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ABSTRACT

Recently, differential privacy has been widely studied in machine learning due to
its formal privacy guarantees for data analysis. As one of the most important pa-
rameters of differential privacy, ε controls the crucial tradeoff between the strength
of the privacy guarantee and the utility of model. Therefore, the choice of ε has a
great influence on the performance of differentially private learning models. But
so far, there is still no rigorous method for choosing ε. In this paper, we deduce
the influence of ε on utility private learning models through strict mathematical
derivation, and propose a novel approximate approach for estimating the utility of
any ε value. We show that our approximate approach has a fairly small error and
can be used to estimate the optimal ε according to the expected utility of users. Ex-
perimental results demonstrate high estimation accuracy and broad applicability
of our approximate approach.

1 INTRODUCTION

In recent years, more and more researches have exposed potential privacy risks in large-scale ma-
chine learning tasks Bassily et al. (2014); Fredrikson et al. (2014; 2015); Shokri et al. (2017); Yeom
et al. (2018). Therefore, with the broad deployment of machine learning applications and machine
learning as a service, the privacy concerns are becoming more and more serious. To address this
problem, many recent studies turn to combining machine learning algorithms with the framework of
differential privacy Dwork et al. (2014), which guarantees privacy by adding random noise to each
of the model parameters. The amount of added noise will directly affect the privacy guarantee and
utility of learned model. The more added noise, the stronger the privacy guarantee, and the more
serious the degradation of utility. Mathematically, this trade-off is tunable by a parameter ε.

The value of ε is essential for differentially private learning models. Too small ε may lose too much
utility that results in a useless model, and too large ε may provide meaningless privacy guarantee.
Thus, how to choose ε is a difficult task for users. The crux of this problem is that users are offered
too little insight into how this should be done. For most users, the only way is to try the value of ε
one by one to seek for the optimal ε that provides satisfied privacy-utility trade-off. Note that each
attempt requires to train a model to see if this ε is available, this will cause a lot of meaningless
consumption of resources and time, and usually, it is very difficult for users to find the optimal ε that
meets their expectations in limited attempts.

One way to address this issue is to make users understand their privacy requirements, so that the
corresponding value of ε can be directly calculated according to the formula of differential privacy.
Some solutions have been put forward based on this point Lee & Clifton (2011); Hsu et al. (2014);
Naldi & Dacquisto (2015); Kohli & Laskowski (2018). However, these solutions often rely on
strong assumptions, such as users are able to perceive and judge the effects of ε, which is often
hard to achieve in reality. Especially in DP-ML, where the privacy is a quite abstract and complex
concept.

In this paper, we focus on solving the problem from a new angle, which takes advantage of users’
familiarity with utility. For most users, the concept of utility is more intuitive than privacy. The
requirement of utility can be easily expressed by many indexes, such as accuracy, precision, loss,
error, etc. Therefore, choosing ε according to the expected utility is more likely to gain better
recognition and acceptance in practice. Based on this point, we put forward our approach, which
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can estimate the optimal ε value according to users’ expected utility, or, conversely, estimate the
utility of model for a given value of ε.

The contributions of this paper can be summarized as follows:

• We comprehensively analyze the influence of ε on utility in differentially private machine
learning. We propose a practical approximate approach for utility estimation, which has a
fairly small error on estimation results.

• We show how to use our approximate approach to estimate the optimal ε according to the
expected utility. We also offer an approximate method for directly obtaining the private
model after ε estimation.

• Experimental results show that the estimation results of our approximate approach is con-
siderable close to the actual measured results and the error is basically in line with our
expectations.

2 RELATED WORKS

The question of how to choose ε has always existed since differential privacy was first proposed
in Dwork (2006). However, so far, the relevant research is still very limited, most of which mainly
focus on the explainability of privacy. Lee & Clifton (2011) analyzes the necessity of privacy guar-
antee from the perspective of adversary. Naldi & Dacquisto (2015) conducted two new parameters
to provide a more precise picture of the level of differential privacy achieved. Hsu et al. (2014)
provides some analysis of privacy considerations through the balance between data consumers and
data providers. Kohli & Laskowski (2018) uses an information system to incorporate user’s privacy
preferences by having them vote on the privacy parameters they would like to have. Different from
the above researches, we start from a completely new perspective, which allows users to choose the
value of ε according to their expectations on utility.

Within the research community of DP-ML, the influence of ε on utility is also a hot research topic.
Especially in recent years, many novel methods Abadi et al. (2016); Geumlek et al. (2017); Zhang
et al. (2017); Yu et al. (2019) can significantly reduce the added noise for achieving the same level
of differential privacy, which can reduce the effect of noise on utility. However, the utility bound,
or error bound, proposed in previous literature can only be used as reference in related researches,
which can hardly provide helpful instruction for users in practice.

The closest research to our work is Ligett et al. (2017), in which they proposed a meta-method
to find the empirically strongest privacy level that meets the accuracy constraint. In their method,
a very private hypothesis is initially computed, and then the noise is gradually subtracted until a
sufficient level of accuracy is achieved. However, this method requires many times of attempts (or
noise subtraction), and just as we mentioned in introduction, this will cause a lot of consumption
of resources and time. Our method can find the empirically strongest privacy level that meets the
accuracy constraint through a few training times, which is more efficient and faster.

3 PRELIMINARY

In the rest of this paper, we use ‖ · ‖ to denote the L2 norm. All vectors will typically be written in
boldface. We will use I to denote the identity matrix. Before delving into the details of our approach,
we will first recall some basic concepts and expressions of differential privacy and differentially
private learning.

3.1 DIFFERENTIAL PRIVACY

Differential privacy is a rigorous mathematical framework for privacy guarantee. It has recently
received a significant amount of research attention for its robustness to known attacks. The typical
definition of differential privacy is given in Dwork et al. (2014), as follows:

Definition 1 (ε-differential privacy). Given a randomized functionM : D → R with domainD and
rangeR, we sayM is ε-differential privacy if for all pairs of neighboring inputs D,D′ differing by

2



Under review as a conference paper at ICLR 2021

one record, and for any subset of outputs S ⊆ R, we have:

Pr[M(D) ∈ S] ≤ eε × Pr[M(D′) ∈ S].

A common way to achieve differential privacy is to add some randomized noise to the output, where
the noise is proportional to sensitivity of functionM : maxD,D′ ‖M(D)−M(D′)‖.

3.2 DIFFERENTIALLY PRIVATE LEARNING

For machine learning algorithms, we consider the regularized empirical risk minimization, which is
to learn a classifier from labeled examples. Let X denotes the input space and Y denotes the output
space, given a dataset D = {z1, z2, . . . ,zn} where zi = (xi, yi) ∈ X × Y , the objective is to get a
model θ̂ from the following unconstrained optimization problem:

θ̂ = argmin
θ
L(θ,D) + λ

2
||θ||2, (1)

where L(θ,D) = 1
n

∑n
i=1 `(θ, zi) is the empirical loss and `(θ, zi) is the loss function for zi. The

term of λ2 ||θ||
2 is the regularizer that prevents over-fitting.

To solve the privacy issues in machine learning, Chaudhuri et al. (2011) proposed an effective
mechanism for learning algorithm to achieve ε-differential privacy, called objective perturbation.
Formally, the objective perturbation mechanism would be expressed as:

θ̂ε = argmin
θ
L(θ,D) + λ

2
||θ||2 + 1

n
bTε θ +

1

2
δε||θ||2, (2)

where bε is random noise with density

f(b) =
1

α
e−βε||b||, (3)

where the parameter α is a normalizing constant. It has been proven that 2 achieves ε-
differential privacy if L(θ,D) is 1-strongly convex and twice-differentiable, with ||∇θL(θ,D)|| ≤
1, ||∇2

θL(θ,D)|| ≤ c in θ, and βε, δε are defined as follows Chaudhuri et al. (2011):

βε =

{
1
4ε, if 0 < ε ≤ log(1 + 2c

nλ + c2

n2λ2 ),
1
2ε−

1
2 log(1 +

2c
nλ + c2

n2λ2 ), if ε > log(1 + 2c
nλ + c2

n2λ2 ),

δε =

{
c

n(e
ε
4−1)

− λ, if 0 < ε ≤ log(1 + 2c
nλ + c2

n2λ2 ),

0, if ε > log(1 + 2c
nλ + c2

n2λ2 ).

(4)

Our analysis in this paper is mainly based on the objective perturbation mechanism in the above
form.

4 APPROXIMATE APPROACH

As we discussed at the beginning of the paper, choosing an appropriate value of ε is essential for
DP-ML. However, without any instructions, it is also a very difficult job, especially for large-scale
learning tasks. Repeated training not only brings huge consumption, but also gets little feedback:
looking for the next test point will be as clueless as the previous one, just knowing that it should be
larger or smaller.

Our goal is to offer users an efficient way to choose the optimal ε for their private learning algorithms.
Specifically, we aim to let users know the utility of an arbitrary ε, or the optimal ε achieves the
expected utility in a very convenient way and a very short time, so that they can choose the optimal
ε more efficiently and purposefully. To this end, our first step will be understanding the influence
of ε on the model utility in the differentially private learning. In order to facilitate calculation and
analysis, we use the empirical loss to represent the model utility.
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4.1 APPROXIMATE ANALYSIS

Formally, we denote θ̂ε′ and θ̂ε as the true minimizers of objective function that achieves ε′- and
ε-differential privacy, respectively. Then, we denote L(θ̂ε′ ,D) − L(θ̂ε,D) as the utility difference
between θ̂ε′ and θ̂ε. According to the Taylor expression approximation at ε, we have

L(θ̂ε′ ,D)− L(θ̂ε,D) ≈
∂L(θ̂ε,D)

∂ε
(ε′ − ε). (5)

Apparently, in addition to the change of ε, the utility change also denpends on ∂L(θ̂ε,D)
∂ε . Theorem 1

gives us a further analysis of ∂L(θ̂ε,D)
∂ε .

Theorem 1. Assume that L(θ,D) is twice-differentiable and strictly convex in θ. Let Wε =
∂2L(θ̂ε,D)

∂θ2 + λI + δεI,b
′
ε =

∂bε

∂ε , δ
′
ε =

∂δε
∂ε . Then, we have

∂L(θ̂ε,D)
∂ε

= −
(
∇θL(θ̂ε,D)

)T
W−1

ε

(
1

n
b′ε + δ′εθ̂ε

)
. (6)

Proof. Due to the fact that the derivative of the objective function 2 at θ̂ε is 0, we have that

∂L(θ̂ε,D)
∂θ

+ λθ̂ε +
1

n
bε + δεθ̂ε = 0. (7)

Take the derivative of 7 with respect to ε, we have:

∂2L(θ̂ε,D)
∂θ2

∂θ̂ε
∂ε

+ λ
∂θ̂ε
∂ε

+
1

n
b′ε + δε

∂θ̂ε
∂ε

+ δ′εθ̂ε = 0.

Re-arranging the terms, we get(
∂2L(θ̂ε,D)

∂θ2
+ λI + δεI

)
∂θ̂ε
∂ε

= − 1

n
b′ε − δ′εθ̂ε.

Thus we obtain
∂θ̂ε
∂ε

= −W−1
ε

(
1

n
b′ε + δ′εθ̂ε

)
. (8)

Finally, we have

∂L(θ̂ε,D)
∂ε

=

(
∂L(θ̂ε,D)

∂θ

)T
∂θ̂ε
∂ε

= −
(
∇θL(θ̂ε,D)

)T
W−1

ε

(
1

n
b′ε + δ′εθ̂ε

)
,

which concludes the proof.

The assumptions in Theorem 1 can be satisfied on common used loss functions, such as logistic
regression, Huber SVM and quadratic loss. In certain cases, some of these assumptions can be
weakened. We will discuss this case in Section 4.4.

4.2 APPROXIMATE CALCULATION

Plug 6 into 5 , we have

L(θ̂ε′ ,D)− L(θ̂ε,D) ≈ −
(
∇θL(θ̂ε,D)

)T
W−1

ε

(
1

n
b′ε + δ′εθ̂ε

)
(ε′ − ε). (9)

Although Equation 9 seems very complicated, many of the terms are familiar to us, such as
∇θL(θ̂ε,D), ∂

2L(θ̂ε,D)
∂θ2

1 and θ̂ε. A lot of existing methods can be used to calculate them in the
process of model training. Next, we will discuss the calculation of the only new term2, b′ε.

1Also known as the Hessian matrix.
2δε and δ′ε can be directly calculated by Equation 4
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The difficulty of calculating b′ε is that the function outputting bε is not explicitly given. Thus,
we need to first form a function related to ε that outputs bε. Let bε = (b1, . . . , bd), we have
b′ε = (b′1, . . . , b

′
d). Since bε is random noise with density in 3, the probability distribution function

of each bi could be given as follows:

F (b) =

{
( 12 −

1
αβε

) + 1
αβε

eβεb, if b ≤ 0,

( 12 + 1
αβε

)− 1
αβε

e−βεb, if b > 0.
(10)

Note that limx→∞ F (b) = 1, we have 1
αβε

= 1
2 , thus we can get rid of α and re-write the probability

distribution function in the following manner:

F (b) =
{

1
2e
βεb, if b ≤ 0,

1− 1
2e
−βεb, if b > 0.

(11)

Take the inverse of F (b), we have

F−1(c) =

{
1
βε

ln(2c), if 0 < c ≤ 1
2 ,

− 1
βε

ln(2− 2c), if 1
2 < c < 1.

(12)

Note that F−1(c) is a function that takes c ∼ U(0, 1) as input and outputs random variables follows
F (c), it is the function that satisfies our requirement. Thus, we can calculate each b′i by the following
formula:

b′i =
∂F−1(ci)

∂ε
=

{
− 1
β2
ε
ln(2ci)dβε, if 0 < ci ≤ 1

2 ,
1
β2
ε
ln(2− 2ci)dβε, if 1

2 < ci < 1,
(13)

where each ci ∼ U(0, 1).

Equation 9 provides an approximate approach for us to calculate the change of model’s utility when
varying the value of ε, which offers users a solution for choosing the optimal ε. The details of how
this could be done will be discussed in Section 5.

4.3 ERROR ANALYSIS

Given the complete Taylor expression of Equation 5 as follows

L(θ̂ε′ ,D)− L(θ̂ε,D) =
∂L(θ̂ε,D)

∂ε
(ε′ − ε) + r(ε′ − ε), (14)

where r(ε′ − ε) = ∂2L(θ̂ε̃,D)
∂ε2 (ε′ − ε)2 is the Taylor remainder, ε̃ ∈ [ε, ε′], we can see that our error

mainly comes from omitting the Taylor remainder. Thus, to derive the error bound of Equation 9,
we require the Taylor remainder to be bounded, specifically, we require ∂2L(θ̂ε̃,D)

∂ε2 to be bounded.

Theorem 2. Assume that L(θ,D) is third-differentiable and strictly convex in θ. Let b′′ε̃ =
∂b′

ε̃

∂ε ,

δ′′ε̃ =
∂δ′ε̃
∂ε ,Hθ̂ε̃

= ∂2L(θ̂ε̃,D)
∂θ2 and Tθ̂ε̃ =

∂3L(θ̂ε̃,D)
∂θ3 . Then, we have

∂2L(θ̂ε̃,D)
∂ε2

=

(
1

n
b′ε̃ + δ′ε̃θ̂ε̃

)T
W−1

ε̃ Hθ̂ε̃
W−1

ε̃

(
1

n
b′ε̃ + δ′ε̃θ̂ε̃

)
−
(
∇θL(θ̂ε̃,D)

)T
W−1

ε̃

(
Tθ̂ε̃ + δ′ε̃I

)
W−1

ε̃

(
1

n
b′ε̃ + δ′ε̃θ̂ε̃

)
−
(
∇θL(θ̂ε̃,D)

)T
W−1

ε̃

(
1

n
b′′ε̃ + δ′′ε̃ θ̂ε̃

)
+ δ′ε̃

(
∇θL(θ̂ε̃,D)

)T
W−1

ε̃ W−1
ε̃

(
1

n
b′ε̃ + δ′ε̃θ̂ε̃

)
.

(15)

Proof. See Appendix A.1.

By bounding each term in 15, we can obtain our error bound as follows:

5



Under review as a conference paper at ICLR 2021

Theorem 3. Assume that L(θ,D) is third-differentiable and strictly convex in θ. The δε is defined
as 4. If there exist constants c1, c2, c3, c4 so that for ∀x ∈ D,θ ∈ C, ||θ|| ≤ c1, ||∇θL(θ,D)|| ≤
c2, ||∇2

θL(θ,D)|| ≤ c3, ||∇3
θL(θ,D)|| ≤ c4. Then, for any 0 < ε, ε′ < 1 we have

|Lapprox(θ̂ε′ ,D)− Lactual(θ̂ε′ ,D)| = O
(
(ε′ − ε)2

n2ε4

)
, (16)

where Lapprox(θ̂ε′ ,D) is the approximation loss at ε′ estimated by the loss at ε, Lactual(θ̂ε′ ,D) is
true loss at ε′ from actual measurement, n is the number of training samples.

Proof. See Appendix A.2.

From Equation 16, we can see that our error bound is proportional to the difference between ε and
ε′. That is, the closer the measuring ε to the estimation target ε′, the higher the estimation accuracy.
In addition, our error bound is also inversely proportional to n and measuring ε, which indicates that
more training samples and large measuring ε values would help to produce more accurate estimates.
For example, if we set n = 10000 and use ε = 0.1 as measuring point to estimate the loss at ε = 0.2,
then the error is only about 10−6, which is quite small as the range of loss is 0 to 1.

However, sometimes the targets ε′ we want to estimate may be quite small. In this case, we can
divide the estimate targets into groups with similar ε′ values and use the mean value of each group
as the measuring ε, which may minimize the estimation error.

4.4 ASSUMPTION VIOLATION

Equation 5 relies on several assumptions that may be violated in practice. The first would be non-
convex or non-convergent objectives. In this case, the obtained parameters θ̃ε may not be the global
minimum, thus Equation 7 may not hold. To address this issue, we can form a convex quadratic
approximation of the loss around θ̃ε, i.e.,

L(θ,D) ≈ L(θ̃ε,D) +∇θL(θ̃ε,D)(θ̃ε − θ) + (θ̃ε − θ)T∇2
θL(θ̃ε,D)(θ̃ε − θ).

The second violation would be non-differentiable losses, in which neither ∇θL(θ̂ε,D) nor
∇2
θL(θ̂ε,D) exists. To address this issue, we can approximate the loss function by a different one,

which is doubly differentiable.
Remark 1. The above analysis shows that our approximate approach can be extended to the non
convex, non-convergent and non-differentiable situations. However, in this paper, we mainly focus
on verifying the effectiveness of our approach. Therefore, we only consider the normal case in our
evaluations. We leave the important analysis of our approximate approach for non-convex, non-
convergent and non-differentiable cases to our future work.

5 CHOOSING ε WITH OUR APPROXIMATION APPROACH

With the approximation approach and its error, we can achieve our goal: to offer users an efficient
way to choose the optimal ε. The simplest way is to select a suitable initial point ε, train a model
with ε, calculate all coefficients in 9, and then use 9 to estimate the utility of other points. It should
be noted that when selecting initial point, it is better to refer to the considerations mentioned in
Section 4.3.

Users can also choose ε by setting a baseline of utility. To this end, we need to re-arrange the terms
in 9 as follows:

ε′ ≈ L(θ̂ε′ ,D)− L(θ̂ε,D)(
∇θL(θ̂ε,D)

)T
W−1

ε

(
1
nb
′
ε + δ′εθ̂ε

) + ε. (17)

Similarly, users only need to train the model once at an initial point to calculate all coefficients in 9,
and then the optimal ε can be obtained according to the users’ base line of utility. The baseline of
utility could be given in various forms, for example, the user can give the difference from the utility
of initial point, such as setting the baseline to be 10% higher.
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Note that we only need to train the algorithm on the full dataset only once, our optimization effect
is considerable, especially in large-scale learning tasks. Once the optimal ε′ is estimated, the user
can use it to train the final model directly. Of course, if the user has very strict requirements on the
accuracy, he/she can also use our approximation results as instructions for choosing the test ε during
repeated training, which can save a lot of training times to help him/her find the optimal ε faster.

Sometimes, it may be inconvenient for users to re-train the model, for example, the training data
may have been lost, or the computing resource authorization may have been expired. To solve the
problems of such users, we also provide a model estimation method as follows:
Theorem 4. Assume that L(θ,D) is twice-differentiable and strictly convex in θ. Let Wε =
∂2L(θ̂ε,D)

∂θ2 + λI + δεI,b
′
ε =

∂bε

∂ε , δ
′
ε =

∂δε
∂ε . Then, we have

θ̂ε′ ≈ θ̂ε −W−1
ε

(
1

n
b′ε + δ′εθ̂ε

)
. (18)

Apparently, Equation 18 is derived from the following formula:

θ̂ε′ − θ̂ε ≈
∂θ̂ε
∂ε

(ε′ − ε),

which is the Taylor expression approximation of θ̂ε at ε. However, we still suggest that users use the
estimated ε to re-train the model if conditions permit, since the superposition of estimation methods
may bring about large errors.

6 EVALUATIONS

6.1 EVALUATION SETUP

In this section, we will empirically analyze the performance of our approximation approach. We
implement the output perturbation mechanism of Chaudhuri et al. (2011) based on the open source
released by Iyengar et al. (2019), using Laplace distribution for noise sampling. Our evaluation
considers the loss functions for two commonly used models: logistic regression (LR) and Huber
SVM (SVM), which are defined as follows:

`LR(z) = log(1 + e−z),

`SVM (z) =


0, if z > 1 + h,
1
4h (1 + h− z)2, if |1− z| ≤ h,
1− z, ifz < 1− h,

(19)

both of which are twice-differentiable. The Adult Dua & Graff (2017), Kddcup99 Stamper and
Gisette Guyon et al. (2004) datasets are used in our experiments, each of which is randomly par-
titioned into 80% training samples and 20% testing samples. We use stochastic gradient descent
algorithm to minimize 1 and set the iterations and learning rate to be 100 and 0.01. Due to the ran-
dom noise addition, all the experiments are repeated ten times and the average results are reported.
We tune the hyperparameter λ by training a non-private model on each dataset and find the optimal
value to be λ = 10−6. The constant c in Equation 4 is set to be 0.25 for both loss functions according
to Chaudhuri et al. (2011).

6.2 EVALUATION RESULTS AND ANALYSIS

The first experiment is to verify our approximation approach. In this experiment, we fix the sample
number n = 10000. The measuring points are chosen as ε = 0.1, ε = 0.25, ε = 0.75 and the target
points vary from ε = 0.05 to ε = 1.0. The experimental results on Adult and Kddcup99 are shown
in Figure 1, and the experimental results on Gisette are shown in Appendix A.3 due to the limitation
of space. The orange line, which represents actual empirical loss of each ε is called the actual line,
and the other lines, which represent the estimate of loss, are called fitting line. Each fitting line is
drawn by the estimation results of the loss of each ε, which are called the target points, based on the
actual measurement under a specific ε, which is called the measuring point. It can be seen that our
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(a) Adult-LR (b) Adult-SVM (c) Kddcup99-LR (d) Kddcup99-SVM

Figure 1: Performance of our approximation approach on datasets of Adult and Kddcup99 with
logistic regression (LR) loss and Huber SVM (SVM) loss.

Table 1: Average error of estimated loss for each measuring point.

ε 0.10 0.25 0.30 0.35 0.45 0.75 0.85

Adlut-LR 0.00823 0.00003 0.00033 0.00004 0.00293 0.00649 0.01480
Adlut-SVM 0.02052 0.00445 0.00367 0.00385 0.00298 0.00770 0.00840
Kddcup-LR 0.02393 0.00763 0.00845 0.00960 0.00283 0.01186 0.01200

Kddcup-SVM 0.00866 0.00851 0.01052 0.01143 0.00848 0.00112 0.00038
Gisette-LR 0.01482 0.01931 0.00302 0.00810 0.00394 0.04637 0.03693

Gisette-SVM 0.00571 0.00567 0.01023 0.00550 0.00823 0.01745 0.02911

approximation results basically fit the empirical loss for each ε. In addition, we can see that each
fitting line has a different slope. The larger the value of ε used in the actual measurement, the greater
the slope of the fitting line. This is consistent with our previous analysis. Specially, each fitting line
will cross the actual line at its measured ε. In addition, it can be seen that each fitting line is straight.
The reason for this is that after training at the measuring ε, the coefficients in 9 are determined,
which makes a linear relationship between the value of target ε and its estimated empirical loss. We
will explore the non-linear relationship between the two in our future work.

In order to further analyze the impact of the selection of measuring point on the estimation results,
we calculate the average error of estimated loss when each ε is used as the measuring point and
represent the results in Table 1. The experimental results are abridged, and the rest can be found in
Appendix A.3. For each experiment, the result in bold represents the measuring ε with minimum
error. Although the ε with minimum error of each results are slightly different, ε in the middle tends
to have lower average error. It is their sum of squares to other points is smaller. Thus, when using
our approximate approach for choosing optimal ε, we suggest to begin with ε in the middle.

Finally, we evaluate the effect of sample number on estimation error. Due to the limited sample
number of Gisette, we only use Adult and Kddcup99 in this experiment. We vary the sample number
from 1000 to 20000 and fix ε for each evaluation to be the one that achieves minimum error in
Table 1. The results are shown in Figure 2. Obviously, with the increase of sample number, the
estimation error decreases, which is consistent with our previous analysis.

(a) Adult-LR (b) Adult-SVM (c) Kddcup99-LR (d) Kddcup99-SVM

Figure 2: Affect of sample number on estimation error. The measuring point for each evaluation,
from left to right, is set to be ε = 0.25, ε = 0.45, ε = 0.45, ε = 0.85, respectively, which achieves
the minimum error in Table 1.
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7 CONCLUSION

In this paper, we focus on solving the problem of choosing optimal ε in DP-ML. We start by analyz-
ing the influence of ε on the utility of learned model. Then we put forward our approximate approach
for estimating the utility difference between the private models trained with any two ε values. We
show how to use our approximate approach to solve the problem we mentioned at the beginning.
We conduct several experiments to verify our analysis. Experimental results demonstrate the good
estimation accuracy and broad applicability of our approximate approach.
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