
A Memory Efficient Randomized Subspace Optimization Method for Training
Large Language Models

Yiming Chen * 1 Yuan Zhang * 2 Yin Liu 1 Kun Yuan 3 Zaiwen Wen 1

Abstract

The memory challenges associated with training
Large Language Models (LLMs) have become
a critical concern, particularly when using the
Adam optimizer. To address this issue, numer-
ous memory-efficient techniques have been pro-
posed, with GaLore standing out as a notable ex-
ample designed to reduce the memory footprint of
optimizer states. However, these approaches do
not alleviate the memory burden imposed by acti-
vations, rendering them unsuitable for scenarios
involving long context sequences or large mini-
batches. Moreover, their convergence properties
are still not well-understood in the literature. In
this work, we introduce a Randomized Subspace
Optimization framework for pre-training and fine-
tuning LLMs. Our approach decomposes the
high-dimensional training problem into a series
of lower-dimensional subproblems. At each it-
eration, a random subspace is selected, and the
parameters within that subspace are optimized.
This structured reduction in dimensionality allows
our method to simultaneously reduce memory
usage for both activations and optimizer states.
We establish comprehensive convergence guar-
antees and derive rates for various scenarios, ac-
commodating different optimization strategies to
solve the subproblems. Extensive experiments
validate the superior memory and communication
efficiency of our method, achieving performance
comparable to GaLore and Adam.

*Equal contribution 1Beijing International Center for Mathemat-
ical Research, Peking University, Beijing, China 2Center for Data
Science, Peking University, Beijing, China 3Center for Machine
Learning Research, Peking University, Beijing, China. Correspon-
dence to: Kun Yuan <kunyuan@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Large Language Models (LLMs) have achieved remarkable
success across various domains (Achiam et al., 2023; Brown,
2020; Dubey et al., 2024), primarily driven by the increasing
scale of datasets and model parameters. The Adam opti-
mizer (Kingma, 2014; Loshchilov & Hutter, 2019) is widely
recognized as the default choice for training these models,
owing to its operation efficiency and robust performance.

However, as the scale of LLMs continues to grow, the associ-
ated memory demands have emerged as a significant bottle-
neck. This challenge stems from the need to store optimizer
states, such as first-order and second-order moments, along-
side the activations required for gradient computations. For
instance, training a LLaMA-7B model necessitates 28GB of
memory to store optimizer states in FP16 precision (Zhao
et al., 2024a), while a GPT-3 model with 175B parameters
requires an extraordinary 1.4TB memory in FP32 precision.
Additionally, in scenarios involving long sequence lengths
or large mini-batches, activation memory dominates as the
primary constraint (Zhang et al., 2024b). These substan-
tial memory requirements necessitate either deploying addi-
tional GPUs or reducing batch sizes. However, increasing
the number of GPUs introduces additional communication
overhead, potentially limiting training scalability (Malladi
et al., 2023), while smaller batch sizes prolong training time
due to reduced throughput.

Memory-efficient training algorithms. Significant efforts
have been made to address the memory overhead in LLMs
training. One line of research focuses on parameter-efficient
methods, such as Low-Rank Adaptation (LoRA) and its vari-
ants (Hu et al., 2022; Lialin et al., 2023; Xia et al., 2024),
which constrain trainable parameters to low-rank subspaces
for each weight matrix. Similarly, sparsity-based techniques
(Thangarasa et al., 2023) reduce memory usage by training
only a subset of weights. These strategies decrease the num-
ber of trainable parameters, thereby reducing the memory
requirements for storing gradients and optimizer states. An-
other research direction aims to achieve memory savings
through the compression of optimizer states. For instance,
GaLore and its variants (Chen et al., 2024b; Hao et al., 2024;
He et al., 2024; Zhao et al., 2024a) project gradients onto
low-rank subspaces, leveraging the compressed gradients

1

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

to compute the first- and second-order moments, which sig-
nificantly reduces their memory footprint. Alternatively,
Adam-mini (Zhang et al., 2024a) uses block-wise second-
order moments for learning rate adjustments to reduce mem-
ory redundancy. A recent study, Apollo (Zhu et al., 2024),
reinterprets Adam as an adaptive learning rate algorithm
applied to the gradient. Instead of the coordinate-wise ap-
proach used in Adam, it employs a column-wise adaptive
learning rate, thereby effectively reducing the memory over-
head associated with optimizer states.

Limitations in existing approaches. Despite the progress
in memory-efficient algorithms for training LLMs, two crit-
ical limitations persist in the aforementioned approaches:

L1. Inability to reduce activations. While the aforemen-
tioned approaches effectively reduce memory associ-
ated with optimizer states, they fail to address the mem-
ory burden posed by activations. This limitation stems
from their reliance on computing full-rank gradients,
which necessitates storing the complete activations. As
a result, these methods are unsuitable for scenarios in-
volving long context sequences or large mini-batches.

L2. Insufficient convergence guarantees. While the afore-
mentioned approaches demonstrate strong empirical
performance, their theoretical convergence properties
remain less understood. For instance, GaLore (Zhao
et al., 2024a) provides convergence analysis only for
fixed projection matrices, rather than for the period-
ically updated projection matrices used in practical
implementations. This lack of comprehensive theoret-
ical guarantees raises concerns about whether these
methods reliably converge to the desired solution and
the rates at which such convergence occurs.

Main results and contributions. In this work, we pro-
pose a method that concurrently reduces memory consump-
tion for both the optimizer states and activations. The cen-
tral idea behind our approach is to decompose the original
high-dimensional training problem into a series of lower-
dimensional subproblems. Specifically, at each iteration,
we randomly select a subspace and optimize the parameters
within this subspace. After completing the optimization in
one subspace, we switch to a different subspace and con-
tinue the process. Since each subproblem operates in a
lower-dimensional space, it requires smaller gradients and
optimizer states. As we will demonstrate, the reduced di-
mensionality of the subproblems also leads to a significant
reduction in the memory required for storing activations.
Furthermore, the smaller scale of the subproblems results
in reduced communication overhead when training across
multiple workers. Our main contributions are as follows:

C1. Subspace method for LLM training. We introduce

a Randomized Subspace Optimization (RSO) frame-
work for LLM training, which decomposes the original
training problem into a series of lower-dimensional
subproblems. This decomposition simultaneously re-
duces the memory required for optimizer states and
activations, effectively addressing Limitation L1. Fur-
thermore, the framework can reduce communication
overhead in distributed training scenarios.

C2. Theoretical convergence guarantees. We provide
a comprehensive convergence analysis for the RSO
framework. The established guarantees and rates apply
across various scenarios. These include subproblems
solved using zeroth-order, first-order, or second-order
algorithms, as well as optimization methods like gra-
dient descent, momentum gradient descent, adaptive
gradient descent, and their stochastic variants. This
addresses Limitation L2. Notably, we present refined
convergence guarantees for scenarios where subprob-
lems are solved using the Adam optimizer.

C3. Improved experimental performances. We conduct
extensive experiments to evaluate the proposed RSO
framework. The experimental results demonstrate that
our approach significantly enhances memory efficiency
compared to state-of-the-art methods, such as GaLore
and LoRA. Additionally, our method achieves faster
training speeds by reducing communication overhead,
outperforming both GaLore and Adam while maintain-
ing comparable performance levels. These findings
highlight the practical values of our approach.

2. Related Works
Parameter-efficient methods. A promising approach to
memory-efficient training involves parameter-efficient meth-
ods, which reduce the number of trainable parameters and
consequently lower the memory required for storing op-
timizer states. For example, (Hu et al., 2022) propose
Low-Rank Adaptation (LoRA), which restricts trainable
parameters to a low-rank subspace for each weight matrix.
Similarly, (Thangarasa et al., 2023) incorporate sparsity
by training only a subset of weights. While these meth-
ods effectively reduce memory consumption, the reduction
in trainable parameters can sometimes lead to suboptimal
model performance (Biderman et al., 2024). To address
this limitation, recent advancements suggest using multiple
LoRA updates to enable high-rank weight updates (Lialin
et al., 2023; Xia et al., 2024). However, in pre-training set-
tings, this approach still relies on a full-rank weight training
phase as a warm-up before transitioning to low-rank training
(Lialin et al., 2023), thereby limiting its memory efficiency.

Optimizer-efficient methods. An alternative approach to
memory savings focuses on compressing optimizer states

2

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

while maintaining the number of trainable parameters. Ga-
Lore (Zhao et al., 2024a) achieves this by compressing the
gradient matrix through a projection onto a subspace and
leveraging the compressed gradient to compute first- and
second-order moments. This projection reduces the gradient
size and is typically derived via the Singular Value Decom-
position (SVD) of the true gradient (Zhao et al., 2024a). To
mitigate the computational cost of SVD, alternative methods
have been proposed, such as using random matrices (Hao
et al., 2024; He et al., 2024) or generating the projection
matrix through online Principal Component Analysis (PCA)
(Liang et al., 2024). Fira (Chen et al., 2024a) and LDAdam
(Robert et al., 2024) employ an error-feedback mechanism.
The former combines the true gradient with the GaLore
update to improve performance, while the latter explicitly
accounts for both gradient and optimizer state compression.
Apollo (Zhu et al., 2024) interprets Adam as an adaptive
learning rate algorithm and uses compressed optimizer states
directly as scaling factors for the true gradient. Additionally,
Adafactor (Shazeer & Stern, 2018) discards the first-order
moment and approximates the second-order moment with
two low-rank matrices, while Adam-mini (Zhang et al.,
2024a) proposes that block-wise second-order moments are
sufficient for adjusting learning rates. (Das, 2024) integrates
the GaLore method with a natural gradient optimizer to
enhance performance. BAdam (Luo et al., 2024) and Block-
LLM (Ramesh et al., 2024) incorporate block coordinate
descent strategies into LLM training, restricting the number
of parameters optimized in each epoch to reduce the mem-
ory overhead associated with optimizer states. Meanwhile,
(Wen et al., 2025) applies wavelet transforms to compress
gradients beyond the low-rank structures.

Activation-efficient methods. Although the aforemen-
tioned methods effectively reduce memory consumption for
optimizer states, they do not address the memory costs asso-
ciated with activations. To reduce activations, zeroth-order
(ZO) algorithms have been introduced in LLM training (Mal-
ladi et al., 2023). These methods can be further improved
through variance reduction techniques (Gautam et al., 2024),
while (Zhao et al., 2024b) utilizes ZO approaches to approx-
imate a natural gradient algorithm. Moreover, (Chen et al.,
2024b) proposes a novel ZO framework to enhance perfor-
mance. Unlike first-order (FO) methods, ZO algorithms ap-
proximate gradients by finite differences in function values,
eliminating the need for explicit gradient computation. This
approach bypasses backpropagation and activation storage,
significantly reducing memory demands. However, due to
their slower convergence rates (Berahas et al., 2022; Duchi
et al., 2015; Nesterov & Spokoiny, 2017), ZO methods are
primarily suitable for fine-tuning applications. Similarly,
FO methods can achieve activation savings by layer-wise
training (Lai et al., 2024), but their use also predominantly
targets fine-tuning phases.

System-based methods. Several system-level techniques
have been proposed to improve memory efficiency. Acti-
vation checkpointing (Chen et al., 2016) reduces memory
usage by recomputing activations on demand rather than
storing them throughout the entire iteration, though this
comes at the cost of increased computational complexity.
Quantization (Dettmers et al., 2023) lowers memory con-
sumption by using lower-bit data representations, but this
may introduce a trade-off between memory efficiency and
training precision. Additionally, methods such as those intro-
duced by (Ren et al., 2021; Zhang et al., 2023a) reduce GPU
memory usage by offloading data to non-GPU resources,
which can lead to additional communication overhead.

3. Preliminaries
This section introduces the optimization framework for
LLM pre-training and fine-tuning, followed by a review
of several memory-efficient methods.

3.1. LLM Optimization

When addressing the pre-training or fine-tuning of LLMs,
the problem can be formulated as follows:

min
W

f(W) := Eξ [F (W ; ξ)] , (1)

where W = {Wℓ}Lℓ=1 represents the set of trainable pa-
rameters with a total dimension of d. Here, Wℓ ∈ Rmℓ×nℓ

denotes the weight matrix for the ℓ-th layer, and L is the
total number of layers. The function F (W ; ξ) is the loss
function, which depends on the random variable ξ represent-
ing individual data samples.

To address the optimization problem defined in (1), com-
monly used approaches include SGD (Bottou, 2010), Mo-
mentum SGD (Sutskever et al., 2013), and Adam (Kingma,
2014). The iterative update rule for Adam is as follows:

Mt = β1 ·Mt−1 + (1− β1) · ∇F (W t; ξt), (2a)

Vt = β2 ·Vt−1 + (1− β2) · (∇F (W t; ξt))2, (2b)

M̂t = Mt/(1− βt
1), V̂t = Vt/(1− βt

2), (2c)

W t+1 = W t − α · M̂t/(
√

V̂t + ϵ). (2d)

Here, M and V represent the first-order and second-order
moments, respectively, and ϵ > 0 is a small constant.

3.2. Memory Consumption in LLM Training

The key memory components involved in the training pro-
cess include four primary elements: model parameters, opti-
mizer states, gradients, and activations. The model compo-
nent stores parameters required for training. In the case of
the Adam optimizer, the optimizer states are represented by
the first and second moment estimates, denoted as M and

3

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

OptStates

Activations

Gradient

Model

4

9

2

2

batchsize = 1

49

batchsize = 64

LLaMA-1B

Figure 1. Memory components involved in training the LLaMA-
1B model using the Adam optimizer under varying batch sizes.
The reported values indicate memory usage in GB.

V. The gradient corresponds to the memory cost associated
with ∇F (W ; ξ). With the Adam optimizer, both the opti-
mizer state and the gradient are determined by the number
of trainable parameters, see recursions (2a)–(2b).

Another significant memory cost arises from the activations,
which represent the intermediate values computed during
forward propagation. Unlike the optimizer state and gradi-
ents, the memory for activations depends on multiple factors,
including model size, batch size, and sequence length.

Figure 1 illustrates the memory consumption during the
training of the LLaMA-1B model. For small batch sizes,
the optimizer state constitutes a substantial portion of the
memory usage. In contrast, for large batch sizes, activations
dominate and account for nearly the entire memory cost.

3.3. Memory-efficient Method

As previously discussed, the optimizer state imposes a sub-
stantial memory overhead. To address this challenge, Ga-
Lore (Zhang et al., 2023b) introduces a projection technique
that generates a compressed representation of the optimizer
state, eliminating the need to store its full version. Conse-
quently, the update rule of GaLore is as follows:

M̃t = β1 · M̃t−1+(1−β1)·P⊤∇F (W t; ξt), (3a)

Ṽt = β2 · Ṽt−1+(1−β2)·(P⊤∇F (W t; ξt))2, (3b)

M̂t = M̃t/(1− βt
1), V̂t = Ṽt/(1− βt

2), (3c)

W t+1 = W t − α · P M̂t/(
√

V̂t + ϵ). (3d)

Here, P represents the projection matrix, which maps the
gradient matrix onto a lower-dimensional subspace. Specifi-
cally, GaLore selects P as the top left singular vectors of the
gradient matrix, capturing its most important components.

Since the projected gradient P⊤∇F (W t; ξt) lies within a
low-dimensional subspace, the associated optimizer states
M̃ and Ṽ in GaLore are also substantially reduced in size.

This leads to notable memory savings compared to the
Adam optimizer. However, as shown in Figure 1, the op-
timizer state contributes significantly to memory costs pri-
marily when using a small batch size. Conversely, with
larger batch sizes—more practical in many scenarios—the
memory efficiency advantages of GaLore diminish, as acti-
vation memory becomes the dominant component of overall
memory consumption.

4. Randomized Subspace Optimization
In this section, we present the randomized subspace op-
timization (RSO) method, tailored explicitly for the pre-
training and fine-tuning of LLMs.

4.1. Algorithm Framework

As previously discussed, the memory overhead in LLM
training primarily stems from the large scale of the models.
In other words, the primary source of memory consumption
arises from the high dimensionality of the LLM training
problem (1). This observation motivates us to decompose
the original problem into a series of lower-dimensional sub-
problems. By partitioning the problem into smaller com-
ponents, we can effectively reduce memory usage, as each
subproblem requires less memory to process.

Similar to the random coordinate descent (Wright, 2015),
which optimizes the objective function one coordinate at a
time, we address problem (1) incrementally, subspace by
subspace. The proposed update rules are as follows:

B̃k ≈ argmin
B

{
f(W k + P kB) +

1

2ηk
∥B∥2

}
, (4a)

W k+1 = W k + P kB̃k, (4b)

Here, f(W k + P kB) = Eξ[F (W k + P kB; ξ)] in which
P k = {P k

ℓ }Lℓ=1 denotes the subspace projection matrices.
Each P k

ℓ ∈ Rmℓ×rℓ is a randomly selected matrix with
rℓ ≪ mℓ. The parameters B = {Bℓ}Lℓ=1 consist of vari-
ables with significantly smaller dimensions compared to W .
Specifically, in the ℓ-th layer, Bℓ has dimensions rℓ × nℓ,
whereas Wℓ has dimensions mℓ × nℓ. A proximal term
∥B∥2 :=

∑
ℓ ∥Bℓ∥2F is introduced to (4a) to ensure conver-

gence, with coefficient ηk to regulate its influence.

In the k-th iteration, a subspace projection matrix P k is ran-
domly selected, and the subproblem in (4a) is solved. This
process approximately minimizes the objective function
within the chosen subspace. Upon solving the subproblem,
the current parameters are updated, and a new subspace
projection matrix, P k+1, is selected for the subsequent it-
eration. When addressing the subproblem in (4a), standard
optimizers such as GD, SGD, momentum SGD or Adam can
be employed. Notably, obtaining an exact solution in (4a) is
not required; an inexact solution suffices for the proposed

4

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

approach. The RSO algorithm is presented in Algorithm 1.

Algorithm 1 Randomized Subspace Optimization
Input: Initialization W 0.
Output: Solution WK .

1: for k = 0, 1, . . . ,K − 1 do
2: Sample P k according to a given distribution.
3: Solve subproblem (4a) and obtain the approximate

solution B̃k using a given optimizer such as Adam.
4: Update the weights by W k+1 = W k + P kB̃k.
5: end for

4.2. Memory Efficiency

We now demonstrate that the proposed RSO approach offers
superior memory efficiency. Unlike other memory-efficient
methods (e.g., GaLore, Adam-mini, Apollo, etc.) that pri-
marily focus on reducing the memory usage of optimizer
states, the RSO method additionally achieves substantial
savings in gradient and activation memory requirements.

Memory for optimizer states. When solving (4a), the
reduced dimensionality of the subproblem significantly de-
creases the memory requirements for optimizer states. For
instance, the memory required for both the first-order and
second-order moment estimates in each subproblem is rℓnℓ

parameters per ℓ-th layer, which is substantially lower than
the mℓnℓ memory overhead in the standard Adam optimizer.

Memory for gradients. Specifically, for the subproblems
in (4a), it is sufficient to compute the gradient with respect
to B, i.e., ∇BF (W k + P kB; ξ), rather than calculating
the full-dimensional gradient ∇WF (W k; ξ) with respect
to the original weight matrix W , as outlined in the GaLore
recursion in (3a)–(3b). This results in considerable memory
savings associated with the gradient computation.

Memory for activations. The RSO method not only re-
duces memory usage for gradients but also significantly
minimizes the memory required to store activations. For
example, consider a neural network where the ℓ-th layer is
defined as follows:

(Adam) : Zℓ = Yℓ ·Wℓ, y = L(Zℓ). (5)
(RSO) : Zℓ = Yℓ · (Wℓ + PℓBℓ), y = L(Zℓ). (6)

Expression (5) represents the forward process of Adam,
where the ℓ-th layer is associated with the weight matrix
Wℓ, while (6) corresponds to the RSO method associated
with the weight matrix Bℓ. Here, Yℓ ∈ Rsℓ×mℓ denotes
the output of the previous layer (i.e., the activation), and
Zℓ serves as the input to the next layer. The function L(·),
encompassing all subsequent layers and the loss function,
depends only on Zℓ and not on Yℓ. Thus, once Zℓ is com-
puted, Yℓ is no longer required for calculating the loss y.

Algorithm Memory

Optimizer States Activations

RSO 24nr 8bsn+ 4bsr + 2bs2

GaLore 24nr 15bsn+ 2bs2

LoRA 48nr 15bsn+ 2bs2

Adam 24n2 15bsn+ 2bs2

Table 1. Memory analysis of different algorithms in terms of op-
timizer states and activations for one typical transformer block.
Here, s, b, and n represent the sequence length, batch size, and
embedding dimension, respectively. The intermediate dimension
of the feed-forward network is assumed to be 4n.

In the backward-propagation process, Adam and RSO com-
putes the weight gradient as follows:

(Adam) :
∂y

∂Wℓ
= Y ⊤

ℓ

∂y

∂Zℓ
, (7)

(RSO) :
∂y

∂Bℓ
= (YℓPℓ)

⊤ ∂y

∂Zℓ
. (8)

Adam requires storing the activation Yℓ ∈ Rsℓ×mℓ in (7)
to compute gradients with respect to Wℓ. In contrast, RSO
only needs to store YℓPℓ ∈ Rsℓ×rℓ to compute gradients
with respect to Bℓ. Since rℓ ≪ mℓ, this approach achieves
significant memory savings. As a result, the RSO method
substantially reduces the memory overhead associated with
activations in layers of the form (6).

We analyze the memory overhead of the proposed RSO
method for a typical transformer block. Table 1 summarizes
the results, comparing memory usage for optimizer states
and activations across various algorithms. Details of this
memory analysis is presented in Appendix A.

4.3. Communication Efficiency

As previously mentioned, the RSO algorithm solves smaller
subproblems at each iteration, resulting in gradients with
reduced dimensionality compared to methods like Adam
and GaLore, which rely on full-dimensional gradients. This
reduction in gradient size enables RSO to achieve improved
communication efficiency.

Specifically, in a data-parallel framework such as Dis-
tributed Data Parallel (DDP), the model is replicated across
multiple devices, with each device computing gradients
on its local data batch. These gradients are then aggre-
gated across devices, necessitating gradient communication.
By operating with lower-dimensional gradients, the RSO
method effectively reduces communication overhead com-
pared to existing approaches.

5

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Subproblem Solver Subproblem Complexity Total Complexity
Zero-Order (ZO) Methods

Stochastic ZO Method (Shamir, 2013) O
(
(
∑L

ℓ=1 nℓrℓ)
2ϵ−2

)
O((
∑L

ℓ=1 nℓrℓ)
2ϵ−3)

First-Order (FO) Methods

GD O(log ϵ−1) Õ(ϵ−1)

Accelerated GD (Nesterov et al., 2018) O(log ϵ−1) Õ(ϵ−1)

SGD (Bottou et al., 2018) O(ϵ−1) O(ϵ−2)

Momentum SGD (Yuan et al., 2016) O(ϵ−1) O(ϵ−2)

Adam-family (Guo et al., 2024) O(ϵ−1) O(ϵ−2)

Second-Order (SO) Methods

Newton’s method (Boyd & Vandenberghe, 2004) O(log(log ϵ−1)) Õ(ϵ−1)

Stochastic Quasi-Newton method (Byrd et al., 2016) O(ϵ−1) O(ϵ−2)

Table 2. The sample complexities of the RSO method with various subproblem solvers. For the ZO solver, it refers to the number of
stochastic function value evaluations; for the FO solver, it refers to the number of deterministic/stochastic gradient computations; and for
the SO solver, it refers to the number of deterministic/stochastic Hessian or estimated Hessian computations. Õ(·) hides logarithm terms.

5. Convergence Analysis
In this section, we present the convergence guarantees for
the RSO method. To account for the use of various opti-
mizers in solving the subproblem (4a), we assume that, at
each iteration k, the chosen optimizer produces an expected
ϵ-inexact solution. Such an expected ϵ-inexact solution is
defined below:

Definition 5.1 (Expected ϵ-inexact solution). A solution B̃k

is said to be an expected ϵ-inexact solution if it satisfies:

E[gk(B̃k)]− gk(Bk
⋆) ≤ ϵ, (9)

where gk(B) := f(W k + P kB) + 1
2ηk ∥B∥2, and Bk

⋆ is
the optimal solution define as Bk

⋆ := argminB gk(B).

When ηk is properly chosen, it can be guaranteed that gk(B)
is a strongly convex function hence Bk

⋆ is unique.

To establish convergence guarantees for the RSO algorithm,
we require the following assumptions:

Assumption 5.2. The objective function f(W) is L-smooth,
i.e., it holds for any W 1 and W 2 that

∥∇f(W 1)−∇f(W 2)∥ ≤ L∥W 1 −W 2∥,

where ∥W ∥ :=
√∑L

ℓ=1 ∥Wℓ∥2F for any W = {Wℓ}Lℓ=1.

Assumption 5.3. The random matrix P = {Pℓ}Lℓ=1 is
sampled from a distribution such that P⊤

ℓ Pℓ = (mℓ/rℓ)Irℓ
and E[PℓP

⊤
ℓ] = Imℓ

for each ℓ.

Remark 5.4. In practice, when mℓ ≫ rℓ, sampling each Pℓ

from a normal distribution N (0, 1
rℓ
) yields an approxima-

tion P⊤
ℓ Pℓ ≈ (mℓ/rℓ)Irℓ . This approach provides computa-

tional efficiency. However, to rigorously satisfy Assumption

5.3, Pℓ should be drawn from a Haar distribution or con-
structed as a random coordinate matrix (see (Kozak et al.,
2023), Examples 1 and 2 for further details).

The following theorem establish the convergence rate of the
RSO algorithm. Detailed proofs are provided in Appendix
B.

Theorem 5.5. Under Assumptions 5.2 and 5.3, let each
subproblem in (4b) be solved starting from the initial point
B0 = 0 to an expected ϵ-inexact solution B̃k with suitable
choice of ηk. The sequence {W k} generated by the RSO
method satisfies the following bound:

1

K

K−1∑
k=0

E∥∇f(W k)∥2 ≤ 18L̂∆0

K
+ 18L̂ϵ, (10)

where ∆0 := f(W 0)− f∗ and L̂ := maxℓ{mℓ/rℓ}L.

Sample complexity with different optimizers. When all
subproblems are solved to expected ϵ-inexact solutions, the
RSO method achieves an ϵ-stationary point within O(ϵ−1)
iterations. As each iteration requires solving the subprob-
lem (4a), the total sample complexity of the RSO method
depends on the solver employed for this subproblem. For
instance, since gradient descent solves (4a) in O(log ϵ−1)
inner iterations, the RSO method using gradient descent
attains a total sample complexity of O(ϵ−1 log ϵ−1). Table
2 summarizes the sample complexities for the RSO method
when equipped with various solvers, including zeroth-order,
first-order, and second-order scenarios with optimizers such
as gradient descent, momentum gradient descent, adaptive
gradient descent, and their stochastic variants.

Comparable complexity with vanilla Adam. It is observed

6

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Algorithm 60M 130M 350M 1B

Adam* 34.06 (0.22G) 25.08 (0.50G) 18.80 (1.37G) 15.56 (4.99G)

GaLore* 34.88 (0.14G) 25.36 (0.27G) 18.95 (0.49G) 15.64 (1.46G)
LoRA* 34.99 (0.16G) 33.92 (0.35G) 25.58 (0.69G) 19.21 (2.27G)
ReLoRA* 37.04 (0.16G) 29.37 (0.35G) 29.08 (0.69G) 18.33 (2.27G)
RSO 34.55(0.14G) 25.34 (0.27G) 18.86 (0.49G) 15.86 (1.46G)

r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens (B) 1.1 2.2 6.4 13.1

Table 3. Comparison of validation perplexity and estimated memory usage for optimizer states across different algorithms during the
pre-training of LLaMA models of various sizes on the C4 dataset. The optimizer states are stored in BF16 format. Results marked with *
are sourced from (Zhao et al., 2024a).

CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Adam 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28

GaLore (rank=4) 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
LoRA (rank=4) 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61
RSO (rank=4) 62.47 90.62 92.25 78.70 94.84 86.67 92.29 90.94 86.10

GaLore (rank=8) 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
LoRA (rank=8) 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93
RSO (rank=8) 64.62 90.71 93.56 79.42 95.18 86.96 92.44 91.26 86.77

Table 4. Evaluation of various fine-tuning methods on the GLUE benchmark using the pre-trained RoBERTa-Base model. The average
score across all tasks is provided.

in Table 2 that RSO with Adam to solve subproblem has
sample complexity O(ϵ−2), which is on the same order as
vanilla Adam (Kingma, 2014) without subspace projection.

6. Experiments
In this section, we present numerical experiments to evaluate
the effectiveness of our RSO method. We assess its perfor-
mance on both pre-training and fine-tuning tasks across
models of varying scales. Additionally, we compare the
memory usage and time cost of our RSO method with exist-
ing approaches to highlight its advantages in memory and
communication efficiency. In all tests, the RSO method
uses the Adam optimizer with a fixed number of steps to
solve each subproblem. The random projection matrices
P = {Pℓ}Lℓ=1 are independently sampled from a normal
distribution N (0, 1/rℓ) for each layer. We set all rℓ to the
same value, which we define as the “rank” of our method to
facilitate consistent comparison with other approaches that
explicitly specify a rank parameter.

6.1. Pre-training with RSO

Experimental setup. We evaluate the performance of our
RSO method on LLaMA models with sizes ranging from
60M to 7B parameters. The experiments are conducted

using the C4 dataset, a large-scale, cleaned version of Com-
mon Crawl’s web corpus, which is primarily intended for
pre-training language models and word representations (Raf-
fel et al., 2020). We compare our method against LoRA
(Hu et al., 2022), GaLore (Zhao et al., 2024a), ReLoRA
(Lialin et al., 2023), and Adam (Kingma, 2014) as base-
line methods. We adopt the same configurations as those
reported in (Zhao et al., 2024a), and the detailed settings for
pre-training are provided in Appendix D.1.

Main results. As shown in Table 3, under the same rank
constraints, RSO outperforms other memory-efficient meth-
ods in most cases. We also report the estimated memory
overhead associated with optimizer states. From Table 3, we
observe that for LLaMA-350M, RSO achieves nearly the
same performance as Adam while reducing the memory re-
quired for optimizer states by 64.2%. For LLaMA-1B, this
reduction increases to 70.7%. The results for LLaMA-7B
are provided in Appendix C.1.

6.2. Fine-tuning with RSO

Experimental setup. We extend the application of our
RSO algorithm to fine-tuning tasks. Specifically, we fine-
tune pre-trained RoBERTa models (Liu et al., 2019) on the
GLUE benchmark (Wang et al., 2019), which encompasses
a diverse range of tasks, including question answering, sen-

7

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

16 64 256
Rank

0

10

20

30

40

50

60

70

M
em

or
y

(G
B)

LLaMA-350M
Adam
RSO
GaLore

32 128 512
Rank

0

10

20

30

40

50

60

70

80

M
em

or
y

(G
B)

LLaMA-1B
Adam
RSO
GaLore

64 256 1024
Rank

0

20

40

60

80

100

M
em

or
y

(G
B)

LLaMA-7B
RSO
GaLore

Figure 2. Comparison of peak memory usage (in GB) per device for RSO and GaLore during LLaMA training with varying ranks.
All hyperparameters, except rank, are consistent with (Zhao et al., 2024a). Adam’s memory usage is reported for LLaMA-350M and
LLaMA-1B but excluded for LLaMA-7B due to an out-of-memory (OOM) error.

Method LLaMA-1B (Seconds) LLaMA-7B (Seconds)

Seq 64 Seq 128 Seq 256 Seq 64 Seq 128 Seq 256

RSO 0.94 1.70 3.29 2.40 2.94 4.60
GaLore 1.12 1.84 3.35 7.86 8.26 9.12
Adam 1.11 1.81 3.32 7.84 8.23 OOM

Table 5. Comparison of iteration time (in seconds) for different methods in LLaMA training across various sequence lengths. All
hyperparameters, except sequence length, follow (Zhao et al., 2024a). LLaMA-1B runs on 4× A800 GPUs, while LLaMA-7B uses 8×
A800 GPUs. SVD decomposition time in GaLore is excluded. Additionally, for LLaMA-7B with a sequence length of 256, the Adam
optimizer encounters an out-of-memory (OOM) error.

timent analysis, and semantic textual similarity. Detailed
settings can be found in Appendix D.2.

Main results. As shown in Table 4, our RSO method sur-
passes other memory-efficient approaches and delivers per-
formance comparable to Adam across most datasets in the
GLUE benchmark. Notably, RSO significantly outperforms
Adam on the CoLA and MRPC datasets when the rank is
set to 8. Additional fine-tuning experiments on LLaMA and
OPT models are provided in Appendix C.2.

6.3. Memory and Communication Efficiency

To evaluate the memory and communication efficiency of
our proposed method, we measure the peak memory usage
and iteration time during the pre-training of LLaMA models
of various sizes.

RSO method requires less memory overhead. Figure
2 illustrates the actual memory usage during the training
of LLaMA models. As shown, the RSO method incurs
significantly lower memory overhead compared to GaLore
and Adam. This reduction is attributed to RSO’s ability
to save memory for activations and use low-dimensional
gradients. For instance, in the case of LLaMA-7B with a
rank of 64, the RSO method achieves over a 40% reduction
in memory overhead compared to GaLore.

Additionally, in Figure 2, the memory gap between RSO and

GaLore widens as the rank decreases. This is because, as
indicated in Table 1, the RSO method further reduces mem-
ory consumption for activations with lower ranks, whereas
GaLore does not benefit in this regard. For LLaMA-350M
and LLaMA-1B, GaLore’s memory usage is observed to be
comparable to that of Adam, as activation memory domi-
nates in these cases. However, RSO still achieves superior
memory efficiency due to its reduced activation cost.

RSO method requires less time per iteration. Table 5
presents a comparison of the time required for one itera-
tion across different methods when training LLaMA models.
As shown, the RSO method requires significantly less time
compared to GaLore or Adam due to its improved commu-
nication efficiency, achieved by reducing the dimensionality
of gradients. For example, when training LLaMA-7B with
a sequence length of 64, the time required by RSO is only
one-third that of GaLore or Adam. Notably, while GaLore
involves SVD decomposition (which is excluded from this
measurement), RSO demonstrates even greater efficiency in
training time.

As shown in Table 5, the difference in iteration time between
RSO and other approaches becomes more pronounced as
model size increases or sequence length decreases. This
phenomenon can be attributed to the communication over-
head, which primarily stems from the synchronization of
gradients across devices. Such overhead is more closely tied
to model size while being less affected by sequence length.

8

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

In contrast, the computational overhead is highly sensitive
to sequence length. Therefore, RSO exhibits a more sub-
stantial advantage when the sequence length is considerably
smaller than the model size, as communication overhead
constitutes a larger fraction of the total iteration time under
these conditions.

7. Conclusion
We propose a Randomized Subspace Optimization (RSO)
method, aiming for Large Language Model (LLM) pre-
training and fine-tuning. By decomposing the origanal train-
ing problem into small subproblems, our method achieves
both memory and communication efficiency, while reach
same level performance compared with GaLore and Adam.

We outline two directions for future work on the RSO
method. First, further reduction of memory overhead for
activations could be explored. While part of the activation
memory has already been reduced, the remaining portion
might be further optimized through alternative strategies
for partitioning the original problem. Second, it is worth
investigating the performance of various methods for solv-
ing the subproblems. Given the low-dimensional nature of
the subproblems, exploring the application of second-order
methods could be particularly promising.

Impact Statement
This study focuses on improving the memory efficiency of
large language model (LLM) training. By enabling LLM
training on devices with lower memory capacity, our ap-
proach helps reduce resource consumption and carbon emis-
sions associated with LLM training. Furthermore, this en-
hancement may make LLM training more accessible to
smaller institutions and research teams operating under con-
strained budgets.

Acknowledgments
The computational resources were supported by the Center
for Intelligent Computing and Song-Shan Lake HPC Center
(SSL-HPC) in Great Bay University, Dongguan, China. This
work was supported in part by National Key Research and
Development Program of China under the grant numbers
2024YFA1012902 and 2024YFA1012903, and the National
Natural Science Foundation of China under the grant num-
bers 12331010, 12288101, 12401408 and W2441021. Kun
Yuan is also supported by AI for Science Institute, Beijing,
China, and National Engineering Labratory for Big Data
Analytics and Applications. We also thank the anonymous
reviewers for their valuable feedback.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg,
K. A theoretical and empirical comparison of gradient
approximations in derivative-free optimization. Foun-
dations of Computational Mathematics, 22(2):507–560,
2022.

Biderman, D., Portes, J., Ortiz, J. J. G., Paul, M., Greengard,
P., Jennings, C., King, D., Havens, S., Chiley, V., Frankle,
J., et al. Lora learns less and forgets less. arXiv preprint
arXiv:2405.09673, 2024.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010:
19th International Conference on Computational Statis-
tics, Paris France, August 22-27, 2010 Keynote, Invited
and Contributed Papers, pp. 177–186. Springer, 2010.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM review,
60(2):223–311, 2018.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. A
stochastic quasi-newton method for large-scale optimiza-
tion. SIAM Journal on Optimization, 26(2):1008–1031,
2016.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, X., Feng, K., Li, C., Lai, X., Yue, X., Yuan, Y.,
and Wang, G. Fira: Can we achieve full-rank train-
ing of llms under low-rank constraint? arXiv preprint
arXiv:2410.01623, 2024a.

Chen, Y., Zhang, Y., Cao, L., Yuan, K., and Wen, Z. Enhanc-
ing zeroth-order fine-tuning for language models with
low-rank structures. arXiv preprint arXiv:2410.07698,
2024b.

Das, A. Natural galore: Accelerating galore for memory-
efficient llm training and fine-tuning. arXiv preprint
arXiv:2410.16029, 2024.

9

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized LLMs. Ad-
vances in neural information processing systems, 36:
10088–10115, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono,
A. Optimal rates for zero-order convex optimization: The
power of two function evaluations. IEEE Transactions
on Information Theory, 61(5):2788–2806, 2015.

Gautam, T., Park, Y., Zhou, H., Raman, P., and Ha, W.
Variance-reduced zeroth-order methods for fine-tuning
language models. In International Conference on Ma-
chine Learning, pp. 15180–15208. PMLR, 2024.

Guo, Z., Xu, Y., Yin, W., Jin, R., and Yang, T. Unified
convergence analysis for adaptive optimization with mov-
ing average estimator. arXiv preprint arXiv:2104.14840,
2024.

Hao, Y., Cao, Y., and Mou, L. Flora: Low-rank adapters
are secretly gradient compressors. In International Con-
ference on Machine Learning, pp. 17554–17571. PMLR,
2024.

He, Y., Li, P., Hu, Y., Chen, C., and Yuan, K. Subspace
optimization for large language models with convergence
guarantees. arXiv preprint arXiv:2410.11289, 2024.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2022.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kozak, D., Molinari, C., Rosasco, L., Tenorio, L., and Villa,
S. Zeroth-order optimization with orthogonal random
directions. Mathematical Programming, 199(1):1179–
1219, 2023.

Lai, X., Tian, Z., Chen, Y., Li, Y., Yuan, Y., Liu, S., and
Jia, J. Lisa: Reasoning segmentation via large language
model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9579–
9589, 2024.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. Relora: High-rank training through low-rank updates.
In The Twelfth International Conference on Learning
Representations, 2023.

Liang, K., Liu, B., Chen, L., and Liu, Q. Memory-efficient
LLM training with online subspace descent. arXiv
preprint arXiv:2408.12857, 2024.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

Luo, Q., Yu, H., and Li, X. Badam: A memory efficient full
parameter optimization method for large language models.
Advances in Neural Information Processing Systems, 37:
24926–24958, 2024.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D.,
Chen, D., and Arora, S. Fine-tuning language models
with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17(2):527–566, 2017.

Nesterov, Y. et al. Lectures on convex optimization, volume
137. Springer, 2018.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Ramesh, A. V., Ganapathiraman, V., Laradji, I. H., and
Schmidt, M. Blockllm: Memory-efficient adaptation
of llms by selecting and optimizing the right coordinate
blocks. arXiv preprint arXiv:2406.17296, 2024.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload:
Democratizing billion-scale model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551–564, 2021.

Robert, T., Safaryan, M., Modoranu, I.-V., and Alistarh, D.
LDadam: Adaptive optimization from low-dimensional
gradient statistics. arXiv preprint arXiv:2410.16103,
2024.

Shamir, O. On the complexity of bandit and derivative-
free stochastic convex optimization. In Conference on
learning theory, pp. 3–24. PMLR, 2013.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-
ference on Machine Learning, pp. 4596–4604. PMLR,
2018.

10

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Thangarasa, V., Gupta, A., Marshall, W., Li, T., Leong, K.,
DeCoste, D., Lie, S., and Saxena, S. SPDF: Sparse pre-
training and dense fine-tuning for large language models.
In Uncertainty in Artificial Intelligence, pp. 2134–2146.
PMLR, 2023.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
International Conference on Learning Representations,
2019.

Wen, Z., Luo, P., Wang, J., Deng, X., Zou, J., Yuan, K.,
Sun, T., and Li, D. Breaking memory limits: Gradi-
ent wavelet transform enhances LLMs training. arXiv
preprint arXiv:2501.07237, 2025.

Wright, S. J. Coordinate descent algorithms. Mathematical
Programming, 151(1):3–34, 2015.

Xia, W., Qin, C., and Hazan, E. Chain of lora: Efficient fine-
tuning of language models via residual learning. arXiv
preprint arXiv:2401.04151, 2024.

Yuan, K., Ying, B., and Sayed, A. H. On the influence of
momentum acceleration on online learning. Journal of
Machine Learning Research, 17(192):1–66, 2016.

Zhang, H., Zhou, Y., Xue, Y., Liu, Y., and Huang, J. G10:
Enabling an efficient unified gpu memory and storage
architecture with smart tensor migrations. In Proceedings
of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 395–410, 2023a.

Zhang, Y., Chen, C., Li, Z., Ding, T., Wu, C., Ye, Y., Luo,
Z.-Q., and Sun, R. Adam-mini: Use fewer learning rates
to gain more. arXiv preprint arXiv:2406.16793, 2024a.

Zhang, Y., Li, P., Hong, J., Li, J., Zhang, Y., Zheng, W.,
Chen, P.-Y., Lee, J. D., Yin, W., Hong, M., et al. Revis-
iting zeroth-order optimization for memory-efficient llm
fine-tuning: A benchmark. In International Conference
on Machine Learning, pp. 59173–59190. PMLR, 2024b.

Zhang, Z., Liu, B., and Shao, J. Fine-tuning happens in tiny
subspaces: Exploring intrinsic task-specific subspaces of
pre-trained language models. In The 61st Annual Meeting
of the Association For Computational Linguistics, 2023b.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient LLM training by
gradient low-rank projection. In International Conference
on Machine Learning, pp. 61121–61143. PMLR, 2024a.

Zhao, Y., Dang, S., Ye, H., Dai, G., Qian, Y., and Tsang,
I. W. Second-order fine-tuning without pain for LLMs: A
Hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

Zhu, H., Zhang, Z., Cong, W., Liu, X., Park, S., Chandra, V.,
Long, B., Pan, D. Z., Wang, Z., and Lee, J. Apollo: SGD-
like memory, adamw-level performance. arXiv preprint
arXiv:2412.05270, 2024.

11

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

A. Memory Complexity Analysis
In this section, we analyze the memory overhead of our proposed RSO algorithm for one typical transformer block.

A.1. Transformer Structure

Transformers (Vaswani, 2017) have become a foundational component of LLMs. Here, we focus on the forward and
backward propagation processes within a single transformer block using our RSO algorithm.

Forward Propagation. Consider the input X ∈ Rs×n to a transformer block, where s is the sequence length and n is the
embedding dimension. The attention mechanism within the transformer block performs the following linear operations:

Q = X(Wq + PqBq), K = X(Wk + PkBk), V = X(Wv + PvBv), (11)

where Wq,Wk,Wv ∈ Rn×n are the original weight matrices, Pq, Pk, Pv ∈ Rn×r are the projection matrices, and
Bq, Bk, Bv ∈ Rr×n are the low-rank weight matrices used in the RSO method for each subproblem. These intermediate
values are then combined as follows:

Ãs = QK⊤, As = σs

(
Ãs√
n

)
, Ah = AsV, Ao = Ah(Wo + PoBo), (12)

where σs represents the softmax activation function, and Wo ∈ Rn×n is the output projection matrix.

Next, the feed-forward network consists of two fully-connected layers, which are computed as:

Z̃1 = Ao(W1 + P1B1), Z1 = σ(Z̃1), Z2 = Z1(W2 + P2B2), (13)

where W1 ∈ Rn×4n and W2 ∈ R4n×n are the weights of the feed-forward layers. We assume that the intermediate
dimension of the feed-forward network is four times the embedding dimension. Similarly, P1 ∈ Rn×r, P2 ∈ R4n×r are the
projection matrices, and B1 ∈ Rr×4n, B2 ∈ Rr×n are the low-rank trainable parameters for RSO. The function σ represents
the activation function.

For the Adam and GaLore methods, there are no P and B matrices, as they directly work with the original weight matrices.
In the case of the LoRA method, each projection matrix P is replaced by a trainable parameter A.

Backward Propagation. To calculate the gradients of all the weight matrices, the backward propagation begins with the
partial gradient of the loss function F with respect to the output of this block, denoted as DZ2 := ∂F

∂Z2
. Here, we use D to

represent the derivative of F with respect to any matrix. Note that in our RSO algorithm, we compute the gradient with
respect to B, the low-rank trainable parameters, instead of the original weight matrix W . The gradients for the weights in
the feed-forward network are computed as follows:

DB2 = (Z1P2)
⊤DZ2, DZ̃1 = DZ2(W2+P2B2)

⊤⊙σ′(Z̃1), DB1 = (AoP1)
⊤DZ̃1, DAo = DZ̃1(W1+P1B1)

⊤. (14)

For the attention mechanism, the gradients for the corresponding matrices are calculated as:

DBo = (AhPo)
⊤DAo, DAh = DAo(Wo + PoBo)

⊤, DAs = DAhV
⊤. (15)

To compute the gradients for the matrices Q,K, V , the following equations are used:

DV = A⊤
s DAh, DQ =

[
DAs ⊙

1√
n
σ′
s

(
Ãs√
n

)]
K, DK =

[
DAs ⊙

1√
n
σ′
s

(
Ãs√
n

)]⊤
Q. (16)

The gradients for the low-rank weight matrices Bq, Bk, Bv are computed as follows:

DBv = (XPv)
⊤DV, DBq = (XPq)

⊤DQ, DBk = (XPk)
⊤DK. (17)

Finally, to ensure that the backward propagation process can continue, the derivative with respect to the input X must also
be calculated. This is given by:

DX = DQ(Wq + PqBq)
⊤ +DK(Wk + PkBk)

⊤ +DV (Wv + PvBv)
⊤. (18)

12

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

When using the Adam or GaLore algorithms, the derivatives must be computed with respect to the original weight matrix
W instead of the low-rank matrix B. As a result, all occurrences of DB need to be replaced with DW . For example, the
derivatives with respect to Wq,Wk, and Wv are computed as follows:

DWv = X⊤DV, DWq = X⊤DQ, DWk = X⊤DK.

A.2. Memory for Optimizer States Analysis

For Adam algorithm, the trainable parameters include Wq,Wk,Wv,Wo,W1,W2. It is straightforward to compute the
total number of parameters as 12n2. Consequently, the optimizer states, considering both the first-order and second-order
moments, require 24n2 storage.

For RSO method, the trainable weights for each subproblem are Bq, Bk, Bv, Bo, B1, B2, with a total of 12nr parameters per
subproblem, leading to an optimizer state storage requirement of 24nr. LoRA trains an additional matrix A (corresponding
to the matrix P used above), resulting in twice the optimizer state memory required compared to RSO. GaLore projects
each gradient matrix from Rn×n to Rr×n, resulting in the same optimizer state memory requirement of 24nr.

A.3. Memory for Activations Analysis

From the backward propagation process, it is evident that the activations generated during forward propagation are required.
Specifically, in (11), the matrices X,Q,K, V need to be stored, resulting in the following memory requirement: M1 = 4sn.

However, in our RSO algorithm, X is only needed to compute DBq,DBk,DBv, where only the projections
XPv, XPq, XPk are required. By setting Pq = Pk = Pv = P , we only need to store XP , reducing the memory
requirement to M̃1 = 3sn+ sr.

Additionally, in (12), the matrices Ãs, As, Ah, Ao must be stored, requiring M2 = 2s2 + 2sn. It is worth noting that Ãs√
n

does not need to be stored, as As can be used to recover it due to the properties of the softmax function. For the RSO
algorithm, storing Ah and Ao is unnecessary, as AhPo and AoP1 suffice. Consequently, the memory requirement is reduced
to M̃2 = 2s2 + 2sr.

For the feed-forward network in (13), the matrices Z̃1, Z1, Z2 need to be stored, resulting in a memory requirement of
M3 = 9sn. In the RSO algorithm, Z1 can be replaced with Z1P2, reducing the memory requirement to M̃3 = 5sn+ sr.

Combining these results, the total memory cost for activations in the RSO algorithm is

M̃total = 8sn+ 2s2 + 4sr,

compared to the memory cost in Adam or GaLore:

Mtotal = 15sn+ 2s2.

As the LoRA method trains parameters A (corresponding to P in our method), it requires the same activations as Adam,
resulting in the same memory overhead as Adam or GaLore.

B. Convergence Analysis
In this section, we present the convergence analysis of the RSO algorithm and provide a detailed proof of Theorem 5.5.

Under Assumption 5.3, the following properties hold and can be straightforwardly derived:

∥PW ∥ =

√∑
ℓ

tr(W⊤
ℓ PT

ℓ PℓWℓ) ≤
√

max
ℓ

{mℓ/rℓ}∥W ∥,

where W = {Wℓ}Lℓ=1 denotes any family of matrices with Wℓ ∈ Rmℓ×rℓ . For simplicity, we will not explicitly reference
these properties when they are used.

Lemma B.1. Under Assumptions 5.2 and 5.3, gk(B) is (1
ηk − L̂)-strongly convex and (1

ηk + L̂)-smooth, with 0 < η < 1/L̂

and L̂ = max
ℓ

{mℓ/rℓ}L.

13

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Proof. We denote the gradient of f with respect to the parameters in the ℓ-th layer by ∇ℓf(W). Let hk(B) := f(W k +
P kB). It can be shown that hk is L̂-Lipschitz smooth, as follows:

∥∇hk(B1)−∇hk(B2)∥2 =

L∑
ℓ=1

∥∥∥∥(∂f

∂B1
l

(W k + P kB1
ℓ)−

∂f

∂B2
ℓ

(W k + P kB2)

)∥∥∥∥2
F

=

L∑
ℓ=1

∥∥(P k
ℓ)

⊤(∇ℓf(W
k + P kB1)−∇ℓf(W

k + P kB2))
∥∥2
F

≤
L∑

ℓ=1

∥P k
ℓ ∥2F ∥∇ℓf(W

k + P kB1)−∇ℓf(W
k + P kB2))∥2F

≤ max
ℓ

(
mℓ

rℓ

) L∑
ℓ=1

∥∇ℓf(W
k + P kB1)−∇ℓf(W

k + P kB2))∥2F

= max
ℓ

(
mℓ

rℓ

)
∥∇f(W k + P kB1)−∇f(W k + P kB2))∥2

≤ L2 max
ℓ

(
mℓ

rℓ

)
∥P kB1 − P kB2∥2 ≤ L̂2∥B1 −B2∥2.

As hk is L̂-Lipschitz smooth, we can conclude that gk(B) = hk(B) + 1
2ηk ∥B∥2 is (1

ηk + L̂)-smooth. Furthermore, we
have the inequality

|hk(B2)− hk(B1)− ⟨∇hk(B1),B2 −B1⟩| ≤ L̂

2
∥B1 −B2∥2.

Based on this inequality, with the definition of gk, we have

gk(B2) ≥ gk(B1)− 1

2ηk
∥B1∥2 + 1

2ηk
∥B2∥2 + ⟨∇hk(B1),B2 −B1⟩ − L̂

2
∥B1 −B2∥2

= gk(B1) +

〈
∇hk(B1) +

1

ηk
B1,B2 −B1

〉
+

(
1

2ηk
− L̂

2

)
∥B1 −B2∥2

= gk(B1) + ⟨∇gk(B1),B2 −B1⟩+

(
1

2ηk
− L̂

2

)
∥B1 −B2∥2,

which shows that gk(B) is (1
ηk − L̂)-strongly convex when 0 < η < 1/L̂.

Theorem B.2 (Theorem 5.5). Under Assumptions 5.2 and 5.3, let the subproblem (4b) is solved from the initial point
B0 = 0 to an expected ϵ-inexact solution B̃k with ηk = 1

2L̂
, the sequence {W k} generated by the RSO method satisfies

1

K

K−1∑
k=0

E[∥∇f(W k)∥2] ≤ 18L̂(f(W 0)− f⋆)

K
+ 18L̂ϵ. (19)

Proof. For simplicity, we denote µ := 1
ηk − L̂. As gk(B) is µ−strongly convex, ∀ B, we have

gk(Bk
⋆) ≤ gk(B)− µ

2
∥Bk

⋆ −B∥2.

Let B = 0 and using the definition of B̃k, we can obtain a descent condition as

E[gk(B̃k)] ≤ gk(0)− µ

2
∥Bk

⋆∥2 + ϵ.

Taking the expectation with respect to the initial condition W k and random matrix P k, by the tower rule, it can be derived

E[gk(B̃k)] ≤ E[gk(0)]− µ

2
E[∥Bk

⋆∥2] + ϵ.

14

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Telescoping the above inequality from k = 0 to K − 1, we have

K−1∑
k=0

µ

2
E[∥Bk

⋆∥2] ≤
K−1∑
k=0

E[gk(0)]−
K−1∑
k=0

E[gk(B̃k)] + ϵ.

Notice that, by the update rule of (4b), gk+1(0) = f(W k+1) = f(W k + P kB̃k) = gk(B̃k)− 1
2ηk ∥B̃k∥2, the terms in

the RHS of the above inequality can be canceled with each other and resulting in the following inequality:

K−1∑
k=0

µ

2
E[∥Bk

⋆∥2] ≤ g0(0)− E[gK−1(B̃K−1)]−
K−2∑
k=0

1

2ηk
E[∥B̃k∥2] + ϵ.

Dividing K on both sides and using the fact gK−1(B̃K−1) ≥ f(WK−1 + PK−1B̃K−1) ≥ f⋆, we can derive

1

K

K−1∑
k=0

µ

2
E[∥Bk

⋆∥2] +
1

K

K−2∑
k=0

1

2ηk
E[∥B̃k∥2] ≤ g0(0)− f⋆

K
+ ϵ.

Next, we need to establish the connection between ∥Bk
⋆∥2 and the final stationary measure ∥∇f(W k)∥2. As gk(B) is

(1/ηk + L̂)-smooth, ∀B it holds that(
L̂+

1

ηk

)2

∥B −Bk
⋆∥2 ≥ ∥∇gk(B)−∇gk(Bk

⋆)∥2 = ∥∇gk(B)∥2.

With B = 0, it holds
1

K

K−1∑
k=0

µ

2

(
L̂+

1

ηk

)−2

E[∥∇gk(0)∥2] ≤ f(W0)− f⋆

K
+ ϵ. (20)

Furthermore, notice that ∇gk(0) = (P k)⊤∇f(W k) and the random matrix P k is sampled independently to W k, for any
fixed W k, we have

EP k [∥∇gk(0)∥2] =
∑
ℓ

EPk
ℓ
[Tr(∇ℓf(W

k)⊤P k
ℓ (P

k
ℓ)

⊤∇ℓf(W
k))]

=
∑
ℓ

EPk
ℓ
[Tr(P k

ℓ (P
k
ℓ)

⊤∇ℓf(W
k)∇ℓf(W

k)⊤)]

=
∑
ℓ

Tr(EPk
ℓ
[P k

ℓ (P
k
ℓ)

⊤]∇ℓf(W
k)∇ℓf(W

k)⊤)

=
∑
ℓ

∥∇ℓf(W
k)∥2F = ∥∇f(W k)∥2.

Taking expectation with the respect to the randomness in W k, we can claim E[∥∇gk(0)∥2 = E[∥∇f(W k)∥2]. Inserting
this result back to (20) with ηk = 1

2L̂
, it can be written as

1

K

K−1∑
k=0

E[∥∇f(W k)∥2] ≤ 18L̂(f(W 0)− f⋆)

K
+ 18L̂ϵ.

Thus we complete the proof.

C. More Experimental Results
C.1. Pre-training on LLaMA-7B Model

Table 6 compares the performance of our RSO method with GaLore and Adam on the LLaMA-7B model, where evaluations
are conducted for 50K steps due to limited computational resources. We also report the memory overhead and total training
time for each method. As shown in the table, RSO exhibits performance comparable to that of GaLore and Adam. Notably,
RSO requires less than half the training time of the other methods.

15

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Method Memory (GB) Training Time (h) Perplexity

Adam 78.92 216 15.43
GaLore 75.33 134 15.59
RSO 54.81 64 15.99

Table 6. Comparison of various pre-training methods for the LLaMA-7B model on the C4 dataset. Perplexity is reported at 50K steps.
The training is conducted on 8× A800 GPUs. The actual memory cost per device and the total training time are also reported. RSO and
GaLore are configured with a batch size of 16, while Adam uses a batch size of 8.

C.2. Fine-tuning on LLaMA and OPT Models

Table 7 compares RSO with other fine-tuning methods on LLaMA and OPT models across two datasets. As shown in the
table, RSO outperforms other memory-efficient methods in terms of accuracy on most tasks.

Model WinoGrande Copa

Adam LoRA GaLore RSO Adam LoRA GaLore RSO

LLaMA-7B 64.4 70.9 70.9 71.0 84.0 84.0 85.0 86.0
LLaMA-13B 73.3 76.6 74.6 74.7 90.0 92.0 92.0 92.0

OPT-1.3B 60.4 57.3 58.3 58.9 76.0 73.0 72.0 74.0
OPT-6.7B 62.2 64.7 66.8 69.2 78.0 80.0 80.0 82.0

Table 7. Comparison of various methods for fine-tuning LLaMA and OPT models on the WinoGrande and COPA datasets. The test
accuracy for each method is reported.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

Table 8. Hyperparameter configurations for LLaMA models of different scales, along with the corresponding number of training steps.
Due to limited computational resources, only the first 50K steps are completed for LLaMA-7B.

D. Experimental Details
D.1. Pre-training Experimental Setup

For the pre-training of LLaMA models across all scales, we adopt a configuration consistent with that used in (Zhao et al.,
2024a). The main model hyperparameters and training steps for each method are summarized in Table 8. Specifically, in the
RSO method, the Adam optimizer is used to perform multiple steps for solving each subproblem, resulting in an outer–inner
iteration structure: the outer iterations correspond to subproblem updates, while the inner iterations represent Adam steps.
For a fair comparison, we report the total number of inner iterations as the number of RSO steps. In all experiments, the
maximum sequence length is set to 256, and the total training batch size is fixed at 512, corresponding to approximately
131K tokens per batch. A linear warm-up of the learning rate is applied over the first 10% of training steps, followed by a
cosine annealing schedule that decays the learning rate to 10% of its initial value.

For the RSO method, the learning rate is selected from the set {0.05, 0.02, 0.01}. Consistent with the configuration used in
GaLore, a learning rate scaling factor is applied to the weights of all multi-head attention and feed-forward layers in the
model. The number of Adam steps used to solve each subproblem is set to either 200 or 500 depending on the specific
experiment.

16

A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models

Task MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate (Rank = 4) 1E-05 3E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
Learning Rate (Rank = 8) 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
Scaling Factor {8, 16, 32}
Steps per Subproblem {300, 500}
Max Sequence Length 512

Table 9. Hyperparameter settings for fine-tuning the RoBERTa-Base model on the GLUE benchmark using the RSO method with different
rank configurations.

D.2. Fine-tuning Experimental Setup

Fine-tuning on the GLUE Benchmark. To fine-tune the pre-trained RoBERTa-Base model on the GLUE benchmark, we
train for 30 epochs using a batch size of 16 across all tasks, except for CoLA, which uses a batch size of 32. Consistent with
the GaLore setting, a learning rate scaling factor is applied to the weights of all multi-head attention and feed-forward layers.
Detailed hyperparameter configurations are listed in Table 9.

Fine-tuning on the WinoGrande and COPA Datasets. For fine-tuning LLaMA and OPT models on the WinoGrande and
COPA datasets, we randomly sample 1,000 training examples, 500 validation examples, and 1,000 test examples from each
dataset. All experiments are run for 1,000 training steps. The corresponding hyperparameter settings are summarized in
Table 10.

Experiment Hyperparameters Values

FT
Batch Size 16

Learning Rate {1E-07, 1E-06, 1E-05}
Weight Decay 0

LoRA

Batch Size 16
Learning Rate {1E-07, 1E-06, 5E-06}

Rank 8
Weight Decay 0

GaLore

Batch Size 16
Learning Rate {1E-07, 1E-06, 5E-06}

Rank 8
SVD Update Interval {300, 500}

Scaling Factor {4, 8}
Weight Decay 0

RSO

Batch Size 16
Learning Rate {1E-07, 1E-06, 5E-06}

Rank 8
Steps per Subproblem {300, 500}

Scaling Factor {4, 8}
Weight Decay 0

Table 10. Hyperparameter settings for fine-tuning LLaMA and OPT models on the WinoGrande and COPA datasets.

17

