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Figure 1: Generated layouts from LayoutGPT in 2D images and 3D indoor scenes. LayoutGPT can
serve as a visual planner to reflect challenging numerical and spatial concepts in visual spaces.

Abstract

Attaining a high degree of user controllability in visual generation often requires
intricate, fine-grained inputs like layouts. However, such inputs impose a substan-
tial burden on users when compared to simple text inputs. To address the issue,
we study how Large Language Models (LLMs) can serve as visual planners by
generating layouts from text conditions, and thus collaborate with visual gener-
ative models. We propose LayoutGPT, a method to compose in-context visual
demonstrations in style sheet language to enhance the visual planning skills of
LLMs. LayoutGPT can generate plausible layouts in multiple domains, ranging
from 2D images to 3D indoor scenes. LayoutGPT also shows superior performance
in converting challenging language concepts like numerical and spatial relations to
layout arrangements for faithful text-to-image generation. When combined with
a downstream image generation model, LayoutGPT outperforms text-to-image
models/systems by 20-40% and achieves comparable performance as human users
in designing visual layouts for numerical and spatial correctness. Lastly, Layout-
GPT achieves comparable performance to supervised methods in 3D indoor scene
synthesis, demonstrating its effectiveness and potential in multiple visual domains.
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1 Introduction

Can Large Language Models (LLMs) comprehend visual concepts and generate plausible arrangments
in visual spaces? Recently, LLMs have shown significant advancement in various reasoning skills
[50, 49] that remain challenging to visual generative models. For instance, text-to-image generation
(T2I) models suffer from generating objects with specified counts, positions, and attributes [10, 24].
3D scene synthesis models face challenges in preserving furniture within pre-defined room sizes [30].
Addressing these issues necessitates the development of compositional skills that effectively arrange
components in a coherent manner, accurately reflecting object specifications and interactions.

Visual layout is an essential symbolic representation that has been widely studied as it reflects the
compositions of a visual space [33, 53, 45, 34]. For instance, layout generation models [21, 25, 17,
53, 23] can be combined with region-controlled image generation methods [56, 27] to improve image
compositionality [52]. But unlike LLMs, these models are restricted to discrete categories or have
limited reasoning skills for complicated text conditions. Recently, LLMs like ChatGPT [37], are
adopted as a centralized module of frameworks or systems where multiple foundational computer
vision models are integrated. Through defined action items or API calls, LLMs can interact with
visual generative models to extend the systems’ capability into image generation tasks. [51].

Despite the advancement, existing approaches that involve the collaboration between LLMs and
image generation models are either limited to executing the latter through program generation or
using LLMs for language data augmentation for image editing [3]. Current LLM-based systems fail
to improve the compositional faithfulness of a generated image by simply using T2I models through
API calls. While one could additionally integrate models that synthesize images with the guidance of
layouts [56, 27], keypoints [27], or sketches [20, 57], users still have to create fine-grained inputs on
their own, leading to extra efforts and degraded efficiency compared to pure language instructions.

To address these challenges, we introduce LayoutGPT, a training-free approach that injects visual
commonsense into LLMs and enables them to generate desirable layouts based on text conditions.
Despite being trained without any image data, LLMs can learn visual commonsense through in-context
demonstrations and then apply the knowledge to infer visual planning for novel samples. Specifically,
we observe that representing image layouts is highly compatible with how style sheet language
formats images on a webpage. Therefore, as LLMs are trained with program data, constructing
layouts as structured programs may enhance LLMs’ ability to “imagine” object locations from merely
language tokens. Our programs not only enable stable and consistent output structures but also
strengthen LLMs’ understanding of the visual concepts behind each individual attribute value. When
combined with a region-controlled image generation model [27], LayoutGPT outperforms existing
methods by 20-40% and achieves comparable performance as human users in generating plausible
image layouts and obtaining images with the correct object counts or spatial relations.

In addition, we extend LayoutGPT from 2D layout planning to 3D indoor scene synthesis. With a
slight expansion of the style attributes, LayoutGPT can understand challenging 3D concepts such as
depth, furniture sizes, and practical and coherent furniture arrangements for different types of rooms.
We show that LayoutGPT performs comparably to a state-of-the-art (SOTA) supervised method. Our
experimental results suggest that LLMs have the potential to handle more complicated visual inputs.
Our contribution can be summarized as the following points:

• We propose LayoutGPT, a program-guided method to adopt LLMs for layout-based visual
planning in multiple domains. LayoutGPT addresses the inherent multimodal reasoning
skills of LLMs and can improve end-user efficiency.

• We propose Numerical and Spatial Reasoning (NSR-1K) benchmark that includes prompts
characterizing counting and positional relations for text-to-image generation.

• Experimental results show that LayoutGPT effectively improves counting and spatial rela-
tions faithfulness in 2D image generation and achieves strong performance in 3D indoor
scene synthesis. Our experiments suggest that the reasoning power of LLMs can be leveraged
for visual generation and handling more complicated visual representations.
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2 Related Work

Image Layout Generation Layout generation has been an important task for automatic graphical
design for various scenarios, including indoor scenes [40, 46], document layouts [59, 60, 15], and
graphical user interface [8]. Previous work has proposed various types of models that need to be
trained from scratch before generating layouts. LayoutGAN [25] is a GAN-based framework to
generate both class and geometric labels of wireframe boxes for a fixed number of scene elements.
LayoutVAE [21] generates image layouts conditioned on an input object label set. Transformer-
based methods are proposed to enhance flexibility in the layout generation process. For instance,
LayoutTransformer [17] adopts self-attention to learn contextual relations between elements and
achieve layout completion based on a partial layout input. BLT [23] proposes a hierarchical sampling
policy so that any coordinate values can be modified at the sampling stage to enable flexible and
controlled generation. However, existing methods are restricted to class labels and fail to reason over
numerical and spatial concepts in text conditions. In contrast, LayoutGPT can convert challenging
textual concepts to 2D layouts and generate free-form, detailed descriptions for each region.

Compositional Image Generation Recent studies have shown that text-to-image generation (T2I)
models suffer from compositional issues such as missing objects, incorrect spatial relations, and
incorrect attributes [24, 2]. StructureDiffusion [10] proposes to adjust text embeddings by utilizing
prior knowledge from linguistic structures. Attend-and-Excite [4] optimizes attention regions so that
objects attend on separate regions. Another line of work strives to introduce extra conditions as inputs.
For example, ReCo [56], GLIGEN [27], and Layout-Guidance [6] can generate images based on
bounding box inputs and regional captions. [52] combines a layout generator and a region-controlled
method to achieve accurate generation results. While we focus on layout generation, we also employ
layout-to-image models to generate final images and show the effectiveness of LayoutGPT.

Indoor Scene Synthesis Indoor scene synthesis aims at generating reasonable furniture layouts in
a 3D space that satisfies room functionality. Early work adopting autoregressive models requires
supervision of 2D bounding boxes and other visual maps [40]. Later, SceneFormer [47] proposes
to apply a set of transformers to add furniture to scenes. While previous work adopts separate
models to predict different object attributes, ATISS [38] demonstrates that a single transformer model
can generate more realistic arrangments while being more efficient. In this work, we investigate
leveraging LLMs to achieve scene synthesis without any fine-tuning.

LLMs for Vision Language inputs have been an essential part of many vision language tasks
[43, 11, 28, 14]. With the strong generalization ability of contemporary LLMs, recent work attempts
to adapt the power of LLMs on multimodal tasks [31, 55]. For instance, multimodal chain-of-thought
[58] trained a model to incorporate visual inputs as rationales for question answering. [22] proposes
to learn translation parameters to map embeddings between visual and language domains such that an
LLM can ground on both modalities. VisProg [18] and ViperGPT [44] use LLMs to design modular
pseudocode instructions or executable Python programs to achieve visual reasoning. LLMScore [32]
leverages LLMs to evaluate text-to-image models. Visual ChatGPT [51] proposes a prompt manager
that supports the execution of various image generation models. In this work, we directly involve
LLMs in the generation process by leveraging LLMs to design visual layouts through in-context
learning and structured representations.

3 Method

3.1 Overview

Given a condition C, the goal of layout generation is to predict a set of tuples O “ toj |j “

1, 2, . . . , nu where each tuple oj denotes the layout information of a 2D or 3D bounding box of object
j. In image planning, C is the input text prompt, oj consists of a category cj , bounding box location
tj “ pxj , yjq P R2 and bounding box size sj “ pwj , hjq P R2, i.e. oj “ pcj , tj , sjq. Similarly, in
3D scene synthesis, C specifies the room type and room size, oj consists of category cj , location
tj P R3, size sj P R3, and orientation rj P R, i.e. oj “ pcj , tj , sj , rjq. While cj can be modeled as
a discrete value, our method directly predicts the category text.
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a clock on the wall saying it is 
2:41 in the afternoon

Task Instruction:
/* Task Description;
Format Definition; 
Available object categories 
(for scene synthesis); 
… */

/* first in-context exemplar*/
Prompt: a clock on the wall saying it is 2:41 
in the afternoon.
Layout: 
clock {
    height: 81px; 
    width: 93px; 
    top: 119px; 
    left: 15px; 
}
/* second in-context exemplar*/
…
/* inference condition*/
Prompt: a tower of a building that 
has a clock on it.
Layout: 

Visualization

LLM

Layout-to-Image
ModelInput Condition 𝓒𝒋

Image Layout Generation: “A tower 
of a building that has a clock on it”
Scene Synthesis: “Room Type: 
Bedroom, Room size: 3.5m x 3.8m”

Retrieve 
in-context 
exemplars 
using 𝑓(# | #)

Parse into 
layouts

Input prompt Output layouts in 
CSS format

Indoor Scene Synthesis

Text-conditioned 
Image Generation

CSS Structure

Normalize to “px”

Scene Synthesis
Condition:
Room Type: Bedroom
Room Size: length 256px, width 278px
Layout:
double_bed {
    length: 213px; 
    width: 250px; 
    height: 113px; 
    left: 125px; 
    top: 108px; 
    depth: 56px;
    orientation: 90 degrees;
}

Newly 
defined 
properties

/* LLM Output*/
tower {
    height: 149px; 
    width: 56px; 
    top: 65px; 
    left: 100px; 
}…

Figure 2: The overview process of our LayoutGPT framework performing 2D layout planning for
text-conditioned image generation or 3D layout planning for scene synthesis.

3.2 LayoutGPT Prompt Construction

As is shown in Fig. 2, LayoutGPT prompts consist of three main components: task instructions, and
in-context exemplars in CSS structures with normalization.

CSS Structures In autoregressive layout generation, oj is usually modeled as a plain sequence of
values, i.e. (c1, x1, y1, w1, h1, c2, x2, . . .) [17, 23]. However, such a sequence can be challenging for
LLMs to understand due to underspecified meaning of each value. Therefore, we seek a structured
format that specifies the physical meaning of each value for LLMs to interpret spatial knowledge. We
realize that image layouts are highly similar to how CSS (short for Cascading Style Sheets) formats
the layout of a webpage and defines various properties of the img tag in HTML. For instance, xj , yj
corresponds to the standard properties left and top, while wj , hj corresponds to width and
height in CSS. As LLMs like GPT-3.5/4 are trained with code snippets, formatting image/scene
layouts in CSS structures potentially enhances the LLMs’ interpretation of the spatial meaning behind
each value. Therefore, as is shown in Fig. 2, we place category name cj as the selector and map other
attribute values into the declaration section following standard CSS styles.

Task Instructions & Normalization Similar to previous work in improving the prompting ability of
LLMs [48, 42, 37], we prepend task instructions to the prompt to specify the task goal, define the
standard format, unit for values, etc. Besides, as the common length unit of CSS is pixels (px), we
normalize each property value based on a fixed scalar and rescale the value to a maximum of 256px.
As will be shown in later sections (Sec. 4.4 & 5.4), all three components play important roles in
injecting visual commonsense into LLMs and improving generation accuracy.

3.3 In-Context Exemplars Selection

Following previous work [1, 54], we select supporting demonstration exemplars for in-context
learning based on retrieval results. Given a test condition Cj and a support set of demonstrations
D “ tpCk,okq|k “ 1, 2, . . .u, we define a function fpCk, Cjq P R that measures the distances
between two conditions. For 2D text-conditioned image layout generation, we adopt the CLIP [39]
model to extract text features of Cj (usually a caption) and the image feature of Ck and measure the
cosine similarity between them. For the 3D scene synthesis task where each room has length rl and
width rw, we measure distance with fpCk, Cjq “ }rlk ´ rlj}2 ` }rwk ´ rwj}2. We select supporting
demonstrations with the top-k least distance measures and construct them as exemplars following the
CSS structure in Fig. 2. These supporting examples are provided to GPT-3.5/4 in reverse order, with
the most similar example presented last.
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Table 1: Dataset statistics and examples of the NSR-1K benchmark for image layout planning and
text-to-image (T2I) generation with an emphasis on numerical and spatial reasoning.

Task Type Example Prompt # Train # Val # Test

T2I Numerical
Reasoning

Single Category “There are two giraffes in the photo.” 14890 - 114

Two Categories “Three potted plants with one vase in the picture.” 7402 - 197

Comparison “A picture of three cars with a few fire hydrants, the number of cars
is more than that of fire hydrants.” 7402 - 100

Natural “A fenced in pasture with four horses standing around eating grass.” 9004 - 351

T2I Spatial
Reasoning

Two Categories “A dog to the right of a bench.” 360 - 199

Natural “A black cat laying on top of a bed next to pillows.” 378 84

3.4 Image and Scene Generation

For text-conditioned image synthesis, we utilize a layout-to-image generation model to generate
images based on the generated layouts. As for each object layout in 3D scene synthesis, we retrieve a
3D object based on the predicted category, location, orientation, and size following [38]. We directly
render the scene with the retrieved 3D objects. See Sec. 4 & Sec. 5 for more details.

4 LayoutGPT for Text-Conditioned Image Synthesis

In this section, we provide an extensive evaluation of LayoutGPT for 2D text-to-image (T2I) synthesis
and compare it with SOTA T2I models/systems. An ablation study is conducted to demonstrate
the effect of individual components from LayoutGPT. We also showcase qualitative results and
application scenarios of our method.

4.1 Experiment Setup

Datasets & Benchmarks To evaluate the generations in terms of specified counts and spatial locations,
we propose NSR-1K, a benchmark that includes template-based and human-written (natural) prompts
from MSCOCO [29]. Table 1 summarizes our dataset statistics with examples. For template-based
prompts, we apply a set of filters to obtain images with only 1-2 types of object and then create
prompts based on object categories and bounding box information. As for natural prompts, we
extract COCO captions with keywords to suit the task of numerical reasoning (e.g. “four”) or spatial
reasoning (e.g. “on top of”) and ensure that all objects from the bounding box annotations are
mentioned in the caption to avoid hallucination. Each prompt from NSR-1K is guaranteed to have a
corresponding ground truth image and layout annotations. Detailed benchmark construction processes
are described in Appendix B.1.

Evaluation Metrics To evaluate generated layouts, we report precision, recall, and accuracy based on
generated bounding box counts and spatial positions [9, 16]. For spatial reasoning, each prompt falls
into one of the four types of relations ({left, right, top, below}) and we use the bounding box center
for evaluation following PaintSkills [7]. To evaluate generated images, we first obtain bounding boxes
from GLIP [26] detection results and then compute average accuracy based on the bounding box
counts or spatial relations. We also report CLIP cosine similarity between text prompts and generated
images for reference. Detailed metric descriptions are listed in Appendix B.2.

Baselines As we consider both layout evaluation and image evaluation, we compare LayoutGPT with
end-to-end T2I models (Stable Diffusion [41], Attend-and-Excite [4])2 and two-stage systems that
generate layouts first and then apply GLIGEN [27] as the layout-to-image model. We also evaluate
ground truth layouts and human-drawn layouts as the theoretical upper bounds. The human-drawn
layouts are collected through crowdsourcing, in which we specifically ask human annotators to draw
layouts given text prompts. We slightly modify LayoutTransformer [17] as a baseline for supervised
conditional layout generation. Detailed descriptions of baseline setups and human annotating are
discussed in the Appendix A and E.

2Attend-and-Excite uses Stable Diffusion (SD) as the generative backbone. For both end-to-end T2I models,
we report results on SD v1.4 and SD v2.1.
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Table 2: Comparison of our LayoutGPT with baseline methods in terms of counting and spatial
correctness. Line 5-11 generates layout and adopts GLIGEN [27] for layout-guided image generation.
“Human” (line 11) denotes layouts collected from human users given text prompts. Text in bold shows
the best results of LayoutGPT.

Numerical Reasoning Spatial Reasoning
Layout Eval. Image Eval. Layout Eval. Image Eval.

Methods Precision Recall Accuracy Acc. (GLIP) CLIP Sim. Accuracy Acc. (GLIP) CLIP Sim.

Text ÝÑ Image
1 Stable Diffusion (v1.4) [41] - - - 32.22 0.256 - 16.89 0.252
2 Stable Diffusion (v2.1) - - - 42.44 0.256 - 17.81 0.256
3 Attend-and-Excite (SD v1.4) [4] - - - 38.96 0.258 - 24.38 0.263
4 Attend-and-Excite (SD v2.1) - - - 45.74 0.254 - 26.86 0.264

Text Ñ Layout Ñ Image
5 LayoutTransformer [17] 75.70 61.69 22.26 40.55 0.247 6.36 28.13 0.241
6 LayoutGPT (GPT-3.5) 94.81 96.49 86.33 51.20 0.258 82.54 52.86 0.264
7 LayoutGPT (Codex) 90.19 88.29 72.02 46.64 0.254 74.63 45.58 0.262
8 LayoutGPT (GPT-3.5, chat) 81.84 85.47 75.51 54.40 0.261 85.87 56.75 0.268
9 LayoutGPT (GPT-4) 78.36 86.29 78.43 55.64 0.261 91.73 60.64 0.268
10 GT layouts 100.00 100.00 100.00 53.23 0.256 100.00 62.54 0.261
11 Human 99.26 96.52 92.56 56.07 0.258 91.17 51.94 0.258

Three clocks at a train station under a concrete arch (Numerical)

Stable Diffusion LayoutGPT LayoutGPT+GLIGEN Human+GLIGEN Stable Diffusion LayoutGPT LayoutGPT+GLIGEN Human+GLIGEN

A yellow surfboard sits next to a bicycle on a brick sidewalk (Spatial) A cat is sitting on a basket under a bench (Spatial)

Two teddy bears and a stuffed snowman wearing hats (Numerical)

Figure 3: Qualitative comparison between Stable Diffusion, LayoutGPT, and human annotations
regarding numerical (top row) and spatial reasoning (bottom row) skills.

4.2 Evaluation Results

Quantitative Results As shown in Table 2, among the variants of LayoutGPT (#6-#9), GPT-3.5
achieves the best performance in numerical reasoning while GPT-4 performs the best in generating
correct spatial positions. LayoutGPT outperforms LayoutTransformer (#5) by large margins, proving
the strong cross-modal reasoning skills of LLMs. As for image-level evaluation, LayoutGPT surpasses
end-to-end T2I models (#1-#3) by 20-40% in GLIP-based accuracy and relatively 1-6% in CLIP
similarity. Therefore, using layouts as an intermediate representation indeed leads to more reliable
and faithful generation outcomes. In addition, LayoutGPT achieves similar layout accuracy as human
users (numerical #6 vs. #11 (86.33% v.s. 92.56%); spatial #9 vs. #11 (91.73% v.s. 91.17%)), which
implies its potential to spare users from drawing layouts manually. The discrepancy between layout
accuracy and GLIP-based accuracy suggests that the bottleneck mainly stems from layout-guided
image generation and GLIP grounding results.

In addition, LayoutGPT binds attributes to each object’s bounding box with 100% accuracy on HRS
[2] color prompts. We further evaluate the attribute correctness rate (accuracy) on the final generated
images when combining LayoutGPT with GLIGEN/ReCo. As shown in Table 3, our system largely
improves the color correctness over Stable Diffusion with multiple objects.

Qualitative results We show the qualitative results of LayoutGPT and baselines in Fig. 3. LayoutGPT
can understand visual commonsense such as the clock sizes at a train station (top left) or complex
spatial relations between multiple objects (bottom right), while SD fails to generate correct numbers
or positions. Besides, LayoutGPT demonstrates a similar layout design to human users (bottom left).
Fig. 11 in the Appendix visualizes the results of attribute binding using LayoutGPT and ReCo [56].
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Table 3: Color binding accuracy evaluated on prompts from HRS-Bench [2]. We follow the benchmark
and use a hue-based classifier to identify the color of generated objects.

Models Attribute binding Accuracy (%)

Prompts w/ 2 objects Prompts w/ 3 objects Prompts w/ 4 objects Overall

SD1.4 18.57 10.10 11.36 12.84
Attend-and-Excite 31.43 19.19 20.45 22.96
LayoutGPT + GLIGEN 22.86 19.19 14.77 18.68
LayoutGPT + ReCo [56] 40.00 37.37 34.09 36.96

A bathroom featuring a sink and toilet Different kinds of doughnuts in a 
display case

A big brown cow walking down a 
sidewalk near homes

A bathroom featuring a sink and toilet

A cat is lying on top of a suitcase.
a black and white cat lying on its side with 
its eyes closed
a purple suitcase with a design of a blue, 
yellow, and white flower

A big brown cow walking down a 
sidewalk near home

Grey and black cat sitting under a bench.
a grey and black cat with its tail tucked in 
and its head down, looking at the viewer
a wooden bench with two legs

A cat is sitting on a basket under a bench.
a black and white cat with its tail curled up in 
the basket
a light brown basket with a handle on the side
a wooden bench with a curved backrest

Different kinds of doughnuts in a 
display case

Dense layout 
Planning 

Text-based
Inpainting

LayoutGPT +GLIGEN LayoutGPT +GLIGEN LayoutGPT +GLIGEN

Figure 4: Dense layout planning: LayoutGPT can generate rich objects or categories in complex
scenes for MSCOCO 2017 Panoptic prompts [29]. Text-based inpainting: LayoutGPT can generate
free-form regional descriptions that are not mentioned in the global prompt.

4.3 Application Scenarios

By utilizing LLMs as layout generators, LayoutGPT can be applied to a diverse set of scenarios for
accurate and creative image generation.

Dense Layout Planning: In Fig. 4 (top), we apply random in-context examples from COCO17
panoptic annotations with 6„15 bounding boxes per image. LayoutGPT can be applied to scenarios
that imply numerous objects (e.g. different kinds of donuts) or various categories (e.g. bathroom or
street view). Though only a few objects are mentioned in the prompts, LayoutGPT predicts layouts
for the whole scene and imagines common objects that are usually visible in each scene.

Text-based Inpainting: In addition, the inherent language generation ability of LLMs enables our
method to generate fine-grained regional descriptions from coarse global prompts (Fig. 4 bottom).
LayoutGPT can enrich the description of each object with details that are not mentioned in the prompt,
producing suitable outputs for models like ReCo [56].

Counterfactual Scenarios: We test LayoutGPT on counterfactual prompts provided by GPT-4 [35].
The in-context examples are randomly drawn from MSCOCO 2017[29], which greatly differs from
the counterfactual prompts. As shown in Fig. 5, LayoutGPT manages to generate reasonable layouts
on these challenging prompts and handles the relationship between objects well.

4.4 Ablation Study

Component Analysis Table 4 presents the component analysis of our CSS-style prompt on spatial
reasoning prompts. Comparisons between line 1-3 entails that the task instructions (#2) and CSS
format (#3) effectively improve layout accuracy. Format in-context exemplars in CSS structures
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Table 4: Ablation study of LayoutGPT (GPT-3.5) on spatial reasoning prompts. “w/ Instr.”: with
prepended task instructions. “w/ CSS”: format in-context demonstrations in CSS style. “w/ Norm.”:
normalizing attribute values to integers by a fixed size.

w/
Instr.

w/
CSS

w/
Norm.

Layout-to-Image
Model

Layout Eval Image Eval
Acc. Acc. (GLIP) CLIP Sim

1 55.12 34.35 0.259
2 ✓

GLIGEN [27]

78.23 47.92 0.263
3 ✓ 80.82 51.38 0.264
4 ✓ 44.10 26.43 0.257
5 ✓ ✓ 81.84 52.08 0.264
6 ✓ ✓ 73.36 44.88 0.262
7 ✓ ✓ 76.61 47.56 0.263
8 ✓ ✓ ✓ 82.54 52.86 0.264
9 ✓ ✓ ✓ Layout-Guidance [6] 82.54 31.02 0.258
10 GT layouts 100.00 33.92 0.257

a rubber duck floating on the surface of a 
desert oasis, surrounded by cacti

a row of crabs collaborating to carry a 
hammock made of interwined licorice strands

a rooster perched atop a giant typewriter, 
proudly announcing the sunrise in a new font

a friendly octopus using its tentacles to swing 
from the tree to tree in a dense forest

Figure 5: Qualitative examples of LayoutGPT’s performance on counterfactual prompts.

show a more significant effect on accuracy. Pairwise comparisons of line 5-7 support the argument
that the CSS style is the most essential component. While solely applying normalization degrades
accuracy in line 4, line 5&8 shows that it slightly improves the performance when combined with
other components.

Model-Agnostic Property We show that LayoutGPT is agnostic to layout-guided image generation
models in line 9-10 in Table 4. We feed the same generated layouts from LayoutGPT to Layout-
Guidance [6] and compute image-level metrics. Compared to using ground truth layouts (#10),
LayoutGPT (#9) shows a minor gap in GLIP-based accuracy and a comparable CLIP similarity
score. The discrepancy in GLIP-based accuracy is similar to that in Table 2, implying that the layouts
generated by our method are agnostic to the downstream model.

5 LayoutGPT for Indoor Scene Synthesis

5.1 Task Setup

Datasets & Benchmarks For indoor scene synthesis, we use an updated version of the 3D-FRONT
dataset [12, 13] following ATISS [38]. After applying the same pre-processing operations, we end up
with 4273 bedroom scenes and 841 scenes for the living room. We only use rectangular floor plans of
the test set for evaluation since LayoutGPT is not compatible with irregular ones. Hence, we end up
with 3397/453/423 for train/val/test split of bedroom scenes and 690/98/53 for train/val/test split of
living room scenes.

Evaluation Metrics We follow prior work [38] to report KL divergence between the furniture
category distributions of predicted and ground truth scenes. We also render scene images from four
camera angles for each scene and report FID scores [19]. In addition, we report out-of-bound rates,
i.e. the percentage of scenes with furniture exceeding the floor plan boundary.

5.2 Evaluation Results

Quantitative Results The evaluation results are recorded in Table 5. We provide a random baseline
for comparison denoted as “Random Scenes”, in which the scene is randomly sampled from the
in-context exemplars for each inference run.3

3Notice that while the scenes in “Random Scenes” are sampled from the training set, the out-of-boundary
rate is larger than 0 since the 3D-FRONT dataset contains a small portion of scenes with out-of-bound furniture.
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Table 5: Comparison of LayoutGPT with ATISS on indoor scene synthesis. “Random Scenes” means
randomly sampling one training scene from the in-context demonstrations for each inference room
sample. (* denotes results reproduced by us)

Models Bedrooms Living Rooms

Out of bounds (Ó) KL Div. (Ó) FID (Ó) Out of bounds (Ó) KL Div. (Ó) FID (Ó)

Random Scenes 11.16 0.0142 23.76 9.43 0.1239 79.61

ATISS*[17] 49.88 0.0113 30.02 83.02 0.1054 85.40
LayoutGPT (GPT-3.5) 43.26 0.0995 28.37 73.58 0.1405 76.34
LayoutGPT (GPT-3.5, chat) 57.21 0.0846 29.66 81.13 0.2077 89.40
LayoutGPT (GPT-4) 51.06 0.1417 29.88 64.15 0.1613 78.60

ATISS

LayoutGPT

Master Bedroom Living room Living & Dining roomMaster Bedroom

Overlapped 

furniture
Overlapped 

furniture

Out of bound Out of bound

Figure 6: Visualization of LayoutGPT across different types of rooms with different floor plan sizes.

For both bedrooms and living rooms planning, LayoutGPT attains lower out-of-bound rates than
ATISS (bedrooms: 43.26% vs. 49.88%; living rooms: 64.16% vs. 83.02%), which verifies Layout-
GPT’s spatial reasoning ability in 3D environments. In addition, LayoutGPT has lower FID compared
to ATISS (bedrooms: 28.37 vs. 30.02; living rooms: 76.34 vs. 85.40), which indicates that the
planned scene has higher quality. Noted here that the living room split contains much more objects
on average (11 for living rooms vs. 5 in bedrooms) and is a low-resource split with only 690 training
scenes. Therefore, while living rooms are challenging for both methods, LayoutGPT shows more
significant improvement over ATISS as supervised methods tend to overfit in early epochs.

Meanwhile, ATISS performs better in terms of KL divergence, which means that the overall furniture
distribution predicted by ATISS is closer to the test split. We observe that LayoutGPT tends to avoid
furnitures that are extremely rarely seen in each scene (e.g. coffee tables for bedrooms) as these
objects appear less frequently in the in-context demonstrations. The limited in-context demonstration
size also restricts LayoutGPT to have a universal observation of the furniture distributions.

Qualitative Results As shown in Fig. 6, LayoutGPT manages to understand common 3D concepts,
such as “the pendant lamp should be suspended from the ceiling” and “nightstands should be placed
by the headboard of the bed” (bottom row). When given a floor plan size for both living and dining
rooms, LayoutGPT can also generate complicated 3D planning with dining tables and chairs on one
side, and a sofa, a coffee table, and a TV stand on the other side (bottom right).

5.3 Application Scenarios

Text-guided Synthesis: LayoutGPT can follow text captions to arrange furniture in the scene (see
Fig. 7). When the captions enumerate a complete list of furniture, LayoutGPT strictly follows the
captions to generate the furniture and achieve a KL Div. value close to zero.

Partial Scene Completion: Thanks to the autoregressive decoding mechanism, LayoutGPT can
complete a scene with partial arrangments such that the additional furniture remains coherent with the
existing ones. Through in-context demonstrations, LayoutGPT learns critical (visual) commonsense
such as visual symmetric (e.g. nightstands in Fig. 8 (a)), positional relations (e.g. stool at the end of
the bed in Fig. 8 (b)), and room functions (e.g. desks and chairs in the dining area in Fig. 8 (d)).

9



“A bedroom with a double bed, a 

wardrobe, two tables, a cabinet and a 

pendant lamp.”

Room Size: max length 214px, max 

width 306px

“A bedroom with a double bed, two 

wardrobes and a pendant lamp.”

Room Size: max length 262px, max 

width 207px

“A living room with three coffee 

tables, a tv stand, a multi seat sofa, a 

dining table, four dining chairs, a 

console table and two pendant lamps.”

Room Size: max length 256px, max 

width 490px

“A living room with a multi seat sofa, 

a coffee table, a tv stand, a dining 

table, four dining chairs, a ceiling 

lamp and a pendant lamp.”

Room Size: max length 413px, max 

width 256px

Figure 7: Generation of 3D scenes based on text captions that enumerate the furniture.
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Figure 8: LayoutGPT can successfully complete a partial scene for different rooms. We provide three
starting objects for bedrooms and seven objects for living rooms.

5.4 Ablation Study

Table 6: Ablation studies on LayoutGPT on the bedroom split for
3D indoor scene synthesis.

w/
Instr.

w/
CSS

w/
Norm.

Out of
Bound Ó

KL Div. Ó FID Ó

1 55.32 0.1070 56.83
2 ✓ 54.85 0.1153 58.85
3 ✓ 51.77 0.0776 55.62
4 ✓ 46.57 0.1276 58.24
5 ✓ ✓ 51.30 0.0741 57.64
6 ✓ ✓ 46.81 0.0913 58.61
7 ✓ ✓ 43.74 0.0848 57.70
8 ✓ ✓ ✓ 43.26 0.0995 56.66

Similar to Sec. 4.4, we study the
effect of task instructions, CSS
structure, and normalization on
indoor scene synthesis (see Table
6). In contrast to our conclusion
for 2D planning in Sec. 4.4, com-
parisons between line 1-4 show
that normalization (#4) is the
most critical component for sup-
pressing the out-of-bound rate
while the CSS structure is also
effective. We observe that LLMs
occasionally copy attribute val-
ues directly from in-context ex-
emplars even though the room
sizes are different. Therefore,
normalizing all exemplars to the same scale can reduce the out-of-bound rate. CSS style facili-
tates LLMs to understand the physical meaning behind each attribute value and hence leads to almost
the best result when combined with normalization (#7).

6 Conclusion

In this work, we address a new direction of generative model collaborations. Specifically, we are
interested in how Large Language Models (LLMs) can collaborate with visual generative models.
To this end, we propose LayoutGPT, an approach that turns an LLM into a visual planner through
in-context learning and CSS style prompts. LayoutGPT can generate plausible visual arrangements in
both image space and 3D indoor scenes. LayoutGPT can effectively improve image compositions by
generating accurate layouts and achieves comparable performance in indoor scene synthesis compared
to supervised methods. Besides, LayoutGPT can improve user efficiency in image generation and
serve as an essential part of a unified system for all types of multimodal tasks.
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A Implementation Details

In this section, we provide a detailed description of our prompt construction and instantiate instruc-
tions examples.

Task instructions As is shown in Table 7, the specific task instructions start with verbalized de-
scriptions of the task and are followed by the formal definition of the CSS style. As for the indoor
scene synthesis, we additionally provide a list of available furniture and the normalized frequency
distribution for fair comparisons with the supervised method. Yet we discover that the provided
frequency distribution has little effect on the generation results, based on the trivial change in the KL
divergence. In some cases, it is important to make LLMs sample from a defined distribution instead
of learning the distribution from in-context exemplars, which we leave for future work.

Table 7: The prepending instructions provided to GPT-3.5/4 during our LayoutGPT’s 2D and 3D
layout planning process. The instructions listed here are for the setting with CSS structure and with
normalization.
Task Instruction for GPT-3.5/4
2D Layout
Planning

Instruction:
Given a sentence prompt that will be used to generate an image, plan the layout of the image. The
generated layout should follow the CSS style, where each line starts with the object description and is
followed by its absolute position.
Formally, each line should be like "object {width: ?px; height: ?px; left: ?px; top: ?px; }". The
image is 64px wide and 64px high. Therefore, all properties of the positions should not exceed 64px,
including the addition of left and width and the addition of top and height.

3D Layout
Planning

Instruction:
Synthesize the 3D layout of an indoor scene from the bottom-up view. The generated 3D layout
should follow the CSS style, where each line starts with the furniture category and is followed by the
3D size, orientation, and absolute position.
Formally, each line should follow the template: FURNITURE {length: ?px: width: ?px; height: ?px;
left: ?px; top: ?px; depth: ?px; orientation: ?degrees;} All values are in pixels but the orientation
angle is in degrees.

Available furniture: armchair, bookshelf, cabinet, ceiling_lamp, chair, children_cabinet, cof-
fee_table, desk, double_bed, dressing_chair, dressing_table, floor_lamp, kids_bed, nightstand,
pendant_lamp, shelf, single_bed, sofa, stool, table, tv_stand, wardrobe
Overall furniture frequencies: (armchair: 0.0045; bookshelf: 0.0076; cabinet: 0.0221; ceiling_lamp:
0.062; chair: 0.024; children_cabinet: 0.0075; coffee_table: 0.0013; desk: 0.0172; double_bed:
0.1682; dressing_chair: 0.0063; dressing_table: 0.0213; floor_lamp: 0.0093; kids_bed: 0.0079;
nightstand: 0.2648; pendant_lamp: 0.1258; shelf: 0.0086; single_bed: 0.0211; sofa: 0.0018; stool:
0.012; table: 0.0201; tv_stand: 0.0308; wardrobe: 0.1557)

Base LLMs We use four variants of GPT models, (1) Codex [5] (code-davinci-002), an LLM
that is fine-tuned with large-scale code datasets and can translate natural language into functioning
code snippets; (2) GPT-3.5 [36] (text-davinci-003), which is trained to generate text or code
from human instructions; (3) GPT-3.5-chat (gpt-3.5-turbo) and (4) GPT-4 [35] (gpt-4), which
are both optimized for conversational tasks. For the last two models, we first feed the in-context
exemplars as multiple turns of dialogues between the user and the model to fit into the API design.
However, we generally observe that GPT-3.5-chat and GPT-4 are not as strong as GPT-3.5 in learning
from the in-context demonstrations, especially when the dialogue format follows a certain structure
instead of free-form descriptions.

Hyperparameters For all LLMs, we fix the sampling temperature to 0.7 and apply no penalty to the
next token prediction. For image layouts evaluation in Table 2, we fix the number of exemplars to
16 for numerical reasoning, and 8 for spatial reasoning, based on the best results of a preliminary
experiment. However, we do not observe significant gaps in evaluation results when using different
amounts of exemplars (see Sec. B.4). For each prompt, we generate five different layouts/images
using baselines or LayoutGPT and thus result in 3810 images for numerical reasoning and 1415
images for spatial reasoning in all reported evaluation results. As for indoor scene synthesis, we fix
the number of exemplars to 8 for bedrooms and 4 for living rooms to reach the maximum allowed
input tokens. We set the maximum output token as 512 for bedrooms and 1024 for living rooms as
bedrooms have „5 objects per room while living rooms have „11 objects per room. We generate
one layout for each rectangular floor plan for evaluation.
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B LayoutGPT for 2D Layout Planning

B.1 NSR-1K Benchmark Construction

We rely on the MSCOCO annotations to create NSR-1K with ground-truth layout annotations. Note
that each image in COCO is paired with a set of captions and a set of bounding box annotations.

Numerical Reasoning We primarily focus on the competence of T2I models to count accurately,
i.e., generate the correct number of objects as indicated in the input text prompt. The prompts for
this evaluation encompass object counts ranging from 1 to 5. To design the template-based T2I
prompts, we initially sample possible object combinations within an image based on the bounding
box annotations. We only use the bounding box annotation of an image when there are at most two
types of objects within the image. As a result, the template-based prompts consist of three distinct
types: (1) Single Category, wherein the prompt references only one category of objects in varying
numbers; (2) Two Categories, wherein the prompt references two categories of distinct objects in
varying numbers; and (3) Comparison, wherein the prompt references two categories of distinct
objects but specifies the number of only one type of object, while the number of the other type is
indicated indirectly through comparison terms including “fewer than”, “equal number of”, and “more
than”. As for natural prompts, we select COCO captions containing one of the numerical keywords
from “one” to “five” and filter out those with bounding box categories that are not mentioned to avoid
hallucination.

Spatial Reasoning We challenge LLMs with prompts that describe the positional relations of
two or more objects. Our spatial reasoning prompts consist of template-based prompts and natural
prompts from COCO. To construct template-based prompts, we first extract images with only two
ground-truth bounding boxes that belong to two different categories. Following the definitions from
PaintSkill [7], we ensure the spatial relation of the two boxes belong to (left, right, above,
below). Specifically, given two objects A,B, their bounding box centers pxA, yAq, pxB , yBq and
the Euclidean distance d between two centers, we define their spatial relation RelpA,Bq as:

RelpA,Bq “

$

’

’

&

’

’

%

B above A if yB´yA

d ě sinpπ{4q

B below A if yB´yA

d ď sinp´π{4q

B on the left of A if xB´xA

d ă cosp3π{4q

B on the right of A if xB´xA

d ą cospπ{4q

(1)

The definition basically dissects a circle centered at A equally into four sectors that each represent a
spatial relation. While the definition may not stand for all camera viewpoints, it allows us to mainly
focus on the front view of the scene. Then, we utilize the category labels and the pre-defined relations
to form a prompt, as is shown in Table 1. As for the natural COCO prompts, we select prompts that
contain one of the key phrases (the left/right of, on top of, under/below) and
ensure that the bounding box annotations align with our definition.

B.2 Evaluation Metrics

We denote the set of n object categories in the ground truth annotation as CGT “ c1, c2, . . . , cn,
where xc1 , xc1 , . . . , xcn represent the number of objects for each category. Additionally, we denote
the set of m object categories mentioned in GPT-3.5/4’s layout prediction as Cpred “ c1

1, c
1
2, . . . , c

1
m,

where x1
c1
1
, x1
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2
, . . . , x1

c1
m
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ci is assigned a value of 0, and vice versa.

  Categories cat bed pillow
  Ground Truth 2 1 2
  Prediction 1 0 3

ci

xci

x′ ci

precicion = ∑ min(xck
, x′ ck

)
∑ x′ c′ k

= 1 + 0 + 2
1 + 0 + 3 = 75 %

recall = ∑ min(xck
, x′ ck

)
∑ xc′ k

= 1 + 0 + 2
2 + 1 + 2 = 60 %

MAE = ∑ |xck
− x′ ck

|
n

= 1
3 ( |2 − 1 | + |1 − 0 | + |2 − 3 | ) = 1

  Categories cat bed pillow
  Ground Truth 2 1 2
  Prediction 1 0 3

ci

xci

x′ ci

precicion = ∑ min(xck
, x′ ck

)
∑ x′ c′ k

= 1 + 0 + 2
1 + 0 + 3 = 75 %

recall = ∑ min(xck
, x′ ck

)
∑ xc′ k

= 1 + 0 + 2
2 + 1 + 2 = 60 %

MAE = ∑ |xck
− x′ ck

|
n

= 1
3 ( |2 − 1 | + |1 − 0 | + |2 − 3 | ) = 1

  Categories cat bed pillow
  Ground Truth 2 1 2
  Prediction 1 0 3

ci

xci

x′ ci

precicion = ∑ min(xck
, x′ ck

)
∑ x′ c′ k

= 1 + 0 + 2
1 + 0 + 3 = 75 %

recall = ∑ min(xck
, x′ ck

)
∑ xc′ k

= 1 + 0 + 2
2 + 1 + 2 = 60 %

Figure 9: An closeup example of how we compute the layout automatic evaluation metrics for
numerical reasoning.
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Table 8: Closeup of various in-context example formats with ablated CSS structure and normalization
for 2D layout planning.

CSS Structure Normalization In-context Example Format Demo

Prompt: a teddy bear to the right of a book
Layout:
teddy bear: 0.50, 0.71, 0.50, 0.15
book: 0.50, 0.61, 0.00, 0.26

✓

Prompt: a teddy bear to the right of a book
Layout:
teddy bear {width: 0.50; height: 0.71; left: 0.50; top: 0.15; }
book {width: 0.50; height: 0.61; left: 0.00; top: 0.26; }

✓

Prompt: a teddy bear to the right of a book
Layout:
teddy bear: 32, 45, 31, 9
book: 31, 38, 0, 16

✓ ✓

Prompt: a teddy bear to the right of a book
Layout:
teddy bear {width: 32px; height: 45px; left: 31px; top: 9px; }
book {width: 31px; height: 38px; left: 0px; top: 16px; }

The numerical reasoning ability of GPT-3.5/4 on layout planning is assessed using the following

metrics: (1) precision: calculated as
řn

k“1 minpxck
,x1

ck
q

řm
k“1 x1

c1
k

, is an indication of the percentage of predicted

objects that exist in the groundtruth; (2) recall: calculated as
řn

k“1 minpxck
,x1

ck
q

řn
k“1 xck

, indicates the percent-
age of ground-truth objects that are covered in the prediction; (3) accuracy: In the “comparison”
subtask, an accuracy score of 1 is achieved when the predicted relation, whether it is an inequality or
equality, between the two objects is accurately determined. For all other numerical subtasks, accuracy
equals to 1 if the predicted categories and object numbers precisely match the ground truth. In other
cases, the accuracy is 0. Fig. 9 shows an example of how we compute the precision and recall. The
accuracy for this single example is 0 since the predicted object distribution does not match the ground
truth in every category.

For spatial reasoning, we evaluate spatial accuracy based on the LLM-generated layouts and GLIP-
based layouts. We adopt [26] finetuned on COCO to detect involved objects from the generated
images and obtain the bounding boxes. For both types of layouts, we categorize the spatial relation
based on the above definition and compute the percentage of predicted layouts with the correct
spatial relation. For all evaluation benchmarks, we measure the CLIP similarity, which is the cosine
similarity between the generated image feature and the corresponding prompt feature.

B.3 GPT-3.5/4 Prompting

In Sec. 4.4, we investigate the impact of three components in the structured prompts: (1) Instruction,
which examines whether detailed instructions explaining the task setup and the format of the sup-
porting examples are included in the prompt. (2) Structure, which evaluates the impact of different
formatting settings on the presentation of the bounding box aspects of height, width, top, and left.
The “w/ CSS” setting formats the aspects in CSS, while the “w/o CSS” setting presents the four
aspects in a sequence separated by a comma. (3) Normalization, which investigates the effects of
rescaling the bounding box aspects to a specified canvas size and presenting them as integers in pixels
in the “w/ Norm.” setting, while the “w/o Norm.” setting presents the aspects as relative scales to the
canvas size in floats that range from (0, 1).

Table 7 shows the detailed prepending instructions LayoutGPT provided to GPT-3.5/4 models during
2D layout planning. Table 8 compares the formats of supporting examples with ablated structures
and normalization settings.

For experiments in Sec. 4.3, to adapt to the nature of the Panoptic task, we add the following additional
instruction when prompting LayoutGPT: “The objects layout might be dense, and objects may overlap
with each other. Some objects might not have been mentioned in the prompt, but are very likely to
appear in the described scenario.” To generate counterfactual prompts for text-to-image generation,
the following text prompt is provided to GPT-4: “Please provide a few counterfactual prompts that
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Table 9: The automatic metric scores of LayoutGPT (GPT-3.5) with different in-context sample
selection approaches. All values are in percentage (%).

#
Exemplar
Selection

# In-Context
Exemplars

Numerical Reasoning Spatial Reasoning

PrecisionÒ RecallÒ Layout
AccuracyÒ

GLIP
AccuracyÒ

Layout
AccuracyÒ

GLIP
AccuracyÒ

1 Fixed Random 16 64.83 92.71 87.66 47.10 80.14 47.07

2
Retrieval

4 88.93 95.02 76.17 50.20 85.30 51.66
3 8 93.32 95.63 82.68 50.58 82.54 52.86
4 16 94.81 96.49 86.33 51.25 82.40 51.09

In-context

exemplar
LayoutGPT

In-context

exemplar
LayoutGPT

In-context

exemplar
LayoutGPT

Figure 10: Comparison between the most similar in-context exemplar and the generation results of
LayoutGPT.

depict rarely seen the spatial relationship between the 80 MSCOCO object categories. An example
would be "a monkey riding on top of a bird"”.

B.4 Additional Experiments

Random In-Context Exemplars Empirically, selecting in-context exemplars can be critical for
the overall performance of LLMs. Apart from our retrieval-augmented method in Sec. 3, we also
experiment with a fixed random set of in-context exemplars. Specifically, we randomly sample k
examples from the training (support) set D to form a fixed set of in-context demonstrations for all test
conditions Cj . Therefore, the fixed random setting results in in-context exemplars that are unrelated
to the test condition Cj . The minor gap between lines 1&5 in Table 9 verifies that LayoutGPT is not
directly copying from the in-context exemplars in most cases. Fig. 10 further justifies the argument
with layout visualization of the most similar in-context exemplars and the LayoutGPT outputs.

Number of In-Context Exemplars We take a closer look at the effects of the number of in-context
exemplars in the prompt as shown in Table 9. For counting, we observe that the number of exemplars
is positively correlated with the counting accuracy. We conjecture that LLMs learn to make more
accurate predictions for challenging prompts (e.g., comparison) by learning from more few-shot
exemplars. As the layout accuracy also accounts for results where CSS parsing fails, we observe that
the LLMs generate more consistent CSS-style code by learning from more examples. However, we
cannot observe a similar trend in spatial reasoning prompts. We conjecture that LLMs only require as
few as four demonstrations to learn the differences between the four types of spatial relations. The
small optimal number of in-context exemplars implies that LLMs already have 2D spatial knowledge
and can map textual descriptions to corresponding coordinate values. Yet it is important to find a
proper representation to elicit such knowledge from LLMs as implied in Sec. 4.4.
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Input (to LayoutGPT): A red bird fluttering 
next to a car window.
Output (of LayoutGPT):
a red bird with wings fluttering
a car window with the window open

Input: A cat is lying on top of a suitcase.
Output:
a black and white cat lying on its side with its 
eyes closed
a purple suitcase with a design of a blue, yellow, 
and white flower

Input: A gray and brown cat sitting under a 
purple umbrella.
Output:
a gray and brown cat in a sitting position
a purple umbrella

Input: Grey and black cat sitting under a bench.
Output:
a grey and black cat with its tail tucked in and 
its head down, looking at the viewer
a wooden bench with two legs

Input: A cat is sitting on a basket under a bench.
Output:
a black and white cat with its tail curled up in the 
basket
a light brown basket with a handle on the side
a wooden bench with a curved backrest

Input: A brown horse standing next to a white 
truck.
Output:
a brown horse standing still
a white truck with four black wheels

Attribute Binding Text-based Inpainting

(Visualized)

Figure 11: Attribute binding examples of LayoutGPT and generated images using ReCo.

Table 10: The layout performance on each numerical reasoning subtask. Results reported on
LayoutGPT (GPT-4).

Prompt Source Subtask Precision Recall Accuracy

Template
Single Category 85.96 85.96 85.96
Two Categories 85.14 85.04 66.60
Comparison - - 77.80

Natural Prompts from MSCOCO 72.08 87.1 82.79

- Total 78.36 86.29 78.43

Performance on Numerical Subtasks Table 10 presents the performance of layout generation in
various numerical reasoning subtasks. Regarding template-based prompts, the LayoutGPT demon-
strates superior performance in the “Single Category” numerical reasoning task, exhibiting precision,
recall, and accuracy values around 86%. However, when it comes to the “Two Category” numerical
reasoning task, while precision and recall experience minimal changes, the accuracy drops to 66%.
For the “Comparison” subtask, the accuracy hovers around 78%. These outcomes indicate that Lay-
outGPT encounters greater challenges when confronted with multi-class planning scenarios, whether
the number of objects is explicitly provided or indirectly implied through comparative clauses.

For natural prompts extracted from MSCOCO, a noteworthy observation is the high recall accom-
panied by relatively lower precision. This discrepancy arises due to the ground truth bounding
box annotations encompassing only 80 object classes, whereas the natural prompts may mention
objects beyond the annotated classes. Consequently, our LayoutGPT may predict object layouts
corresponding to classes not present in the ground truth, which, despite lowering precision, aligns
with the desired behavior.

Performance on Size Comparison Reasoning Task We evaluate LayoutGPT’s reasoning ability
regarding object size. We use the standard HRS benchmark [2] which is designed for benchmarking
compositional text-to-image models. HRS prompts for size reasoning contain comparison terms
between randomly sampled common objects. The size relations described in HRS size prompts are
often counterfactual and rarely seen (e.g., “a person which is smaller than a chair and larger than
horse”, “a car which is smaller than a banana and chair and bigger than airplane”.). LayoutGPT
achieves an accuracy of 98.0% / 93.1% / 92.1% when the prompt involves size comparison between
2/3/4 objects. Meanwhile, the best size reasoning performance of nine text-to-image models reported
by the HRS benchmark is only 31.1% / 0.2% / 0%. The results further verify that LayoutGPT acquires
decent reasoning ability on rare scenarios / counterfactual prompts.

B.5 Failure Cases

Fig. 12 shows typical failure cases in numerical and spatial relations. As previously discussed, we
observe in Table 10 that numerical prompts that involves two type of objects (“Two Categories”
and “Comparison”) are more challenging to LayoutGPT and the image generation model. In these
subtasks, LayoutGPT tends to predict much smaller bounding boxes to fit all objects within the
limited image space. The small boxes further challenge GLIGEN to fit the object within the limited
region, as shown in Fig. 12 (right).
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“Four zebras grazing in enclosed area with shade trees”“A light shines on five clocks 
showing times in different zones”

“A vintage photo of a dog laying 
on a couch”

Numerical failure Spatial failure Incompatible layouts

Figure 12: Typical failure cases of LayoutGPT and the generation results using GLIGEN.

Modification based on 

exemplars

Duplication

from exemplars
Generation

(new objects, significant differences in object sizes or locations)

In-context exemplar LayoutGPT In-context exemplar LayoutGPT In-context exemplar LayoutGPT

Figure 13: Sorted scene differences between LayoutGPT generated scenes and the most similar in-
context exemplars of 423 testing bedroom samples. We partition the distribution into three segments
representing different behaviors of LayoutGPT. Duplication: The generated scene is a duplication
of the exemplar. Modification: LayoutGPT slightly modifies one exemplar as the generated layout.
Generation: LayoutGPT generates novel scenes that are highly different from the exemplars.

C LayoutGPT for 3D Scene Synthesis

Due to the limitation in datasets, the conditions are room type and room size instead of text descrip-
tions. While ATISS [38] utilizes the floor plan image as the input condition, LLMs are not compatible
with image inputs. Therefore, we convert the floor plan image into the specification of the room size.
Therefore, the input conditions are similar to “Room Type: Bedroom, Room Size: max length 256px,
max width 256px”.

C.1 Exemplar Selection

Similar to Sec. B.4, we investigate the effect of using a random set of in-context exemplars for
indoor scene synthesis. When we apply 8 random bedroom layouts from the training set as in-context
exemplars, the out-of-bound rate increases from 43.26% in Table 5 to 85.58%. The significant
differences suggest that LayoutGPT heavily relies on rooms with similar floor plans to maintain
objects within the boundary. Yet we verify that the generated layouts from LayoutGPT are not
duplicates of the in-context exemplars in most cases.

We first define a training scene layout as a set of objects St “ tot
1, . . . ,o

t
mu, and a generated scene

layout as Sg “ tog
1, . . . ,o

g
nu. Note that oj consists of category cj , location tj P R3, size sj P R3,

and orientation rj P R, i.e. oj “ pcj , tj , sj , rjq We define the scene difference Dp¨|¨q between St

and St as

DpSt|Sgq “

n
ÿ

i“1

min
j,ct

j“cg
i

p}ttj ´ tgi }1 ` }stj ´ sgi }1q. (2)

We set ttj , s
t
j to 0 if St does not have a single object that belongs to the same category as cgi . For

each testing sample of the bedroom, we compute the scene differences between the generated layout
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Out-of-Bound Furniture Overlapped Objects Inharmonious placement

Figure 14: Typical failure cases of LayoutGPT.

and all eight in-context exemplars and use the minimum value as the final scene difference. Note that
all parameters used for computation are in “meters” instead of “pixels”.

We plot the scene differences of all 423 testing samples in Fig. 13. We empirically discover that a
scene difference below 1.0 means Sg is highly similar to St, which we conclude as duplication from
in-context exemplars. A scene difference below 6.0 shows moderate differences in object sizes or
locations between two scenes, representing a modification based on St to generate Sg. Finally, a
scene difference larger than 6.0 represents new objects or significant differences in object sizes or
locations between the exemplar and the generated layouts, i.e. true generation. Fig. 13 shows that
34/111/278 scenes belong to duplication/modification/generation. Among each category, 30/67/143
scenes have no out-of-bound furniture. Therefore, LayoutGPT is performing generation instead of
duplicating in-context exemplars in most cases.

C.2 Failure Cases

While LayoutGPT achieves comparable results as ATISS, LayoutGPT cannot avoid typical failure
cases as shown in Fig. 14, such as out-of-bound furniture and overlapped objects. Fig. 14 (right)
shows an incorrect placement of nightstands on the same side of the bed while they are commonly
placed on each side of the bed headboard. Future work could focus on more sophisticated in-context
learning or fine-tuning methods to improve the LLMs’ understanding of 3D concepts.

D LayoutGPT for 2D Keypoint Planning

In addition to its application in 2D and 3D layout planning, we investigate the feasibility of leveraging
LayoutGPT for 2D keypoint planning to facilitate text-conditioned image generation. In this approach,
we utilize LayoutGPT to predict keypoint distributions based on a given text prompt, and subsequently
employ GLIGEN [27] for keypoint-to-image generation. The keypoint format used aligns with the
specifications outlined in MSCOCO2017 [29], focusing on 17 keypoints that correspond to the human
skeleton. Similar to our methodology for selecting supporting examples in the context of 2D layout
planning (Section B), we retrieve the k-most similar examples from the training set of MSCOCO2017
and utilize these examples to provide keypoint distributions as input to GPT-3.5/4. Table 11 presents
an illustrative example of the input format employed for keypoint planning with GPT-3.5.

Fig. 15 presents several illustrative examples that compare the images generated by condition-
ing on keypoints planned by our LayoutGPT with those generated by end-to-end models such as
StableDiffusion-v2.1 [41] and Attend-and-Excite [4]. In this preliminary demonstration, we observe
that LayoutGPT exhibits promising potential in offering inherent control over specific movements or
actions through keypoint planning.

Nevertheless, it is worth noting that keypoints planning presents considerably greater challenges
compared to bounding box layout planning, attributable to several evident factors. Firstly, keypoints
planning necessitates the prediction of the positions of 17 nodes, which is significantly more complex
than the 2D layout planning involving four aspects or the 3D layout planning encompassing seven
aspects. Secondly, the distribution of keypoints encompasses a much larger array of spatial relations
due to the numerous possible body movements. In contrast, previous 2D layout planning tasks only
involve four types of spatial relations. These inherent complexities render keypoint planning heavily
reliant on in-context demonstrations. However, the limited availability of annotations pertaining to
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Table 11: The prompting input provided to GPT-3.5 for LayoutGPT keypoint planning.
Instruction:
Given a sentence prompt that will be used to generate an image, plan skeleton keypoints layout of the mentioned
objects. The skeleton keypoints include the following 17 nodes: nose, left_eye, right_eye, left_ear, right_ear,
left_shoulder, right_shoulder, left_elbow, right_elbow, left_wrist, right_wrist, left_hip, right_hip, left_knee,
right_knee, left_ankle, right_ankle. The generated keypoints layout should follow the CSS style, where each line
starts with the keypoint node name and is followed by its absolute position.
Formally, each line should be like "node_name {left: ?px; top: ?px; }". Please follow this format strictly. Do not
display in other variation of formats. Notice that some keypoint nodes may not be visible on the canvas. In such
cases, simply put "node_name {left: 0px; top: 0px; }" for the invisible nodes. The image is 64px wide and 64px
high. Therefore, all properties of the positions should not exceed 64px.

Prompt: a man on a surfboard in a river near a couple of trees and branches
Keypoints:
person#1:
nose {left: 36px; top: 33px; }
left_eye {left: 36px; top: 33px; }
right_eye {left: 36px; top: 33px; }
left_ear {left: 37px; top: 33px; }
right_ear {left: 0px; top: 0px; }
left_shoulder {left: 38px; top: 34px; }
right_shoulder {left: 36px; top: 35px; }
left_elbow {left: 35px; top: 34px; }
right_elbow {left: 35px; top: 38px; }
left_wrist {left: 33px; top: 32px; }
right_wrist {left: 33px; top: 39px; }
left_hip {left: 39px; top: 39px; }
right_hip {left: 37px; top: 40px; }
left_knee {left: 38px; top: 44px; }
right_knee {left: 37px; top: 44px; }
left_ankle {left: 39px; top: 49px; }
right_ankle {left: 37px; top: 48px; }

[MORE SUPPORTING EXAMPLES]

Prompt: a man leaning on a surfboard in the water riding a wave
Keypoints:

body movements in the MSCOCO dataset further exacerbates the challenges associated with reliable
keypoint planning. Therefore, we leave the exploration of this potential direction to future research
endeavors.

E Ethical Statement

In addition to the layouts predicted by GPT-3.5/4, we also incorporate human-planned layouts as a
natural baseline for comparative analysis. To facilitate this, we provide annotators with an interface
featuring a blank square space where they can draw bounding boxes. Alongside the input text prompt,
we also present the noun words or phrases from the prompt to human annotators, instructing them
to draw a bounding box for each corresponding element. We intentionally refrain from imposing
additional constraints, enabling annotators to freely exercise their imagination and create layouts
based on their understanding of reasonable object arrangements. To compensate annotators for their
efforts, we offer a payment rate of $0.2 US dollars per Human Intelligence Task (HIT). The average
completion time of approximately 30 seconds per HIT, which corresponds to an average hourly
payment rate of $24.

F Limitations

The current work has several limitations that provide opportunities for future research. Firstly,
while this work focuses on 2D and 3D bounding box layouts and makes a preliminary attempt at
keypoints, there exist various other methods for providing additional spatial knowledge in image/scene
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StableDiffusion v2.1 Attend-and-Excite

A close up of a monkey driving a motorcycle on a road
LayoutGPT + GLIGENStableDiffusion v2.1 Attend-and-Excite

A chimpanzee holds a toothbrush in their hand
LayoutGPT + GLIGEN

A person is standing in some water flying a kite

LayoutGPT + GLIGENStableDiffusion v2.1 Attend-and-Excite

A woman in glasses holding a laptop on a couch
LayoutGPT + GLIGENStableDiffusion v2.1 Attend-and-Excite

Figure 15: Plausible examples of LayoutGPT(GPT-4) planning keypoints distributions before con-
ducting text-conditioned image generation.

generation, such as segmentation masks and depth maps. Future work could explore integrating
LLMs with these alternative visual control mechanisms to broaden the scope of visual planning
capabilities. Secondly, the current work primarily addresses visual generation tasks and lacks a unified
framework for handling other visual tasks like classification or understanding. Extending the proposed
framework to encompass a wider range of visual tasks would provide a more comprehensive and
versatile solution. Thirdly, this work is a downstream application that attempts to distill knowledge
from LLMs’ extensive knowledge bases. Future research could explore more fundamental approaches
that directly enhance the visual planning abilities of various visual generation models. By developing
specialized models that are explicitly designed for visual planning, it may be possible to achieve
more refined and dedicated visual generation outcomes. Overall, while the current work demonstrates
the potential of using LLMs for visual planning, there are avenues for future research to address the
aforementioned limitations and further advance the field of visual generation and planning.

G Broader Impact

The utilization of LLMs for conducting visual planning in compositional 2D or 3D generation has
significant broader impacts. Firstly, LLMs alleviate the burden on human designers by simplifying the
complex design process. This not only enhances productivity but also facilitates scalability, as LLMs
can efficiently handle large-scale planning tasks. Secondly, LLMs exhibit remarkable capabilities in
achieving fine-grained visual control. By conditioning on textual inputs, LLMs can easily generate
precise and detailed instructions for the desired visual layout, allowing for precise composition and
arrangement of elements. Moreover, LLMs bring a wealth of commonsense knowledge into the
planning process. With access to vast amounts of information, LLMs can incorporate this knowledge
to ensure more accurate and contextually coherent visual planning. This integration of commonsense
knowledge enhances the fidelity of attribute annotations and contributes to more reliable and realistic
visual generation outcomes.

It is worth noting that this work represents an initial foray into the realm of visual planning using
LLMs, indicating the potential for further advancements and applications in this area. As research
in this field progresses, we can anticipate the development of more sophisticated and specialized
visual planning techniques, expanding the scope of LLMs’ contribution to diverse domains, such as
architecture, virtual reality, and computer-aided design.

H Additional Qualitative Examples

We present additional visual showcases to demonstrate the capabilities of LayoutGPT in different
contexts. Fig. 16 showcases examples related to 2D numerical reasoning, Fig. 17 illustrates examples
of 2D spatial reasoning, and Fig. 18 displays examples of 3D scene synthesis. These showcases offer
further insights into the effectiveness and versatility of our approach across various domains.
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Figure 16: Qualitative examples of variants of LayoutGPT on numerical reasoning prompts.
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Figure 17: Qualitative examples of variants of LayoutGPT on spatial reasoning prompts.
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Figure 18: Additional qualitative examples of variants of LayoutGPT in bedroom scene synthesis.
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