL training. Let X be the VFL global dataset, i.e., the union of local feature sets X1, . . . , XM from all
M clients. We denote the output of client k as a matrix Ak, where each row is the embedding or logit of one local training
sample. With a loss of generality, we consider the embedding matrix Ak = [hk1 , . . . , h

k
N ]⊤ as local output, and our analysis

directly applies to the logit matrix Ak = [ok1 , . . . , o
k
N ]⊤. The local outputs from all clients can be concatenated as a global

embedding matrix A:
A = [A1,A2, . . . ,AM ] (48)

For our algorithms (Algorithm 1, Algorithm 3) that sample a mini-batch of data with data indices B(t) at each round t for
clients to compute their embeddings, we view the corresponding Ak for each client k as:

A(t)
k [j] = hkj

(t)
if j ∈ B(t), (49)

A(t)
k [j] = 0 if j /∈ B(t). (50)

Here we can fill in the rows of the output matrix for non-sampled indices (i.e., j /∈ B(t)) as all zeros for privacy analysis.
We will first analyze the privacy cost for one communication round (omitting the superscript t here) and then accumulate the

privacy costs over T rounds via the DP composition theorem.
We define a function H that outputs a global embedding matrix consisting of clipped local embedding matrices for FL global

dataset X as:
H(X) = [Â1, . . . , ÂM ],where Âk = Clip(Ak, C),∀k ∈ [M ]. (51)

Lemma 6. For any neighboring datasets X,X differing by all samples associated by one single client, the ℓ2 sensitivity for H
is C.

Proof. WLOG, the neighboring dataset X ′ differs the first client from X , i.e., X ′ = {X1
′, X2, . . . , XM}. Therefore the global

embedding matrix H(X) and H(X ′) only differ by the clipped local embedding matrix from the first client (Â1 and Â1
′
).

Then, the ℓ2 sensitivity for H is bounded as follows:

max
X,X′

∥H(X)−H(X ′)∥2 =

√
∥Â1 − Â1

′
∥2F ≤ C. (52)

Then, we define our Gaussian mechanism GσCH, which outputs a global matrix consisting of noise-perturbed local embedding
matrices for VFL global dataset X:

GσCH(X) = [Ã1, . . . , ÃM ],where Ãk = Clip(Ak, C) +N
(
0, σ2C2

)
,∀k ∈ [M ]. (53)

Lemma 7. Given the function H with ℓ2 sensitivity C, Gaussian standard deviation σ2C2 , the Gaussian mechanism with
GσCH satisfies client-level (α, α/(2σ2))-RDP.

Proof. The ℓ2 sensitivity for the function H is C by Lemma 6. The Gaussian standard deviation for the noise-perturbed
embedding is σC, which is proportional to the clipping constant C. Combining it with Theorem 5 yields the conclusion that
GσCH guarantees client-level (α, α/(2σ2))-RDP.

We note that the training process in the server does not access the raw data Xk, thus it does not increase the privacy
budget and the whole algorithm in one round satisfies RDP by the post-processing property of RDP. For algorithms with T

6This theorem is tighter than the original RDP paper [56], and it is adopted in the official implementation of the PyTorch Opacus library.
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Fig. 5: Performance of VIMADMM with different penalty factor ρ on four datasets. VIMADMM is not sensitive to ρ from 0.5 to 2.
communication rounds, we use the RDP Composition theorem (Theorem 4) to accumulate the privacy budge over T rounds,
and convert the RDP guarantee into DP guarantee (Theorem 3).

Finally, we recall Theorem 2 and provide the formal proof.

Theorem 2. Given a total of M clients, T communication rounds, clipping threshold C and noise level σ, DP versions of
Algorithm 1, 3 satisfy client-level ( Tα2σ2 + log α−1

α −
log δ+logα

α−1 , δ)-DP for any α > 1 and 0 < δ < 1.

Proof. At each communication round, according to Lemma 7, GσCH satisfies client-level (α, α
2σ2 )-RDP. Due to the post-

processing property of RDP, after server training, our DP algorithms (i.e., DP versions of Algorithm 1, 3) with one round still
satisfy client-level (α, ϵ′(α))-RDP. Based on RDP Composition theorem (Theorem 4), our DP algorithms with T communication
rounds satisfy client-level (α, Tα2σ2 )-RDP. Based on the connection between RDP and DP in Theorem 3, our DP algorithms with
T communication rounds also satisfy client-level ( Tα2σ2 + log α−1

α −
log δ+logα

α−1 , δ)-DP.

D. Experimental Details and Additional Results

1) Platform: We simulate the vertical federated learning setup (1 server and N clients) on a Linux machine with AMD
Ryzen Threadripper 3990X 64-Core CPUs and 4 NVIDIA GeForce RTX 3090 GPUs. The algorithms are implemented by
PyTorch [58]. Please see the submitted code for full details. We run each experiment 3 times with different random seeds.

2) Hyperparameters: We detail our hyperparameter tuning protocol and the hyperparameter values here. For all VFL training
experiments, we use the SGD optimizer with learning rate η for the server’s model, and the SGD optimizer with momentum
0.9 and learning rate η for client k’s local model. The regularization weight β is set to 0.005. The embedding dimension df is
set to 60, and batch size b is set to 1024 for all datasets.

a) Vanilla VFL training: For Vanilla VFL training experiments, we tune learning rates by performing a grid search separately
for all methods over {0.05, 0.1, 0.3, 0.5, 0.8} on MNIST, {0.003, 0.005, 0.008, 0.01, 0.05, 0.1} on CIFAR, {0.05, 0.1, 0.5} on
NUS-WIDE, {0.0005, 0.005, 0.01, 0.05, 0.1} on ModelNet40. For ADMM-based methods, we tune penalty factor ρ with a
search grid {0.5, 1, 2} on all datasets.

b) Differentially private VFL training: We leverage the PyTorch Differential Privacy library Opacus 7 to calculate
the privacy budgets ϵ. In all experiments, δ = 1e − 5. For each privacy budget ϵ, we perform a grid search for the
combination of hyperparameters (including noise scale σ, clipping threshold C, and learning rate η) for all methods
for a fair comparison. The noise scale is tuned from σ {2, 3, 5, 8, 10, 30, 50, 70} on all datasets. C is tuned from
{0.0005, 0.001, 0.005, 0.01, 0.1, 1} and η is tuned from {0.05, 0.3, 0.5, 1} for MNIST; C is tuned from {0.01, 0.05, 0.1, 0.5, 1}
and η is tuned from {0.005, 0.01, 0.05, 0.1, 0.5, 1} for CIFAR; C is tuned from {0.001, 0.005, 0.01, 0.05, 0.1} and η is tuned
from {0.05, 0.1, 0.3, 0.5, 1} for NUS-WIDE; C is tuned from {0.01, 0.05, 0.1, 0.5, 1} and η is tuned from {0.05, 0.1, 0.5} for
ModelNet40. We use the best hyper-parameters to start 3 runs with different random seeds and report the average results for
each method.

c) Client-level explainability: In the experiments of client importance validation via noisy test client, for each time, we
perturb the features of all test samples at one client by adding Gaussian noise sampled from N

(
0, σ̄2

)
to its features. In order

to observe the difference in test accuracy between important clients and unimportant clients, we set σ̄ to 10 for MNIST, 1 for
CIFAR and NUS-WIDE, and 3 for ModelNet40.

In the experiments of client denoising, we construct one noisy client (i.e., client 7, 5, 2, 3 for MNIST, CIFAR, NUS-WIDE,
ModelNet40 respectively) by adding Gaussian noise sampled from N

(
0, σ̃2

)
to all its training samples and test samples. We

set σ̃ to 1 for MNIST, NUS-WIDE and ModelNet40, and 3 for CIFAR.
3) Additional Evaluation Results:

a) Effect of ρ: Here we report the test accuracy of VIMADMM with different penalty factor ρ in Figure 5, which show that
VIMADMM is not sensitive to ρ on four datasets.

7https://github.com/pytorch/opacus
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b) Results for a large number of clients.: We evaluate baselines and our methods under 100 clients on MNIST by allowing
the agents to obtain overlapped features, and the results show that our methods still outperform baselines. Specifically, we divide
the features into 100 overlapped subsets for 100 clients so that each client has 14 pixels. The results in Table XI show that
VIM methods (i.e., VIMADMM, VIMADMM-J) have higher accuracy than baselines in both w/ and w/o model splitting settings.

TABLE XI: Performance of Vanilla VFL when M = 100 on MNIST

W/ model splitting W/o model splitting

VAFL Split Learning VIMADMM FDML VIMADMM-J
95.38 95.45 95.77 95.85 95.96

c) Results for client subsampling under client-level DP: We extended our study under client-level DP by incorporating a
subsampling mechanism into the VIMADMM framework to save the privacy budget. Specifically, during each communication
round, the server receives the local embeddings from p% clients, corresponding to a participation rate of p%. To address missing
local embeddings, the server leverages historical local embeddings from other clients to complete their absent local embeddings.

We calculate the privacy budget ϵi for client following our Theorem 2, where T denotes the number of communication
rounds that client i uploads local embeddings, instead of the total number of communication rounds as in our original algorithm.
Due to the non-overlapping nature of local data among clients, the concatenated output matrix from all clients satisfies the
maxi ϵi client-level DP guarantee according to DP parallel composition.

As shown in Table XII, there is a utility loss when p% = 25%, 50% compared to p% = 100% under DP and non-DP settings
on MNIST and CIFAR. This discrepancy demonstrates the necessity of aggregating local outputs from all clients during training
to achieve optimal utility in vertical federated learning.

TABLE XII: The utility of VIMADMM with different client subsampling ratio under client-level DP.

MNIST CIFAR

25% 50% 100% 25% 50% 100%

ϵ =∞ 94.20 94.52 97.13 65.78 66.10 75.25
ϵ = 8 85.98 87.22 92.35 62.01 62.86 73.83
ϵ = 1 85.51 86.62 91.09 46.53 46.69 61.65

d) Additional results on client denoising: Table XIII presents the test accuracy of VAFL, Split Learning, and
VIMADMM at different epochs (communication rounds) on different datasets under one noisy client. Note that each epoch consists
of N/b communication rounds. Table XIII shows that under the noisy training scenario, VIMADMM consistently outperform
Split Learning and VAFL with faster convergence and higher test accuracy, which indicates the effectiveness of VIM’s
multiple linear heads in client denoising.

TABLE XIII: Test accuracy under one noisy client whose training local features and test local features are perturbed by Gaussian
noise.

Method
Test accuracy @ epoch (communication round)

MNIST CIFAR NUS-WIDE ModelNet40

2 (106) 5 (265) 10 (530) 2 (88) 5 (220) 10 (440) 2 (106) 5 (265) 10 (530) 2 (18) 5 (45) 10 (90)

VAFL 91.07 ± 0.17 94.36 ± 0.16 95.59 ± 0.11 28.83 ± 1.04 38.77 ± 0.39 46.98 ± 0.70 51.88 ± 0.72 77.68 ± 0.74 85.31 ± 0.15 43.23 ± 3.07 80.13 ± 1.10 89.56 ± 0.41

Split Learning 95.04 ± 0.14 96.01 ± 0.03 96.43 ± 0.08 42.75 ± 0.13 50.06 ± 0.18 55.53 ± 0.37 85.35 ± 0.24 86.42 ± 0.24 87.14 ± 0.29 77.94 ± 1.00 88.74 ± 0.07 89.69 ± 0.42

VIMADMM 96.22 ± 0.07 96.60 ± 0.04 96.82 ± 0.07 67.08 ± 0.43 70.70 ± 0.34 71.76 ± 0.14 86.38 ± 0.20 87.00 ± 0.27 87.18 ± 0.14 90.05 ± 0.38 90.71 ± 0.31 90.59 ± 0.05

e) Reference accuracy for SOTA model and reference model in the centralized setting: we included the comparisons in
Table XIV, which shows the reference accuracy for SoTA models and a simple reference model in a centralized setting on four
datasets. Specifically,
• SoTA models: These models may employ different model architectures and training methods compared to our approach.

They serve as a virtual upper bound as the highest achievable accuracy on each dataset.
• Reference model in the centralized setting. This reference model has the same model size as one local model coupled with

a server model.
For instance, on the MNIST dataset, the latest SoTA method in a centralized setting achieves an accuracy of 99.87%, while a

basic reference model (comprising one local model followed by a server model) reaches 98.19%. In comparison, our VFL
model (consisting of M local models followed by a server model) demonstrates a comparable accuracy of 97.13%.
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Furthermore, on datasets such as NUS-WIDE and ModelNet, our VFL model even surpasses the accuracy of the reference
model in a centralized setting. This is attributable to the significantly higher number of model parameters in VFL. For example,
in ModelNet, we utilized four ResNet-18 feature extractors as local models for four different clients, allowing for a more
nuanced understanding and representation of the data.

TABLE XIV: Accuracy for SOTA model and reference model in the centralized setting.

MNIST CIFAR NUS-WIDE (5 classes) ModelNet40 (2D multi-views)

SOTA method in centralized setting (virtual upper bound) 99.87 [9] 99.50 [18] 88.7 [47] 96.6 [73]
Reference model in centralized setting (e.g., one local model followed by server model) 98.19 77.61 87.71 88.96

VIMADMM Model (e.g., M local models followed by server model) 97.13 75.25 88.51 91.32

f) VIMADMM on larger models: VIMADMM can scale well to large model such as ResNet-18 as shown in the experiments
on ModelNet40. Leveraging the larger models as feature extractors for clients, VIMADMM can produce higher-quality local
embeddings, which are also crucial for learning accurate linear heads on the server side. Here we also report the results of
VIMADMM on CIFAR with CNN, ResNet-18, and ResNet-34, which are 75.25%, 81.35%, and 82.58%, respectively. It shows
that a larger model can lead to higher accuracy for VIMADMM, validating its scalability and efficiency.

g) VIMADMM on non-image tasks: VIMADMM can be adapted to non-image tasks, such as datasets with both text and
image modalities. For example, in the NUS-WIDE dataset, which encompasses both text and image features as local datasets,
VIMADMM achieves state-of-the-art results as shown in Figure 1. This adaptability is due to VIMADMM’s flexible design, which
can handle heterogeneous input data types via different feature extractors (e.g., local models) in the clients, and then aggregate
heterogeneous local embeddings via multiple linear heads in the server. We believe these results underscore VIMADMM’s potential
in a broader range of applications beyond image tasks.

h) VIMADMM under long-tail datasets: Long-tail datasets are characterized by a significant imbalance, where minority
classes have far fewer samples than majority ones. This horizontal imbalance is distinct from the challenges addressed by
vertical federated learning, where the same sample (whether it belongs to a majority or minority class) is vertically split across
multiple clients. This means that in vertical federated learning, minority class samples are still be evenly distributed among
clients. We conduct additional experiments on long-tail data.

We create long-tail training datasets following [71] with an imbalance factor of 10 (i.e., the ratio of samples in the head to
tail class). Specifically, for MNIST, this resulted in class sample sizes of [6000, 4645, 3596, 2784, 2156, 1669, 1292, 1000,
774, 600] for 10 classes. For CIFAR, the class sample sizes are [5000, 3871, 2997, 2320, 1796, 1391, 1077, 834, 645, 500]
across the 10 classes.

We compared the VIMADMM model, which consists M local models followed by a server model, with a reference model in a
centralized setting. This reference model has the same model size as one local model coupled with a server model.

We show the results in Table V, demonstrating that our VIMADMM is still effective on challenging long-tail training datasets,
yielding results comparable to those of the reference model in a centralized setting. Moreover, the long-tail version of MNIST
dataset does not significantly impact the accuracy of VIMADMM compared to the original MNIST dataset.

E. Discussion

a) DP generative model in VFL: An alternative way to achieve DP in VFL is to locally train a DP generative model for
each client, and then send the DP generative models to the server, which takes only one communication round. However, we
identified several key challenges that make it less suitable for our VFL context:
• Mismatch of Synthetic Partial Features Across Clients. In VFL, there are M clients holding different subsets of features

for the same training samples (denoted as x1j , x
2
j , . . . , x

M
j for sample j). A generative model, due to its stochastic nature,

would generate synthetic partial features without correspondence to a specific training sample (e.g., the parietal features
generated from a local generative model would adhere to the local data distribution, but do not correspond to a particular
original sample j). This lack of correspondence means that the server cannot effectively concatenate the synthetic partial
features into a cohesive “global” dataset for training. This is a limitation of the generative model in VFL.

• Quality Concerns Due to Partial Features. Given that each client only has partial features (see Figure 3 row 1 for
the visualization of raw local features), a generative model trained locally (without FL) might yield lower-quality data.
This is particularly problematic in cases where partial features are not informative (e.g., clients having only background
pixels in image datasets like MNIST/CIFAR). The state-of-the-art accuracy for synthetic data in centralized learning with
sample-level DP on MNIST is around 97.6% under ϵ = 1 and 98.2% under ϵ = 10 [37]. Since the partial features in VFL
are less informative than the full features in centralized learning, the DP genetive model in VFL would lead to lower
accuracy. On the other hand, our VIMADMM DP learning algorithm already achieves a promising accuracy that is close to
the state-of-the-art: 91.35% under ϵ = 1 and 92.35% under ϵ = 8 in VFL under client-level DP, which is a stricter privacy
notion than sample-level DP.
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• Scalability Issues of DP Generative Model with High-Dimensional Data. DP generative models often struggle with
high-dimensional datasets [37, 72]. For instance, their performance on datasets like CIFAR10 is limited [72], posing a
challenge for more complex datasets like ModelNet40. Additionally, the generation of multi-modal data (e.g., text and
image features in NUS-WIDE) remains an unresolved challenge. In our method, as we are not training generative models,
the high dimensionality of data will not pose a significant challenge to VIMADMM.

• Communication Overhead with Generative Model. The model size of a standard DCGAN [61] implemented in PyTorch
8 is 13.65 MB. As it only takes one round for communication, the communication costs for each client would be
13.65 MB. In comparison, VIMADMM demonstrates similar communication costs on certain datasets. For example, on
the ModelNet40 dataset, VIMADMM achieves an accuracy of 89% with a total communication cost of 11.32 MB (See
Figure 1 and Table IV for details). This efficiency stems from the transmission of local embeddings and ADMM-related
variables, which collectively have a smaller size than the number of parameters within a deep neural network like a
DCGAN generator. This trend becomes even more evident if we use a larger generative model than DCGAN, which
is a common direction in current generative AI advancements. Moreover, the high-quality local embeddings (e.g., from
a pretrained ResNet-18 as local model) and multiple local updates at each communication round (enabled by ADMM)
significantly aid convergence. Consequently, a relatively small number of communication rounds (approximately 10) is
required to reach an accuracy of 89% on ModelNet40.
We remain open to future research exploring the feasibility and optimization of the local training of DP generative models
in VFL settings.
b) Linear head and client importance: In Section VI-C, we utilize the norm of weights in the linear head, learned by the

server from local embeddings, to determine the importance of the corresponding client (and its local features). Our approach is
in line with existing methods such as LIME [63], SHAP [49], and others [29] that utilize model weights to determine feature
importance. In our model, we follow existing work by assuming feature independence [63, 49, 29] to simplify the interpretation
of weights in terms of feature importance.

c) Challenges of ADMM algorithm design in VFL: There are several key challenges of designing ADMM algorithm in
VFL for distributed optimization:
• how to ensure the consensus among clients and form it as a constrained optimization problem (e.g., from Eq. 2 to Eq. 3).
• how to decompose the optimization problem into small sub-problems that can be solved in parallel by ADMM.
For the first challenge, although ADMM is flexible to introduce auxiliary variables and thus formulate a constrained

optimization problem in HFL, it raises new challenges in VFL. For example, the ADMM-based methods in HFL [23, 22, 38, 81]
usually use the global model as the auxiliary variable and enforce the consistency between the global model and each local
model. However, VFL communicates embeddings, and it is not feasible to enforce local embeddings from different clients to
be the same as they provide unique information from different aspects. Therefore, in this paper, we introduce the auxiliary
variable zj for each sample j and construct the constraint between zj and server’s output

∑M
k=1 h

k
jWk (i.e., the logits), which

enables the optimization for each Wk by ADMM.
For the second challenge, we propose the bi-level optimization for server’s model and clients’ models to train DNNs for VFL

with model splitting, while the existing ADMM-based method in VFL [35] only considers logistic regression with linear models
in client-side, which does not apply to DNNs. The initial attempt we made is to decompose the optimization for server’s linear
heads by ADMM while still using chain rule of SGD to update local models, which does not exhibit much superiority over
pure SGD-based methods. Later, we decompose the optimization for both server’s linear heads and local models by ADMM,
leading to our current algorithm VIMADMM that enables multiple local updates for clients at each communication round and
achieves significantly better performance, as we show in Sec. VI-A.

d) Limitations: Directly deploying VFL algorithms without stopping criteria or regularization techniques may lead to
the over-fitting phenomenon, as in many other algorithms. Based on our experiments, we find that over-fitting is a common
problem of VFL algorithms due to a large number of model parameters from all clients in the whole VFL system. Compared
to centralized learning or horizontal FL, the prediction for one data sample in VFL involves M times model parameters, which
corresponds to M partitions of input features. To prevent over-fitting, we use regularizers to constrain the complexity of models
and adopt standard stopping criteria, i.e., stop training when the model converges or the validation accuracy starts to drop more
than 2%.

8https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
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