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Abstract001

Time series data measure how environments002
change over time and drive decision-making in003
critical domains like finance and healthcare. A004
common goal in analyzing time series data is to005
understand the underlying events that cause the006
observed variations. We conduct the first study007
of whether Large Language Models (LLMs)008
can infer events described with natural lan-009
guage from time series data. We evaluate 18010
LLMs on a task to match event sequences with011
real-valued time series data using a new bench-012
mark we develop using sports data. Several013
current LLMs demonstrate promising abilities,014
with OpenAI’s o1 performing the best but with015
DS-R1-distill-Qwen-32B outperforming pro-016
prietary models such as GPT-4o. From insights017
derived from analyzing reasoning failures, we018
also find clear avenues to improve performance.019
By applying post-training optimizations, i.e.,020
distillation and self-improvement, we signifi-021
cantly enhance the performance of the Qwen2.5022
1.5B, achieving results second only to o1.*023

1 Introduction024

Time series data are pervasive. Examples of025

time series include wearable device measurements026

of users’ actions (Anguita et al., 2013), clinical027

records about changes in health (Harutyunyan et al.,028

2019), and asset market prices (Wang et al., 2024c;029

Li et al., 2024a). Each of these examples represents030

a real-valued sequence of data points with time031

stamps. In addition to the real-valued data, a time032

series often has associated events described in nat-033

ural language. Although the causal connections be-034

tween the real-valued data and the natural language035

events is often uncertain, the events are thought to036

be correlated in some way with the real-valued data.037

Figure 1 illustrates an example from sports—events038

favorable to Team A increase its win probability,039

*All resources needed to reproduce our work are
available: https://anonymous.4open.science/r/Event_
Infer-1B20/

while unfavorable events decrease it. Benefiting 040

from the promising potential of integrating natu- 041

ral language with time series analysis (Jin et al., 042

2024), along with the rapid advances in natural 043

language processing, LLMs have been employed 044

for important time series analysis tasks including 045

forecasting (Wang et al., 2024c; Williams et al., 046

2024; Liu et al., 2024a; Tan et al., 2024), anomaly 047

detection (Dong et al., 2024; Liu et al., 2024b), and 048

time series understanding (Cai et al., 2024; Li et al., 049

2024a,b). The goal of analyzing time series data 050

is often to infer events occurring in the measured 051

environment (Liu et al., 2024b). This motivates our 052

work to explore how LLMs infer event descriptions 053

given context and time series data. 054

Prior work on reasoning about time series in con- 055

junction with natural language has largely over- 056

looked event descriptions (Merrill et al., 2024; 057

Williams et al., 2024) and primarily focused on 058

numerical sequences, such as trend analysis (Cai 059

et al., 2024) or anomaly detection (Dong et al., 060

2024). Some studies collect sequences of news 061

related to time series (Wang et al., 2024c; Liu et al., 062

2024a; Cheng and Chin, 2024), however they are 063

curated for forecasting and do not explore reason- 064

ing from the real-valued data to events. Meanwhile, 065

due to the potential inclusion of event descriptions 066

that do not impact the time series, as well as failure 067

to include important events, these data are not ideal 068

as a benchmark for measuring LLMs reasoning. 069

To address this gap, we introduce a benchmark 070

comprising time series data and associated natu- 071

ral language event descriptions where there is a 072

clear and strong connection between the events 073

and real-valued data. Our dataset (Section 3.3) in- 074

cludes 4,200 games from NBA (basketball) and 075

NFL (American football) sports leagues, compris- 076

ing a total of 1.7 million data points and events. 077

The real-valued data is the win probability† and 078

†We use win probability values output from ESPN’s game
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Player B1 personal foul

A1 misses free throw 1 of 2

A1 misses free throw 2 of 2

B3 makes two point shot

A2 misses 3-point jumper
B1 defensive rebound

B1 misses 3-point jumper
A2 defensive rebound

A2 lost ball (B5 steals)

A5 defensive rebound

B3 makes jumpshot

A) Player A2 misses 3-point jumper; Player B4 defensive rebound

B) Player B3 misses two point shot; Player B2 offensive rebound

C) Player A4 makes two point shot; Player B3 misses shot

D) Player A2 makes 3-point jumper; Player B2 makes two point shot

Prompt: The time series and events below are from an NBA game 

between Team A and Team B. Select the most likely option for the 

missing events from the choices below:

Figure 1: Illustration of time series event reasoning. The prompt provides (in text form, see details later in the paper)
a time series of real-valued data (win probabilities) and corresponding natural language event descriptions. The
model is prompted to select the most likely sequence of events for some segment of the time series data where no
events are provided. (This example is taken from near the end of an NBA game, which is 48 minutes regulation
time, between the Dallas Mavericks (Team A) and Los Angeles Lakers (Team B), 1 November 2019.)

the task, as illustrated in Figure 4, is to determine079

which sequence of events is most consistent with080

the given win probability sequence.081

To evaluate the effectiveness of our benchmark082

in assessing LLMs’ reasoning ability, we test 18083

models across various factors, including the impact084

of available context, varying sequence lengths, and085

time series similarity on reasoning. We also exam-086

ine the impact of replacing or removing time series087

and real entity names through three ablation stud-088

ies. To explore the generalizability of our approach,089

we extend the evaluation to open-domain settings,090

including cryptocurrency prices (Li et al., 2024a)091

and U.S. health data (Liu et al., 2024a).092

Our findings indicate that several LLMs exhibit093

promising reasoning capabilities. For instance,094

OpenAI o1 achieved the highest accuracy of 83% in095

NBA events reasoning, followed by DS-R1-distill-096

Qwen-32B with 68%, and GPT4o with 41%. How-097

ever, through post-training with a distillation phase098

followed by self-improvement, i.e., GRPO (Shao099

et al., 2024), optimization, we significantly im-100

proved the performance of the Qwen2.5 1.5B101

model from being the worst performing model to102

outperforming every model except for o1, and ap-103

analysis (https://www.espn.com/analytics/). As we dis-
cuss in Section 6, win probability is an effective measure of
game state but potentially differs from ground truth.

proaching its performance on the NBA task. 104

Our key contributions include introducing an 105

evaluation approach (Section 3.2) to assess LLMs’ 106

ability to reason about event sequences through 107

time series and extend it to multiple domains (Sec- 108

tion 4.5). We create an easily extensible dataset 109

with 1.7 million timesteps with values and events 110

(Section 3.3), where changes in time series are 111

explicitly influenced by events. In benchmark- 112

ing 18 LLMs, we find promising reasoning capa- 113

bilities and find clear avenues to enhance reason- 114

ing (Section 4.1 & Section 4.3). And we identify 115

that post-training optimization can significantly en- 116

hance LMs on events inferring (Section 4.2). 117

2 Related Work 118

Despite a growing body of work on LLMs and 119

time series reasoning which we summarize in this 120

section, previous benchmarks for LLMs in time 121

series and event reasoning have not addressed the 122

task of inferring event sequences from time series. 123

2.1 Time Series Reasoning with LLMs 124

Many studies used text to assist in time series rea- 125

soning (including forecasting), achieving promis- 126

ing results (Cao et al., 2024; Wang et al., 2024a; Xie 127

et al., 2024). These works have made significant 128

contributions to fields such as sociology (Cheng 129
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Benchmark/ Evaluation Properties (with Time Series)

Context Source Task

Williams et al. (2024) Description Manual Forecasting
Merrill et al. (2024) Description Synthetic Reason & Forecast
Cai et al. (2024) Question Manual Understanding
Liu et al. (2024a) News Series Real-World Forecasting

Properties (without Time Series)

Fatemi et al. (2024) Event & Time Synthetic Temporal Reasoning
Xiong et al. (2024) Event & Time Synthetic Temporal Reasoning
Chu et al. (2023) Event & Time Real-World Temporal Reasoning
Quan and Liu (2024) Event Sequence Synthetic Sequential Reasoning
Karger et al. (2024) Event Real-World Future Forecasting

Ours Time Series & Event Sequence Real-World Events Reasoning

Table 1: Time series benchmarks typically lack a focus on inferring event sequences, while event reasoning
evaluations do not incorporate multimodal reasoning over numerical sequences. We propose reasoning about event
sequences through time series data, incorporating corresponding timestamps.

and Chin, 2024), energy (Wang et al., 2024c; Xu130

et al., 2024), and finance (Li et al., 2024a; Wang131

et al., 2024b). For example, Williams et al. (2024)132

manually curated time series forecasting data along133

with related text to highlight the importance of in-134

corporating textual information when using LLMs135

for forecasting. Wang et al. (2024c) used news136

about energy to help LLMs predict local electricity137

conditions. Intrinsically, those approaches depend138

on LLMs’ multi-modal transfer of knowledge from139

natural language to time series.140

However, there are also critical areas where rea-141

soning about real-world events through time series142

analysis holds significant potential to enhance per-143

formance (Jin et al., 2024; Jiang et al., 2024b),144

compared to unimodal methods. Using LLMs for145

anomaly detection (Dong et al., 2024; Zhou and Yu,146

2024) often involves processing time series data,147

such as CPU usage rates from system monitors,148

and then generating an interpretable anomaly re-149

port (Liu et al., 2024b). Similarly, other domains,150

such as medical care (Chan et al., 2024), market151

analysis (Lee et al., 2024; Ye et al., 2024), and hu-152

man activity analysis (Li et al., 2024b), also rely153

on this multi-modal reasoning capability to make154

actionable decisions.155

Table 1 summarizes benchmarks intended to156

evaluate LLMs’ capability in processing time se-157

ries data. Cai et al. (2024) proposed a benchmark158

using synthetic data to evaluate LLMs’ understand-159

ing of time series, focusing on tasks such as pattern160

recognition. Similarly, Merrill et al. (2024) intro- 161

duced synthetic time series data and relevant tex- 162

tual descriptions, containing a single event (cause), 163

to evaluate LLMs’ performance in matching time 164

series to the scenarios that generated them (i.e., eti- 165

ological reasoning). Due to the lack of paired event 166

sequence, none of these works evaluated the LLMs’ 167

ability to reason about events related to the time 168

series data. 169

The one exception is Liu et al. (2024a), which 170

collects news sequences corresponding to time se- 171

ries dating back to 1983. However, due to the 172

limited dataset size and potential contamination 173

issues, it is challenging to use as a fair evaluation 174

source, especially since the exact impact of news 175

on time series remains unclear. To fill this gap, we 176

propose a living benchmark with data sourced from 177

continuously refreshed naturally-occurring data (in 178

our case, from widely available sports data). This 179

avoids the pitfalls associated with synthetic data, 180

and because it can be easily refreshed avoids the 181

contamination risks with fixed benchmarks. 182

2.2 LLMs for Events Reasoning 183

Reasoning is an ill-defined and broad, yet criti- 184

cal, capability that determines LLMs’ performance 185

across many complex tasks. Therefore, numer- 186

ous reasoning benchmarks have been developed 187

for valuable tasks, such as coding (Zhuo et al., 188

2024; Jain et al., 2024), mathematics (Cobbe et al., 189

2021; White et al., 2024), and finance (Xie et al., 190
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2023; Islam et al., 2023). Additionally, some bench-191

marks have evaluated the general reasoning abil-192

ities of LLMs (Bang et al., 2023; White et al.,193

2024; bench authors, 2023), including BBH (Suz-194

gun et al., 2022) and MMLU (Hendrycks et al.,195

2020).196

Several benchmarks, as listed in Table 1, have197

been proposed to evaluate LLMs’ understanding of198

relationships between events (Quan and Liu, 2024),199

as well as temporal reasoning capabilities for un-200

derstanding the relationships between events and201

time (Xiong et al., 2024; Chu et al., 2023). For202

instance, Karger et al. (2024) introduced a dynami-203

cally updated benchmark to evaluate LLMs’ fore-204

casting of future events. Fatemi et al. (2024) used205

synthetic data to assess LLMs’ perception and rea-206

soning between events and time. However, these207

benchmarks do not consider the interplay between208

time series and associated event sequences, which209

is the focus of our work.210

3 Benchmark211

We next define the benchmark task, outline the212

evaluation format, and introduce the dataset details.213

3.1 Problem Definition214

A time series is a sequence of timestamped real val-215

ues: x = [(t0, x0), (t1, x1), ..., (tT , xT )]. An event216

sequence is a sequence of timestamped text descrip-217

tions of events: e = [(t0, e0), (t1, e1), ..., (tT , eT )].218

For each sequence, the timestamps t are monoton-219

ically increasing (ti ≤ tj if i < j). While the220

timestamps of the time series and event sequence221

need not be identical, there is often a one-to-one222

correspondence, with an event description associ-223

ated with each real value. Critically, the events224

describe changes in the environment that result in225

changes in the time series values.226

Given a dataset D = (X , E) containing N real-227

valued time series and timestamp t with correspond-228

ing event sequences of length T , we are concerned229

with time series data represented as a pair of se-230

quences:231

X = [(t0, x0), (t1, x1), ..., (tN−1, xN−1)]232

consisting of real-valued measurements, and233

E = [(s0, e0), (s1, e1), ..., (sT−1, eT−1)]234

comprising natural language event descriptions. Al-235

though there may not always be a direct causal re-236

lationship between the events and measurements,237

we assume there is some connection between the 238

events and measurements and that the timestamps, 239

sj and ti, are synchronized. Note that we do not 240

assume that there is one event associated with each 241

data value, or even that the timestamps of events 242

and data values match, only that they are aligned 243

so the ordering relationships between values in X 244

and events in E are known. 245

Our goal is to interrogate an LLM’s understand- 246

ing of time series data by measuring its ability to 247

infer unobserved values in E given X . As illus- 248

trated in Figure 1, when the intermediate event 249

sequence is missing, the LLM is expected to infer 250

it using the provided real-valued time series and 251

corresponding timestamps. 252

3.2 Events Reasoning Format 253

We formulate our event reasoning evaluation as 254

a multiple-choice question where the model is 255

prompted to select the event descriptions that are 256

most likely to correspond to the provided real- 257

valued time series data. The prompt follows this 258

template: 259

System Prompt: {{sys_prompt}}
ti xi
ti+1 xi+1

...
ti+k−2 xi+k−2

ti+k−1 xi+k−1

Four options to choice:{{options}}
Respond with this format:{{format}}

260

where we provide contextual task information (i.e., 261

sys_prompt), along with real-valued time series 262

of length k (e.g., xi:i+k−1). Since time series data 263

are typically accompanied by timestamps, the cor- 264

responding timestamps ti:i+k−1 are provided in the 265

prompt. The intermediate events are missing, and 266

the LLM is tasked with inferring these events. To 267

make the task tractable we provide four options, 268

one of which corresponds to the actual sequence 269

of events, and prompt the model to select the most 270

likely option. Figure 12 in Appendix D gives exam- 271

ples of the full prompts used in our experiments. 272

To further isolate the LLM’s reasoning on time 273

series, we replace specific named entities in our 274

dataset with general, non-identifying descriptors. 275

Specific team names are replaced with Team A or 276

Team B. Actual player names are replaced with 277

generic labels, such as Player from Team A, ensur- 278

ing that the associations between players and their 279
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teams are preserved but revealing no other infor-280

mation about their identities. In evaluations from281

other domains, such as cryptocurrency prices (Li282

et al., 2024a), we replace all numerical values in283

news (events) sequence with symbols (e.g., α) to284

prevent LLMs from matching events to time series285

using dates or price. In open-domain settings, the286

impact of news on time series may exhibit a minor287

delay. Therefore, we provide two events occurring288

before ti to better capture the full range of events289

that may influence the time series.290

3.3 Sports Dataset291

To obtain paired data of time series and event se-292

quences, we use data from sports. Sports data has293

two key advantages for our purposes: (1) the events294

are directly correlated with the real-valued data;295

and (2) the data are continuously refreshed with296

new games being played every data.For the nat-297

ural language events, we used play-by-play data298

provided by ESPN that captures key occurrences299

during a game, such as scoring, turnovers, or fouls300

in basketball. ESPN also provides each teams’ pre-301

dicted win probability throughout the game, which302

we use as the real-valued time series data. These303

win probabilities reflect the state of the game, as304

well as some knowledge about the teams, at each305

time step. Since a game constitutes a relatively306

closed environment, there is a clear relationship307

between the events and the time series: an event fa-308

voring Team A increases Team A’s win probability.309

This closed environment, along with the continu-310

ous generation of new data to avoid contamination311

problems, makes sports data a good candidate for a312

benchmark evaluating how effectively LLMs infer313

events through time series.314

Our dataset contains 4,200 time series (games)315

collected through 9 January 2025, 3,276 from NBA316

basketball games and 924 from NFL American317

football games. Examples can be found in Ap-318

pendix A.1. Each basketball game contains an319

average of 460 timesteps, while the football time320

series average 179 timesteps. The full dataset com-321

prises 1.7 million time data points (win probabili-322

ties) paired with corresponding event descriptions.323

4 Experiments324

To investigate LLMs’ event reasoning capabilities325

under diverse conditions, we explore these research326

questions: RQ1: Can LLMs reason about events,327

and does Chain-of-Thought (CoT) prompting en-328

hance this reasoning?, RQ2: Can post-training opti- 329

mization improve event reasoning?, RQ3: What is 330

the effect of various available contexts beyond time 331

series?, RQ4: Are LLMs able to distinguish un- 332

derlying time series similarities?, and RQ5: How 333

does LLMs’ event reasoning performance compare 334

across different domains? 335

We evaluate 18 language models (LMs), in- 336

cluding closed-weight models such as GPT-4o 337

(Achiam et al., 2023) and open-weights mod- 338

els like LLaMA3.1 (Dubey et al., 2024), and 339

Qwen2.5 (Yang et al., 2024). Additionally, we 340

test models designed for reasoning, including 341

DeepSeek Distilled model, like DS-R1-distill- 342

Qwen-32B (DeepSeek-AI, 2025), and OpenAI’s 343

o1 (OpenAI, 2024). Our findings indicate that rea- 344

soning models perform particularly better. 345

4.1 Accuracy Evaluation 346

To evaluate LLMs on event inference, we first fol- 347

low the format in Figure 12 from Appendix D. In 348

this setting, the model is prompted to select the 349

most likely sequence of events corresponding to a 350

given segment of time series data, where only Team 351

A’s win probabilities(WPA)‡ are provided and the 352

negative options are sequences of the same length 353

randomly sampled from other games. Each model 354

is evaluated on 200 questions. To eliminate memo- 355

rization effects in reasoning, we select games that 356

occurred after the models’ training cutoff dates and 357

replace real team and player names with generic 358

labels such as Player from Team A. 359

Figure 2 summarizes the models’ performance 360

on the NBA task. Although the weakest mod- 361

els barely outperform random guessing, several 362

models, particularly those designed for reasoning, 363

demonstrate strong reasoning performance. GPT- 364

4o achieves an accuracy of 41%, and DS-R1-distill- 365

Qwen-32B reaches 68%, while o1 performs the 366

best, with an accuracy of 83%. Similar results are 367

observed on the NFL data, though the task appears 368

overall more challenging. The performance of 369

GPT-4o drops to 29%, while DS-R1-distill-Qwen- 370

32B and o1 achieve 43% and 75.5%. Appendix C 371

shows a case study of how models perform events 372

inferring through time series. 373

Chain-of-Thought prompting. Next, we investi- 374

gate if a longer reasoning process with Chain-of- 375

‡In NBA basketball there are no draws, and in NFL foot-
ball draws are exceedingly rare, so the win probability for
Team B is 1−WPA.
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OpenAI`s o
1

GPT4o-0513

GPT4o-mini

Qwen2.5-72B

LLaMA3.1-70B

Mixtral-8x7B

DS-R1-Distill
-Qwen-32B

Qwen2.5-32B

Mistra
l-Small 22B

Phi4-14B

Phi3.5-14B

Qwen2.5-14B

DS-R1-Distill
-LLaMA-8B

LLaMA3.1-8B

Ministra
l-8B

LLaMA2-7B

Qwen2.5-7B
0

50

100
A

cc
ur

ac
y,

%

Random Guessing

NBA w/o CoT w/ CoT

Figure 2: The performance on NBA data indicates that open-weight models, such as Qwen2.5 72B, achieve results
comparable to or even surpassing proprietary models like GPT-4o. In particular, reasoning-focused models such
as DS-R1-distill-Qwen-32B and OpenAI’s o1 significantly outperform others. Additionally, Chain-of-Thought
(CoT) prompting further enhances reasoning capabilities. Similar trends are observed in the NFL data, with details
provided in Figure 5 in Appendix B.1. Note that open-weight models are presented in order of model size.

Thought (CoT) prompting (Wei et al., 2022) im-376

proves results of LLMs on event reasoning. LLMs377

show an average improvement from CoT prompt-378

ing of 4.5% for the basketball task and 9.6% for379

the NFL task. In our CoT prompt, we provide an380

example with a reasoning process (see Figure 13 in381

the Appendix). The longer reasoning process with382

CoT, however, also slightly increases the overall383

likelihood of LLMs failing to return answers in384

the required format by 0.6%. We acknowledge the385

potential for CoT strategy, but we do not further386

explore this due to computational constraints.387

4.2 Post-training Improves Reasoning388

The effectiveness of post-training has been demon-389

strated in math (DeepSeek-AI, 2025), coding (Face,390

2025), or vision (Shen et al., 2025) tasks. This391

improvement can be achieved either through train-392

ing using data containing distilled reasoning pro-393

cesses (Muennighoff et al., 2025) or through rein-394

forcement learning, such as GRPO (Shao et al.,395

2024). To improve LMs’ performance on the396

event reasoning tasks, we first warm up the LM397

with knowledge distilled from DS-R1-distill-Qwen-398

32B, and subsequently apply GRPO training to the399

warmed-up model.400

Results in Table 2 show that even a model with401

only 1.5B parameters can achieve competitive per-402

formance through post-training, surpassing the dis-403

tilled source and ranking second only to OpenAI o1.404

For instance, for the NBA task, when we warmed405

up the model using 3, 200 correctly reasoned Q&A406

pairs and their reasoning processes, the warmed-up407

model correctly infers 111 samples and returns only408

7 invalid answers (i.e., no valid result could be ex-409

tracted) out of 200 test cases, compared to the base410

model, which answered only 11 correctly and pro-411

duced 162 invalid results. After further GRPO train-412

ing with 7, 500 Q&A pairs, The number of correct 413

reasoning cases reach 151 with no invalid answers, 414

surpassing the distilled model’s 136 and approach- 415

ing the performance of OpenAI’s o1. However, 416

employing RL alone without the warm-up phase 417

resulted in only 32 correct responses. Appendix 418

B.2 provide more details on the training process, 419

including reward signals and prompt formats. 420

4.3 Impact of Context 421

In different applications, the available context that 422

LLMs can access varies. Compared to the base- 423

line setting, where only the real-valued time series 424

data is provided, we also evaluate LLMs’ perfor- 425

mance when different reasoning-relevant contexts 426

are made available or modified. In addition, to 427

evaluate the impact of time series and real names 428

in reasoning and causal relationship between time 429

series and events, we conduct three ablations. The 430

results are summarized in Table 3. 431

Available Context. Due to differences between 432

the football and basketball data, various conditions 433

influence differently. For example, timestamps 434

(TS+Times) provide the significant improvement in 435

reasoning for football. Similarly, when providing 436

the score (TS+Score) or partial events (TS+Event), 437

ei and ei+k−1, performance also improves. Note 438

that, given computational constraints and the strong 439

performance of reasoning models, we will primar- 440

ily focus on avenues to improve base models. 441

Ablations. Real player and team names are ex- 442

pected to provide cues that help models identify 443

the correct answer. For example, through poten- 444

tial data contamination or directly matching team 445

names with player names in the options. Results 446

from w/ Name column in Table 3 demonstrate that 447

real names notably improves accuracy, highlight- 448
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Language
Models

Performance (NBA, # of) Performance (NFL, # of)) Post-training

Correctness Error Invalid Correctness Error Invalid Warmup RL

Qwen2.5 (1.5B) 11 27 162 29 69 102 × ×
Qwen2.5 (1.5B) 111 82 7 69 128 3 ×
Qwen2.5 (1.5B) 32 114 54 43 111 46 ×
Qwen2.5 (1.5B) 151 49 0 88 112 0
GPT4o 82 118 0 58 142 0 - -
DS-R1-32B 136 64 0 86 114 0 - -
OpenAI’s o1 166 31 3 151 49 0 - -

Table 2: The performance of the Qwen2.5 (1.5B) model under different post-training strategies is evaluated using 200
test cases and compared against three other large language models. When applying both warm-up (i.e, Knowledge
Distillation) and reinforcement learning (i.e., GRPO) training, the 1.5B-size model achieves the second-best
performance, surpassed only by OpenAI’s o1, and outperforming the distillation source DS-R1-distill-Qwen-32B
(DS-R1-32B). Red indicates the best model in this task, while Blue represents the second-best.

ing the necessity of removing them when evaluat-449

ing reasoning (Fatemi et al., 2024). Another two450

ablations—removing (Remove) or replacing (with451

series from other games) (Replace) the time se-452

ries—model performance drops to near-random453

levels, indicating that LLMs rely on time series for454

event inferring and that a strong association exists455

between the time series and the events.456

Options. Due to the nature of possession changes457

in football and basketball, event sequences fol-458

low sequential constraints. To further test whether459

LLMs can detect logically inconsistent information460

to aid reasoning, we shuffle the order of ground-461

truth events to create negative options. Results462

from the Reorder column in Table 3 show a clear463

improvement, indicating that LLMs are capable of464

leveraging logical sequences through reasoning.465

4.4 Disparity of Data466

To assess how the time series similarity impacts467

LLMs’ reasoning, we control the distance between468

the time series associated with positive and nega-469

tive options. We compute distance D between time470

series using the Euclidean distance after z-score471

normalization:472

D = ||norm(pwin)− norm(p
′
win)||l2473

we divided the distances into seven levels, based474

on the distribution of win probability differences475

(see Figure 8 in Appendix B.4 for details), starting476

from 0.4 with an increment of 0.1 per level.477

We follow the setup in Section 3.2, setting the478

sequence length to 10 and evaluating each LM on479

200 questions. We keep the ground-truth events480

and question time series consistent across all levels.481

The results are presented in Figure 3, showing a482
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Figure 3: The performance of LLMs in distinguishing
events corresponding to time series (win probabilities)
with different levels of similarity. Time series similarity
decreases as x (i.e., time series distance) increases.

slight upward trend in LLM performance as sim- 483

ilarity decreases. This is due to the inherent con- 484

sistency between time series and event sequences, 485

which LLMs are able to recognize. 486

4.5 Other Domains 487

In real-world open environments, time series data 488

usually coexist with related textual sequences, such 489

as cryptocurrency prices alongside relevant finan- 490

cial news (Li et al., 2024a). To evaluate the gener- 491

alizability of our approach, we extend our evalua- 492

tion to four other domains: trade (Import/Export, 493

IMEX), health (influenza rates), and energy (gaso- 494

line prices) from Time-MMD (Liu et al., 2024a), 495

as well as cryptocurrency time series from Cryp- 496

toTrade (Li et al., 2024a). To prevent the ques- 497

tions from becoming too long, we use news titles 498

as events for cryptocurrency. We selected the “fac- 499

tual” field as the events occurring at each timestamp 500

from Time-MMD. Liu et al. (2024a) extracted these 501

“factual” statements from news and reports to de- 502

scribe real-world occurrences, more details are in 503

Appendix A.3. Our question follows the format 504

in Section 3.2, with an event sequence length of 505
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Tasks Language
Models

Baseline
(TS Only)

Available Context Ablations Options

TS+Times TS+Score TS+Event w/ Name Remove Replace Reorder
B

as
ke

tb
al

lR
ea

so
ni

ng
GPT4o(0513) 41.0% 39.0% 47.5% 39.0% 55.0% 28.5% 24.0% 69.5%

GPT4o(mini) 25.0% 24.5% 25.0% 26.0% 43.5% 21.0% 27.5% 39.0%

Qwen2.5(72B) 36.5% 39.0% 43.5% 39.5% 41.0% 24.5% 30.0% 66.0%

LLama3.1(70B) 40.5% 37.0% 50.5% 38.5% 51.0% 26.5% 26.0% 47.5%

Qwen2.5(32B) 44.5% 43.5% 57.5% 43.5% 50.0% 22.5% 26.0% 59.0%

Phi4(14B) 43.0% 35.0% 40.0% 36.0% 42.5% 25.0% 24.0% 47.0%

Qwen2.5(14B) 27.5% 34.5% 33.0% 32.0% 48.0% 22.0% 22.0% 44.5%

Avg. Impact of the Condition ↓ -0.6% ↑ 14.6% ↑ 0.0% ↑ 33.2% ↓ -32.2% ↓ -27.3% ↑ 46.8%

Fo
ot

ba
ll

R
ea

so
ni

ng

GPT4o(0513) 29.0% 75.5% 43.5% 53.0% 71.0% 18.5% 22.0% 60.0%

GPT4o(mini) 25.0% 52.0% 26.5% 35.5% 33.5% 24.5% 25.5% 42.0%

Qwen2.5(72B) 30.5% 69.0% 42.0% 40.5% 52.0% 25.0% 23.0% 54.0%

LLama3.1(70B) 26.5% 71.0% 47.5% 35.5% 65.5% 20.5% 17.0% 46.0%

Qwen2.5(32B) 33.0% 74.5% 43.5% 46.0% 40.5% 27.5% 27.0% 43.5%

Phi4(14B) 29.5% 46.5% 36.0% 38.5% 43.5% 25.0% 23.5% 28.5%

Qwen2.5(14B) 28.5% 55.5% 28.5% 34.5% 63.5% 25.5% 26.0% 33.0%

Avg. Impact of the Condition ↑ 120.1% ↑ 32.4% ↑ 40.4% ↑ 84.2% ↓ -17.3% ↓ -18.6% ↑ 52.8%

Table 3: LLMs’ event reasoning accuracy (%) under various conditions based on the baseline (i.e., providing
only time series). We provide each model with 200 questions for each condition (N = 200). Red highlights the
best-performing model under a given condition, while Blue represents the second-best.

10, corresponding to 10 trading days for Bitcoin506

data or 10 weeks of influenza statistics in the U.S.507

health dataset.508

LLMs →
Domains ↓

GPT-4o
(0513)

GPT-4o
(mini)

Qwen2.5
(72B)

DS-R1
(Qwen 32B)

Crypto
(Bitcoin)

Complete 84% 58% 71% 62%

Filtered 65% 40% 40% 39%

Trading
(IMEX)

Complete 91% 90% 90% 93%

Filtered 50% 35% 51% 47%

Health
(Influenza)

Complete 62% 53% 77% 74%

Filtered 33% 26% 34% 37%

Energy
(Gasoline)

Complete 97% 95% 96% 98%

Filtered 52% 40% 48% 49%

Table 4: The accuracy of LLMs inferring events across
other domains among 100 questions. Replacing nu-
merical information in the events (Filtered) results in a
performance decline compared to retaining the original
numbers (Complete). Red indicates the best model in
this task, while Blue represents the second-best.

We evaluate two settings: one where events con-509

tain numerical information (i.e., Complete) and an-510

other where all numerical values, such as dates or511

real values (e.g., Bitcoin prices or trading volumes),512

are replaced with symbols like α (i.e., Filtered). Ta-513

ble 4 summarizes the results. Even after stripping514

numerical data, however, LLMs still demonstrate 515

moderate reasoning ability. GPT-4o, for instance, 516

consistently achieves over 50% accuracy. Addition- 517

ally, open-weights models such as Qwen2.5 72B or 518

DS-R1-distill-Qwen-32B demonstrate comparable 519

performance to GPT-4o. Detailed results can be 520

found in Table 5 in Appendix B.1. 521

5 Conclusions 522

Data comprising time series real values paired with 523

event sequences occur in many important domains. 524

We introduce a dataset containing 1.7 million real- 525

valued time series paired with events and a method 526

for evaluating the ability of an LLM to reason about 527

events corresponding to real-valued time series 528

data. Our evaluation of 18 language models us- 529

ing this benchmark reveals that both open-weights 530

and proprietary models exhibit promising reason- 531

ing capabilities, with reasoning models such as 532

DS-R1-distill-Qwen-32B outperforming larger pro- 533

prietary model such as GPT-4o, while OpenAI’s o1 534

achieves the best performance. By applying post- 535

training optimization, we significantly improve the 536

performance of the Qwen2.5 1.5B to surpassing 537

every model except o1, and approaching o1’s per- 538

formance on the NBA task. 539
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6 Limitations and Ethical Considerations540

Our dataset includes time series representing win541

probabilities in sports, which serve as a effective542

measurement of how events affect a team’s state543

and have a clear relationship with events. Since it544

is impossible to know the true underlying proba-545

bility of the game outcome, these probabilities are546

estimates of each team’s chances to win the game547

produced by ESPN’s proprietary model, and not548

the ground truth. Note that we focus on evaluat-549

ing the performance of current models rather than550

exploring how our data can be used for reasoning551

model training, which we leave for future work.552

We release all code and data necessary553

to replicate our complete experiments at554

https://anonymous.4open.science/r/Event_555

Infer-1B20/. As we await approval from the data556

provider, however, we may not be able to release557

the final curated dataset. In that case, we will558

provide the tools necessary to replicate our data559

collection process.560
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A Appendix814

A Datasets and Language models815

In this section, we introduce NBA and NFL event816

and time series data through examples from sports817

datasets. Additionally, we present the models we818

evaluate and provide details on data from other819

domains.820

A.1 Events and Time Series in Sports821

Figure 4 illustrates the time series and event se-822

quences for basketball and football. When an event823

favorable to Team A occurs, Team A’s win probabil-824

ity typically increases. For example, in basketball,825

this could be a successful score by Team A or a826

turnover by Team B. In football, it could include827

defensive plays and sacks by Team A, penalties828

against Team B, or offensive success by Team A.829

Conversely, unfavorable events lead to a decrease830

in win probability.831

A.2 Language Models and Setups832

We have run our evaluation and experiments on833

Nvidia A100 GPUs. The specific settings for834

LLMs, as well as the packages used for data835

processing, are provided in the repository§. We836

evaluated a total of 16 models, including open-837

weight models such as LLaMA3.1 (Dubey et al.,838

2024), proprietary models like GPT4o (Achiam839

et al., 2023), and reasoning-focused models such840

as DeepSeek-R1 (DeepSeek-AI, 2025). The full841

list of tested models is as follows:842

• GPT4o (Achiam et al., 2023): We test GPT4o-843

0513, a high-performance variant of GPT-4844

optimized for both general-purpose genera-845

tion and specialized tasks, and GPT4o-mini,846

a scaled-down version of GPT-4 designed for847

resource-constrained environments.848

• LLaMA (Dubey et al., 2024): We evaluate849

instruction-tuned models of various parameter850

sizes, including LLaMA3.1-Instruct 70B, 8B,851

and LLaMA2-Instruct 7B.852

• Qwen2.5 (Yang et al., 2024): Our experi-853

ments included various instruction-tuned mod-854

els such as Qwen2.5-Instruct 72B, 32B, 14B,855

and 8B.856

• Mixtral (Jiang et al., 2024a): We test the857

8x7B Mixture of Experts (MoE) model, along858

with Mixtral-Small 22B and Ministral-8B.859

§All information and settings needed are available:

• Phi (Abdin et al., 2024): We included Phi-4 860

14B and Phi-3.5-Instruct 14B in our evalua- 861

tions. 862

• DeepSeek-R1 (DeepSeek-AI, 2025): Given 863

computational constraints, we still evaluated 864

reasoning-focused models such as DeepSeek- 865

R1 32B and 8B. These models are distilled 866

versions of DeepSeek-R1, using synthetic data 867

from R1 to finetune Qwen 32B and LLaMA 868

8B, respectively. 869

A.3 Open-world Domains 870

To validate whether LLMs can reason about events 871

through time series in other domains, we utilized 872

four open-world datasets from different fields: 873

Time-MMD (Liu et al., 2024a) (covering Trading, 874

US Health, and Energy) and CryptoTrade (Li et al., 875

2024a) (Bitcoin prices). The details are outlined as 876

follows: 877

• Trading: Includes monthly U.S. International 878

Trade Balance data from January 1987 to 879

March 2024 (total length of 423 months), cov- 880

ering both import and export trade volumes. 881

The corresponding text consists of keyword 882

searches and institutional reports relevant to 883

that month, such as "U.S. International Trade 884

in Goods and Services". 885

• U.S. Health: Includes weekly Influenza Pa- 886

tients Proportion data from September 1997 887

to May 2024 (total length of 1 389 weeks). 888

The corresponding text sequences are sourced 889

from weekly keyword searches or reports 890

from the "CDC’s ILINet system". 891

• Energy: Contains weekly Gasoline Prices 892

(Dollars per Gallon) from April 1993 to April 893

2024 (total length of 1 479 weeks). The text 894

sequences are obtained through searches or re- 895

ports from institutions such as the U.S. Energy 896

Information Administration. 897

• Bitcoin: Contains daily Bitcoin price data 898

from January 1, 2023, to February 1, 2024 899

(time series length of 397), including open- 900

ing and closing prices, as well as the highest 901

and lowest prices of the day. The correspond- 902

ing text sequence is derived from authorita- 903

tive sources such as Bloomberg and Yahoo 904

Finance, filtered through keyword searches to 905

provide five of the most relevant news arti- 906

cles per day. We use their headlines as event 907

descriptions. 908
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At 41:38, Team A player misses 10-foot jump shot

At 11:14, Team A player makes 24-foot 3 points jumper
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At 27:05, Player from Team B 2 Yd Rush Player from team B extra point is 
GOOD, Center-Player from team B, Holder-Player from team B.

At 12:38, Player from team B right tackle to CLV 28 for 3 yards
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At 50:05, (Shotgun) Player from team B right tackle to CLV 34 
for 16 yards (Player from team A)

… …

NFL events and win probabilities

Figure 4: Examples of events and win probabilities in the NBA and NFL dataset. As the game progresses, ESPN
provides descriptions of on-field events along with the corresponding win probabilities for each team at that moment.
These probabilities can be considered a representation of the team’s current state.

B Detailed Experimental Results.909

B.1 LLMs performance910

The performance of language models on NFL event911

inference is presented in Figure 5. Overall, NFL912

event inference is more challenging than that of913

the NBA. Nevertheless, OpenAI o1 remains the914

best-performing model, followed by DS-R1-distill-915

Qwen-32B.916

Detailed results of LLMs on other domains are917

shown in Table 5. It can be observed that LLMs918

are capable of reasoning about events even in open-919

world domains. Moreover, when potentially con-920

founding information in the events—such as num-921

bers and dates—is removed (i.e., Filtered), LLMs922

still demonstrate strong reasoning performance.923

B.2 Post-training Improves Events Inferring924

In the post-training phase, we primarily utilize925

question-answer pairs that included explicit rea-926

soning processes, along with GRPO training, to927

facilitate the model’s self-improvement. The base928

model employed was Qwen2.5 (1.5B) (Yang et al.,929

2024), which demonstrates very limited initial930

event-inference capabilities. Specifically, as shown931

in Table 2, in the NFL dataset, it correctly infers932

29 out of 200 test cases and produces 102 invalid933

answers, while in the NBA dataset, it correctly rea-934

sons only 11 cases and yielded 162 invalid answers.935

Inspired by recent work on warming up language936

models (Muennighoff et al., 2025; DeepSeek-AI,937

2025), we apply knowledge distillation on a rel-938

atively strong-performing language model. To939

avoid data contamination, we selected training data940

exclusively from games that were different from 941

those used in the test set. Considering the cost 942

and computational resources, we chose DS-R1- 943

distill-Qwen-32B as the distillation source. For 944

the NFL task, we collected a total of 5,434 samples 945

with an accuracy of 44.6%, and for the NBA task, 946

we collected 4,814 samples with an accuracy of 947

67.5%, which is consistent with the results reported 948

in Section 4.1. We ultimately selected all correctly 949

reasoned samples, along with their reasoning tra- 950

jectory, to warm up the Qwen (1.5B) model. The 951

prompt structure used for the warm-up is illustrated 952

in Figure 11. The results in Table 2 demonstrate 953

that the warm-up phase significantly improved the 954

model’s performance as well as its ability to return 955

valid outputs. 956

Extensive research has shown that self- 957

improvement through optimization leads to signif- 958

icant gains in tasks such as mathematics, coding, 959

and visual reasoning (Shen et al., 2025; DeepSeek- 960

AI, 2025; Shao et al., 2024). Building on the 961

warmed-up model, we further applied reinforce- 962

ment learning using 7,500 Q&A pairs for each task. 963

The results in Table 2 show that, after RL optimiza- 964

tion (e.g., GRPO (Shao et al., 2024)), the model 965

surpassed or matched the performance of the dis- 966

tilled model, even though its size was considerably 967

smaller than that of the distillation source. The rea- 968

soning template we adopted is shown in Figure 11. 969

Specifically, we primarily supervised two types of 970

rewards: format and correctness, with the train- 971

ing reward trajectories illustrated in Figure 6. The 972

training was conducted using the open-r1 (Face, 973
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Figure 5: The performance of various language models on NFL events inferring through time series. Overall, this
task is more challenging than NBA event reasoning.

LLMs →
Domains ↓

GPT-4o
(0513)

GPT-4o
(mini)

Qwen2.5
(72B)

LLaMA3.1
(70B)

Mixtral
(8x7B)

DeepSeek
(R1 32B)

Qwen2.5
(32B)

Mistral
(22B)

Phi4
(14B)

Qwen2.5
(14B)

DeepSeek
(R1 8B)

Crypto
(Bitcoin)

Complete 84% 58% 71% 49% 36% 62% 72% 28% 46% 51% 42%

Filtered
65%

↓22.6%
40%

↓31.0%
40%

↓43.7%
34%

↓30.6%
29%

↓19.4%
39%

↓37.1%
39%

↓45.8%
27%
↓3.6%

28%
↓39.1%

32%
↓37.3%

25%
↓40.5%

Trading
(IMEX)

Complete 91% 90% 90% 85% 52% 93% 86% 54% 75% 71% 78%

Filtered
50%

↓45.1%
35%

↓61.1%
51%

↓43.3%
36%

↓57.6%
21%

↓59.6%
47%

↓49.5%
45%

↓47.7%
27%

↓50.0%
29%

↓61.3%
31%

↓56.3%
22%

↓71.8%

Health
(Influenza)

Complete 62% 53% 77% 64% 34% 74% 60% 24% 52% 42% 48%

Filtered
33%

↓46.8%
26%

↓50.9%
34%

↓55.8%
27%

↓57.8%
25%

↓26.5%
37%

↓50.0%
32%

↓46.7%
23%
↓4.2%

30%
↓42.3%

33%
↓21.4%

25%
↓47.9%

Energy
(Gasoline)

Complete 97% 95% 96% 84% 63% 98% 90% 57% 89% 72% 79%

Filtered
52%

↓46.4%
40%

↓57.9%
48%

↓50.0%
46%

↓45.2%
28%

↓55.6%
49%

↓50.0%
45%

↓50.0%
24%

↓57.9%
43%

↓51.7%
37%

↓48.6%
29%

↓63.3%

Table 5: The number of correct event reasoning (through time series) made by LLMs across other domains among
testing samples (N = 100). Replacing numerical information in the option events—such as dates or prices—with
symbols like α (Filtered) results in a performance decline compared to retaining the original numerical information
(Complete). Red indicates the best model in this task, while Blue represents the second-best.

2025) framework and completed on 8 H200 GPUs.974

Detailed training hyper-parameters and settings are975

provided in our accompanying repository.976

The essence of reinforcement learning in opti-977

mizing reasoning is strengthening reasoning tra-978

jectory based on reward signals (Liu et al.; Zhao979

et al., 2025; Marjanović et al., 2025), which re-980

quires the language model to possess a certain level981

of inherent reasoning ability in the task‘s domain.982

Therefore, we also applied GRPO training directly983

to the base model. Under the same data and train-984

ing settings, the improvement in performance was985

limited; however, gains were still observed in the986

question-answering format, as reflected by a sig-987

nificant reduction in the number of invalid outputs.988

This further highlights the importance of warming989

up the model, especially in domains where the base990

model may have knowledge gaps.991

B.3 Number of Events992

To further study the effect of event quantity, we fol-993

low the setup in Section 3.2 and vary the number994

of events. Increasing the number of events has two995

potential effects. On one hand, a competent rea- 996

soner should leverage the additional information to 997

identify logical inconsistencies. On the other hand, 998

as the reasoning length increases, the likelihood of 999

errors also rises. A longer reasoning process does 1000

not necessarily lead to more accurate results (Wei 1001

et al., 2022). A capable LLM should ignore any 1002

superfluous information and effectively leverage 1003

useful context to enhance its reasoning. 1004

The results, summarized in Figure 7, reveal that 1005

for the NBA task LLMs generally perform slightly 1006

worse as the number of events increases, but for the 1007

NFL task performance improves with more events. 1008

All else being equal, having more events provides 1009

more information and should improve performance; 1010

at worst, a strong reasoning model would just ig- 1011

nore additional events and never perform worse. 1012

This discrepancy may stem from fundamental dif- 1013

ferences between the two sports. In a football game, 1014

because teams alternate possessions that comprise 1015

multiple correlated plays, or events, making it eas- 1016

ier to recognize and match patterns. In basketball, 1017
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Figure 6: As the number of training steps increases, both the correctness reward (5 is maximum) and the format
reward (0.8 is maximum) show clear improvements, while tokens required to complete the reasoning shows a
decreasing trend.
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Figure 7: The reasoning performance of LLMs across
event sequences of various lengths. The figure includes
only models that consistently outperform the baseline.

each possession is typically connected to only one1018

event, and events are more independent, and most1019

events impact the score of the game directly. In1020

football, each possession involves many events (at1021

least one recorded for each down in football), but1022

most events do not impact the score of the game.1023

One insight is that the amount of useful information1024

is different across different domains.1025

B.4 Time Series Similarity1026

We bootstrap 10k pairwise distances between win1027

probabilities (i.e., pwin) of length 10 in our dataset1028

and normalize them to the range (0, 1). The results1029

show that a large proportion of time series pairs1030

fall within the (0.4, 1) range, e.g., 90.6% for NFL1031

and 91.3% for NBA data. Their distribution can be1032

shown in Figure 8.1033

Figure 8: The similarity distribution of time series in
sports data, with a time series length of 10. There is
a 91% probability that the distance between two time
series falls beyond 0.4.

C Case Study: How Language Models Infer 1034

Events 1035

To further understand how LLMs infer events from 1036

time series, we analyze their reasoning process. In 1037

this section, we summarize the types of correct and 1038

incorrect reasoning process. 1039

C.1 How do language models reason? 1040

As shown in Figure 14, this illustrates the reasoning 1041

process of DS-R1-distill-Qwen-32B (DeepSeek- 1042

AI, 2025) for NBA events (under a CoT prompt). 1043

The model first interprets the trend in the time se- 1044

ries and then matches it with potential events—If 1045

the time series exhibits an upward trend, the model 1046
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Figure 9: The relationship between token usage and reasoning accuracy. For both tasks, we sampled around 5,000
examples. We observe that DS-R1-distill-Qwen-32B achieves higher reasoning accuracy when using either fewer or
more tokens, with peak accuracy occurring around 1,400 tokens.

aligns it with events favorable to Team A, and1047

vice versa. After sequentially analyzing all data1048

points and their corresponding events, LLMs syn-1049

thesize their step-by-step analyses to formulate a fi-1050

nal reasoning conclusion. High-performing models,1051

such as GPT-4o (Achiam et al., 2023), LLaMA3.11052

70B (Dubey et al., 2024), Qwen2.5 72B (Yang1053

et al., 2024), and even smaller language model,1054

like Phi-4 (Abdin et al., 2024) 14B, demonstrate1055

similar reasoning trajectories with CoT Prompting.1056

In addition, for the DS-R1-distill-Qwen-32B, we1057

also observed numerous "aha moments" during the1058

events reasoning process, i.e., self-reflection. For1059

example, in the NBA task, the model reflects mid-1060

way with "Wait, maybe the rebound isn’t enough".1061

C.2 How do language models fail?1062

We analyzed 5,000 reasoning samples from DS-1063

R1-distill-Qwen-32B, with the results presented1064

in Figure 9. Both excessively short and overly long1065

reasoning processes tend to result in higher error1066

reasoning result. Model accuracy peaks when the1067

reasoning spans approximately 1,400 tokens.1068

Too Short Reasoning. We observe that the rea-1069

soning errors with short process can largely be1070

attributed to what we term “rushed reasoning”.1071

Instead of carefully analyzing each event in the op-1072

tions, as illustrated in Figure 9, the LLM tends to1073

make hasty generalizations and prematurely draws1074

conclusions. An example is shown in Figure 15,1075

where the LLM is able to recognize the time series1076

pattern and attempts to reason accordingly. How-1077

ever, it merely provides a superficial summary of1078

each option and arrives at a conclusion after insuf-1079

ficient reasoning.1080

Too Long Reasoning. We are not the first to ob-1081

serve that reasoning models, particularly those in 1082

the DeepSeek series (Shao et al., 2024; DeepSeek- 1083

AI, 2025), tend to engage in excessively long 1084

reasoning when making incorrect inferences (Liu 1085

et al.; Marjanović et al., 2025). We categorize these 1086

types of errors as cases of “overthinking,” charac- 1087

terized by excessive self-reflection that leads to 1088

confusion and prevents the model from arriving 1089

at a correct conclusion. For instance, in Figure 9, 1090

case B shows the model repeatedly engaging in 1091

self-reflection (e.g., “Wait...”) without reaching a 1092

final answer. In this example, the model makes 1093

18 self-corrections. In comparison, the average 1094

number of self-reflections in the best-performing 1095

range (i.e., token usage between 1,200 to 1,500) is 1096

7.4, whereas in “overthinking” cases, where token 1097

usage exceeds 3, 000, it rises to an average of 14.1. 1098

D Prompt Template 1099

Figure 12 presents the complete template for NBA 1100

and U.S Health event reasoning. For NFL data and 1101

other domains, we adopt a similar template with 1102

minor variations to accommodate domain-specific 1103

characteristics. For instance, in cryptocurrency 1104

data (Li et al., 2024a), we specify that the provided 1105

time series represents daily "Closing Prices," while 1106

in Energy data (Liu et al., 2024a), it corresponds to 1107

the "Dollars per Gallon." (Gasoline). In addition, 1108

considering the delayed impact of real-world news, 1109

we included news events from the previous two 1110

timestamp in the options. Figure 13 illustrates the 1111

Chain-of-Thought (CoT) prompt for NBA event 1112

reasoning, with the format up to the "options" sec- 1113

tion remaining consistent across prompts. The CoT 1114

prompt for NFL follows a similar structure with 1115

slight modifications, such as ensuring that exam- 1116
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Figure 10: The Calibration of Win Probability Predictions. The results show a high degree of alignment between
the model’s predictions and the actual game outcomes.

ple events and background knowledge align with1117

the context of American football. Note that we1118

acknowledge that the current CoT prompt still has1119

room for improvement, however, due to time and1120

computational constraints, we have not conducted1121

further explorations.1122

E Win Probability Calibration1123

To evaluate ESPN’s win probability model, we per-1124

formed model calibration using the predicted win1125

probabilities at the start of each game and the corre-1126

sponding outcomes. Specifically, we compared the1127

predicted win rates within each probability bin to1128

the actual win rates observed in those bins, and re-1129

sults in Figure 10 show high degree of consistency1130

between the predictions and the true outcomes.1131

F Licensing1132

The code from our work is released under the1133

MIT License, while the dataset is made avail-1134

able under the Creative Commons Attribution-1135

NonCommercial-ShareAlike (CC BY-NC-SA) li-1136

cense. This allows anyone to use, distribute, and1137

modify the data for non-commercial purposes, pro-1138

vided they give proper attribution and share any1139

derivative works under the same license terms.1140
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Prompt Format of Post-training

< |im_start| > Respond reasoning process in the following format:
<reasoning>
...
</reasoning>
Return your answer in **X**, where **X** is your answer and can only be one of the
selected options, such as **a**, **b**, **c**, or **d**.
{{Question}} <== The Reinforcement Learning Input Ends Here.
<reasoning>
{{Reasoning Process}}
</reasoning>
**{{Answer}}**< |im_end| >

Figure 11: The format of post-training, enclosing the reasoning process within “<reasoning>” tags and wrapped
the final answer with “**X**” to maintain consistency with other evaluation formats.

Event Reasoning in Sports (Basketball)

You are an assistant for NBA basketball task. We will provide a series of consecutive
timestamps, win probabilities from a basketball game, though some intermediate events
will be missing. You will need to infer the likely events that occurred in the missing
intervals.
Below is provided timestamps, win probabilities (team A).
Step 1. TimeStamp1 WP1

Step 2. TimeStamp2 WP2

Step 3. TimeStamp3 WP3

...
Step k. TimeStampk WPk

Please select the correct sequence of events for steps 2, ..., k − 1 from the four options
below,
Here are the potential options:{{options}}
Here is the instruction for returning reasoning results in:{{format}}

Event Reasoning in Other Domains (U.S Health)

You are an assistant for an Influenza Patients task. We will provide a series of consecutive
timestamps along with the Influenza Patients Proportion. Additionally, we will present
four potential event (news) sequences that occurred during that period, as well as from
the previous two days. Your task is to identify and select the correct sequence of events.
Below is provided date and Patients Proportion (%),
Step 1. Date0 x0
...
Step k. Datek xk
Please select the correct sequence of events for steps 2, ..., k − 1 from the four options
below,
Here are the potential options:{{options}}
Here is the instruction for returning reasoning results in:{{format}}

Figure 12: Template used to infer events through win probabilities in sports (e.g., basketball) and open-world
domains (e.g., U.S Health). For NFL data and other domains, we adopt a similar template with minor variations to
accommodate domain-specific characteristics. In addition, we use the format "**X**".
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Chain-of-Thought (CoT) Prompt Template for Basketball

You are an assistant for NBA basketball task ...
...
Here are the potential options:{{options}}

When reasoning, please refer to the following guidelines:
1. Analyze Team A’s 1st win probability change. For example:
- 0. 53.4%
- 1. 57.1%
- Team A’s win probability increased from 53.4% to 57.1%, indicating that an event
positive to Team A or negative to Team B has occurred.
2. Pause the win probability analysis for now and focus on the 1st event in options a, b,
c, d, and eliminate the inconsistent options or skip this step if unsure. Please ignore
very minor changes in win probabilities, such as 0.1%-0.4%. Base your decision on
significant changes.
3. Similarly, turn to analyze the change in the 2nd win probability and match it with the
2nd event in the remaining options, and eliminate the inconsistent options or skip this
step if unsure.
4. Repeat the above process until all incorrect options are eliminated.

Consider the following information when reasoning, it will assist you in reasoning.

1. Positive events for Team A, such as "Player from Team A scores (e.g., makes a layup
or jump shot) or rebounds," or negative events for Team B, such as "Player from Team
B makes a mistake (e.g., misses a shot, commits a foul, or loses the ball)."
2. Some events do not impact the win probability, such as a player entering the game or
a timeout.
3. Ignore very minor changes in win probabilities, such as 0.1%-0.4%.

Return your answer in the format **X**, where X only contains the chosen option,
such as **a**, **b**, **c**, or **d**.

Figure 13: Chain-of-Thought (CoT) Template used to infer events through win probabilities in sports (e.g.,
basketball). For NFL data, we adopt a similar CoT Prompt with minor variations to accommodate domain-specific
characteristics.
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Process of Event Reasoning via Time Series From DS-R1-distill-Qwen-32B

<think>
Alright, I’m trying to figure out which sequence of events corresponds to the given win
probabilities for Team A. The probabilities are as follows:
0. 31.9%
1. 43.9%
... ...
10. 56.7%
11. 50.9%

I need to analyze the changes in win probability after each event and match them
with the options provided (a, b, c, d). Let’s go through each step one by one.

Starting with the first change: from 31.9% to 43.9%. That’s an increase of about
12%, which is significant. This suggests a positive event for Team A or a negative
event for Team B. Looking at the options, the first events are:
a. Player A makes a 3-pointer with an assist.
b. Player B makes a free throw 2 of 2.
c. Player B defensive rebound.
d. Timeout and coach’s challenge.

Option a’s first event is a 3-pointer made by Team A, which would increase
their win probability. Option b’s first event is a free throw made by Team B, which
would decrease Team A’s win probability, but the probability went up, so b might be
inconsistent.
...
So, option a seems the most likely for the first event because scoring a 3-pointer would
increase Team A’s chances.
...

Wait, maybe the rebound isn’t enough, ...

...
The sixth change: from 43.0% to 49.3%, an increase of about 6.3%. Positive event for
Team A.
....
Putting it all together, option a seems to fit all the significant changes in win
probability. The other options don’t align as well with the increases and decreases
observed.
<think>
**a**

Figure 14: Reasoning process example from basketball data: In this case, the ground-truth answer is "a", which
aligns with the reasoning of DeepSeek-R1 32B (DeepSeek-AI, 2025). Other LLMs, such as GPT-4o (Achiam et al.,
2023), follow a similar reasoning pattern. To save space, some content has been omitted.
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Case Study A: Failed reasoning with a Short Process

<think>
The win probabilities start at 91.6% and fluctuate a bit, but overall, Team A’s chances
seem to be quite high, so I’m guessing the events should reflect a game where Team A
is maintaining or slightly increasing their lead.
Let me look at each option one by one.
Option a:
Team A defensive rebound. That would likely keep their ...
Option b:
Team B offensive rebound. That’s bad for Team A because ...
Option c:
Substitutions happening. That might not directly affect ...
Option d:
Team A makes a three-pointer, which is good. Then Team B ...
I think Option b is better because it shows Team A making baskets and Team B missing,
which ...
So I’m leaning towards option b.
</think>
**b**

Case Study B: Failed reasoning with a Long Process

Okay, so I need to figure out which sequence of events (a, b, c, or d) corresponds best to
the given win probabilitie ...
So, the initial increase from 27.5% to 29.7% suggests a positive event for Team A. Then
a slight increase again ...
Starting with option a:
...
Wait, but the first step is from 27.5...
Option b:
...
Wait, but the win probability went up again,
...
Wait, maybe I’m miscounting. Let me list the events in option b: ...
...
Wait, maybe I’m miscounting the steps. Let me make sure ...
...
Wait, the user provided win probabilities from 0 to 11 ...
...
Wait, maybe the missed layup is followed by a defensive rebound, ...
...
Wait, perhaps the win probabilities are for Team A, so when Team B scores, ...
...
Wait, maybe I miscounted the events. Let me check again.
...
Wait, but the events are listed as steps 1-10, each corresponding ... ...
Given all, I think option b is the best fit despite the inconsistency at step 8, because ...
</think>
**b**

Figure 15: Case A illustrates an example of "rushed reasoning," where the LLM provides only short descriptions of
each option before arriving at a conclusion. In contrast, Case B presents an instance of "overthinking," characterized
by excessive self-reflection that leads to confusion and ultimately prevents the model from reaching a correct
conclusion. 21
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