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Abstract. We aim to tackle sparse-view reconstruction of a 360◦ 3D
scene using priors from latent diffusion models (LDM). The sparse-view
setting is ill-posed and underconstrained, especially for scenes where the
camera rotates 360 degrees around a point, as no visual information
is available beyond some frontal views focused on the central object(s)
of interest. In this work, we show that pretrained 2D diffusion models
can strongly improve the reconstruction of a scene with low-cost fine-
tuning, alleviating reliance on large-scale 3D datasets. Specifically, we
present SparseSplat360 (Sp2360), a method that employs a cascade of
in-painting and artifact removal models to fill in missing details and
clean novel views. Due to superior training and rendering speeds, we
use an explicit scene representation in the form of 3D Gaussians over
NeRF-based implicit representations. We propose an iterative update
strategy to fuse generated pseudo novel views with existing 3D Gaussians
fitted to the initial sparse inputs. As a result, we obtain a multi-view
consistent scene representation with details coherent with the observed
inputs. Our evaluation on the challenging Mip-NeRF360 dataset shows
that our proposed 2D to 3D distillation algorithm considerably improves
the performance of a regularized version of 3DGS adapted to a sparse-
view setting and outperforms existing sparse-view reconstruction methods
in 360◦ scene reconstruction on traditional metrics. Qualitatively, our
method generates entire 360◦ scenes from as few as 9 input views, with a
high degree of foreground and background detail.

1 Introduction

Obtaining high-quality 3D reconstructions or novel views from a set of images
has been a long-standing goal in computer vision and has received increased
interest recently. Recent 3D reconstruction methods, such as those based on
Neural Radiance Fields (NeRF) [37], Signed Distance Functions (SDFs) [62], or the
explicit 3D Gaussian Splatting (3DGS) [29], are now able to produce photorealistic
novel views of 360◦ scenes. However, in doing so, they rely on hundreds of input
images that densely capture the underlying scene. This requirement is both
time-consuming and often an unrealistic assumption for complex, large-scale
scenes. Ideally, one would like a 3D reconstruction pipeline to offer generalization
to unobserved parts of the scene and be able to successfully reconstruct areas that



2 Paul et al.

are only observed a few times. In this work, we present a method to efficiently
obtain high-quality 3D Gaussian representations from just a few views, moving
towards this goal.

Standard 3DGS, much like NeRF, is crippled in a sparse observation setting. In
the absence of sufficient observations and global geometric cues, 3DGS invariably
overfits to training views. This leads to severe artifacts and background collapse
already in nearby novel views due to the inherent depth ambiguities associated
with inferring 3D structure from few-view 2D images. There exists a long line
of work to improve performance of both NeRF and 3DGS in sparse novel view
synthesis [11,14,26,31,41,46,60,68,69,76]. While these works can reduce artifacts
in sparsely observed regions, they are not able to fill in missing details due to
the use of simple regularizations or weak priors.

In the setting of large-scale 360◦ scenes, the problem is even more ill-posed
and under-constrained. Much stronger priors are needed, such as those from large
pre-trained 2D diffusion models [40,44,47,49], capturing knowledge about typical
structures in the 3D world. Recent approaches [34,50,67] add view-conditioning to
these image generators by fine-tuning them on a large mixture of real-world and
synthetic multi-view datasets. Leveraging these strong priors for optimization of
radiance fields yields realistic reconstructions in unobserved areas of challenging
360◦ scenes. In this work, we propose to forego augmenting a 2D diffusion model
with additional channels for pose or context to make it 3D-aware. Instead, we
perform low-cost fine-tuning of pretrained models to adapt them to specific
sub-tasks of few-view reconstruction. This weakens the assumption of large-scale
3D training data, which is expensive to obtain.

We present SparseSplat360 (Sp2360), an efficient method that addresses the
given task of sparse 3D reconstruction by iteratively adding synthesized views to
the training set of the 3D representation. The generation of new training views is
divided and conquered as the 2D sub-tasks of (1) in-painting missing areas and
(2) artifact elimination. The in-painting model for the first stage is pre-trained
on large 2D datasets and efficiently fine-tuned on the sparse views of the given
scene. The artifact elimination network for the second stage is an image-to-image
diffusion model, fine-tuned to specialize on removing typical artifacts appearing in
sparse 3DGS. Thus, both stages utilize 2D diffusion models that are fine-tuned on
small amounts of data. In each iteration, the models are conditioned on rendered
novel views of the already existing scene, thus using 2D images as input and
output, avoiding the requirement of training on large datasets of 3D scenes. In
contrast to previous works, our method leverages stronger priors than simple
regularizers and does not rely on million-scale multi-view data or huge compute
resources to train a 3D-aware diffusion model.

In summary, our contributions are:

– We present a novel systematic approach to perform sparse 3D reconstruction
of 360◦ scenes by autoregressively adding generated novel views to the training
set.
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– We introduce a two-step approach for generating novel training views by
performing in-painting and artifact removal with 2D diffusion models, which
avoids fine-tuning on large-scale 3D data.

– We show that Sp2360 outperforms recent works based on regularization and
generative priors in reconstructing large 3D scenes.

2 Related Work

2.1 Sparse-View Radiance Fields

Following the breakthroughs of NeRF [37] and 3D Gaussian Splatting [29] for
inverse rendering of radiance fields, there have been many approaches to weaken
the requirement of dense scene captures to sparse input views only. These methods
can be categorized into regularization techniques and generalizable reconstruction
priors.

Regularization Techniques Fitting a 3D representation from sparse observations
only is an ill-posed problem and very prone to local minima. In the case of
radiance fields, this is typically visible as ’floaters’ during rendering of novel
views. A classical technique for training with limited data is regularization. Many
existing methods leverage depth from Structure-from-Motion [14,46], monocular
estimation [11, 31, 69, 76], or RGB-D sensors [60]. DietNeRF [26] proposes a
semantic consistency loss based on CLIP [43] features. FreeNeRF [70] regularizes
frequency range of NeRF inputs by increasing the frequencies of positional-
encoding features in a coarse-to-fine manner. Moving closer to generative priors,
RegNeRF [41] and DiffusioNeRF [68] maximize likelihoods of rendered patches
under a trained normalizing flow or diffusion model, respectively.

Generalizable Reconstruction In the case of very few or even a single view
only, regularization techniques are usually not strong enough to account for
the ambiguity in reconstruction. Therefore, another line of research focuses
on training priors for novel view synthesis across many scenes. pixelNeRF [71]
extracts pixel-aligned CNN features from input images at projected sample points
during volume rendering as conditioning for a shared NeRF MLP. Similarly, many
approaches [7, 20,33,59] define different NeRF conditionings on 2D or fused 3D
features. Following the trend of leveraging explicit data structures for accelerating
NeRFs, further priors have been learned on triplanes [25], voxel grids [18], and
neural points [64]. Building upon the success of 3D Gaussian Splatting [29] and its
broad applications to, e.g., surface [17, 24] or non-rigid reconstruction [12, 35, 66],
recent methods like pixelSplat [6] and MVSplat [10] achieve state-of-the-art
performance in stereo view interpolation while enabling real-time rendering.
However, all of these works train regression models that infer blurry novel views
in case of high uncertainty. Bridging the gap of generalizable and generative
priors, GeNVS [5] and latentSplat [65] render view-conditioned feature fields
followed by a 2D generative decoding to obtain a novel view.
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2.2 Generative Priors

In case of ambiguous novel views, the expectation over all possible reconstructions
might itself not be a reasonable prediction. Therefore, regression-based approaches
fail. Generative methods, on the other hand, try to sample from this possibly
multi-modal distribution.

Diffusion Models In recent years, diffusion models [15,22] emerged as the state-
of-the-art for image synthesis. They are characterized by a pre-defined forward
noising process that gradually destroys data by adding random (typically Gaus-
sian) noise. The objective is to learn a reverse denoising process with a neural
network that, after training, can sample from the data distribution given pure
noise. Important improvements include refined sampling procedures [28,56] and
the more efficient application in a spatially compressed latent space compared
to the high-resolution pixel space [47]. Their stable optimization, in contrast to
GANs, enabled today’s text-to-image generators [40,44,47,49] trained on billions
of images [54].

2D Diffusion for 3D While diffusion models have been applied directly on 3D
representations like triplanes [8,55], voxel grids [38], or (neural) point clouds [36,53,
73], 3D data is scarce. Given the success of large-scale diffusion models for image
synthesis, there is a great research interest in leveraging them as priors for 3D
reconstruction and generation. DreamFusion [42] and follow-ups [9, 13, 32, 57, 61]
employ score distillation sampling (SDS) to iteratively maximize the likelihood of
radiance field renderings under a conditional 2D diffusion prior. For sparse-view
reconstruction, existing approaches incorporate view-conditioning via epipolar
feature transform [75], cross-attention to encoded relative poses [34, 50], or
pixelNeRF [71] feature renderings [67]. However, this fine-tuning is expensive
and requires large-scale multi-view data, which we circumvent with Sp2360.

3 Method

In this section, we describe our method in detail. The section begins with a
general overview of Sp2360 in Sec. 3.1, outlining the autoregressive algorithm for
training view generation. In the following sections, the individual parts of the
system are introduced: the in-painting module in Sec. 3.2, the artifact removal
procedure in Sec. 3.3, and the sparse 3DGS baseline method in Sec. 3.5.

3.1 Sp2360 for Sparse-View 3D Reconstruction

Given a sparse set of input images I = {I1, I2, ..., IM} with camera poses
{π1, π2, ..., πM}, and a sparse point cloud P ∈ RS×3, estimated by Structure-from-
Motion (SfM) [51,52], our goal is to obtain a 3D Gaussian representation of the
scene, which enables the rendering of novel views from camera perspectives that
are largely different from given views in I. The tackled scenario of sparse-view
inputs is extremely challenging, as the given optimization problem is heavily
under-constrained and leads to severe artifacts if done naively.
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Fig. 1: Overview of Sp2360. We render 3D Gaussians fitted to our sparse set of M
views from a novel viewpoint. The image has missing regions and Gaussian artifacts,
which are fixed by a combination of in-painting and denoising diffusion models. This
then acts as pseudo ground truth to spawn and update 3D Gaussians and satisfy the
new view constraints. This process is repeated for several novel views spanning the 360◦

scene until the representation becomes multi-view consistent.

Algorithm 1 Sp2360 Algorithm
Require: Sparse input image set I, camera

poses {π1, π2, ..., πM}, sparse point cloud
P ∈ RS×3

Ensure: Set of 3D Gaussians G
1: Î ← I
2: G ← Optimize Sparse 3DGS for k iterations
3: for N iterations do
4: π ← Sample novel camera pose.
5: I← Rπ(G) - Render from camera π
6: I← In-paint(I)
7: I← ArtifactRemoval(I)
8: Î← Î ∪ {I}
9: G ← Optimize Sparse 3DGS for k itera-

tions
10: end for

An overview of Sp2360
is given in Fig. 1 and
Alg. 1. The approach
begins by optimizing a
set of 3D Gaussians [29]
to reconstruct the initial
sparse set of input images
Î = I. For this, we intro-
duce a Sparse 3DGS base-
line (c.f. Sec. 3.5), which
combines best practices
from previous works on
NeRFs. The obtained rep-
resentation serves as ini-
tial prior for 360◦ recon-
struction. Next, we au-
toregressively add new
generated views to our training set: (1) we sample novel cameras and render
novel views with artifacts and missing areas, make them look plausible by (2)
performing in-painting (c.f. 3.2) and then (3) artifact removal (c.f. 3.3), before
(4) adding them to set Î and continuing optimizing our 3D representation for k
iterations.

For training 3DGS in an iterative fashion, as outlined above, special precaution
has to be taken to prevent overfitting on the initial views. An optimal schedule
involves finding the number of iterations per cycle k and the hyperparameters for
the original 3DGS [29]. We provide a detailed evaluation in A.4. In the following,
we will detail the in-painting and artifact removal stages of our pipeline.

3.2 In-Painting Novel Views

When using only a sparse observation set, many areas remain unobserved, leading
to areas of no Gaussians in the 3D representation and zero opacity regions in
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some novel views (c.f. Fig.1). Regularization techniques cannot help with inferring
details. Instead, we incorporate a generative in-painting diffusion model to fill
such regions indicated by a binary mask ϕ, which is obtained by rendering opacity
from our current Gaussian representation G and binarizing it with a threshold τ .

We fine-tune Stable Diffusion 2 [47] to perform in-painting on our novel view
renderings. The current training images Î are used as training data to adapt it
to the current scene. For the fine-tuning technique, we get inspired by recent
work [58] that uses LoRA [23] adapters for the UNet ϵθ and text encoder cθ(y).
Given images Î = {I1, ..., IM}, we create artificial masks {ϕ1, ..., ϕM} by creating
random rectangular masks over each image and taking either their union or the
complement of the union. Then, the adapter weights are fine-tuned using the
following objective:

L = Ei∼U(M),y,ϵ∼N (0,1),t

[
∥ϵt − ϵθ(zt; t, ϕi, cθ(y))∥22

]
, (1)

where zt is the diffused latent encoding of image Ii at step t. Here, y is a simple
text prompt - “A photo of [V]”, where [V] is a rare token like in DreamBooth [48]
whose embedding is optimized for in-painting. For views I /∈ Ii (not from the
original set), Eq 1 is only evaluated for regions that have a rendered opacity > τ .
This in-painting objective for fine-tuning enables our model to in-paint missing
regions in a novel view rendering with details faithful to the observed M views.
At inference, ϵθ predicts the noise in zt as:

ϵ̂t = ϵθ(zt; t, ϕi, cθ(y)), (2)

which is used to progressively obtain less noisy latents in s DDIM [56] sampling
steps starting from t. After passing the denoised latent ẑ0 through a VAE decoder
D. we obtain the in-painted image x0.

3.3 Removing Sparse-View Artifacts

The in-painting technique can fill in plausible details in low-opacity areas of novel
view renders. However, it cannot deal with the dominance of blur, floaters, and
color artifacts, which are not detected by the in-painting mask ϕ. As such, we
resort to a diffusion-based approach to learn how typical artifacts in 3D Gaussian
representations from sparse views look like and how to remove them.

We fine-tune an image-conditioned diffusion model [4] to edit images based on
short, user-friendly edit instructions. Here, the UNet ϵθ is trained to predict noise
in zt conditioned on a given image c, in addition to the usual text conditioning
cθ(y). To enable this, additional input channels are added to the first convolutional
layer of ϵθ so that zt and E(c) can be concatenated. Weights of these channels are
initialized to zero, whereas rest of the model is initialized from the pre-trained
Stable Diffusion v1.5 checkpoint. For architectural design choices, we resort to
those made by Instruct-Pix2Pix [4].
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Provide at least 50 synonymous 
sentences for the following instruction:

“Denoise the noisy image and remove all 
floaters and Gaussian artifacts.”

Artifact Removal

Camera Interpolation

Camera Pertubation

Render ViewSparse 3D Gaussians

Dense 3D Gaussians

GPT-4

Cond. LDM UNet

Fig. 2: Artifact removal fine-tuning. Pairs of clean images and images with artifacts
are obtained from 3DGS fitted to sparse and dense observations, respectively, across 36
scenes. These are combined with one of 51 synonymous prompts generated by GPT-4 [1]
from a base instruction. SD v1.5 [47] is then fine-tuned with a dataset of 10.5K samples
for the Gaussian artifact removal task.

Dataset Creation For training, we rely on a set X = {(xi, ci, yi)Ni=1} of data
triplets, each containing a clean image xi, an image with artifacts ci, and the
corresponding edit instruction for fine-tuning yi, to “teach” a diffusion model
how to detect Gaussian artifacts and generate a clean version of the conditioning
image. For this, we build an artifact simulation engine comprising a 3DGS model
fitted to dense views, Sparse 3DGS fitted to few views, and camera interpolation
and perturbation modules to use supervision of the dense model at viewpoints
beyond ground truth camera poses. The fine-tuning setup is illustrated in Fig. 2.
For a given scene, we fit sparse models for M ∈ {3, 6, 9, 18} number of views. For
larger M , we observe that there are very few artifacts beyond standard Gaussian
blur. To have diversity in edit instructions, we start with a base instruction -
“Denoise the noisy image and remove all floaters and Gaussian artifacts.” and
ask GPT-4 to generate 50 synonymous instructions. During training, each clean,
artifact image pair is randomly combined with one of these 51 instructions.

Training the Artifact Removal Module Using our synthetically curated dataset
X , we fine-tune SD v1.5 as follows:

L = Ei∼U(N),ϵ∼N (0,I),t

[
∥ϵt − ϵθ(z

i
t; t, E(ci), cθ(yi))∥22

]
(3)

where zit is the encoded image xi diffused with sampled noise ϵ at time step t.
Thus, the model is fine-tuned to generate clean images xi, conditioned on artifact
images ci and text prompts yi.

Generating Clean Renders Given an in-painted rendering x0 and the base prompt
y ="Denoise the noisy image and remove all floaters and Gaussian artifacts"
at inference time, the fine-tuned artifact removal UNet ϵθ predicts the noise in
latent zt according to t ∼ U [tmin, tmax] as:

ϵ̂t = ϵθ(zt; t,∅,∅)

+ sI · (ϵθ(zt; t, E(x0),∅)− ϵθ(zt; t,∅,∅))

+ sT · (ϵθ(zt; t,∅, cθ(y))− ϵθ(zt; t, E(x0),∅))

(4)
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where sI and sT are the image and prompt guidance scales, dictating how
strongly the final multistep reconstruction agrees with the in-painted render x0

and the edit prompt y, respectively. After s DDIM [56] sampling steps, we obtain
our final image by decoding the denoised latent.

3.4 Distilling 2D priors to 3D

Our diffusion priors infer plausible detail in unobserved regions and an iterative
update algorithm (A.4) incrementally grows and updates scene Gaussians by
fusing information at novel viewpoints. We initialize the scene with 3D Gaussians
fitted by Sparse 3DGS to M input views, autoregressively sample closest novel
viewpoints (based on SE3 distance), obtain pseudo ground truths for novel views
using our combination of diffusion priors, add them to the training stack and
optimize for certain iterations (determined by the schedule in A.4). At every
iteration, we sample either an observed or unobserved viewpoint from the current
training stack. We optimize Gaussian attributes using the 3DGS objective for
known poses and the SparseFusion [75] objective for novel views:

Lsample(ψ) = Eπ,t

[
w(t)(∥Iπ − Îπ∥1 + Lp(Iπ, Îπ))

]
(5)

where Lp is the perceptual loss [72], w(t) a noise-dependent weighting function,
Iπ is the 3DGS render at novel viewpoint π, and Îπ is the inpainted, clean version
of Iπ obtained with our cascaded diffusion priors.

3.5 Sparse 3DGS

The sparse 3DGS baseline serves as our starting point that already improves
reconstruction quality over standard 3DGS. It is inspired by several recent
works on sparse neural fields [14,41] and 3DGS [31,69,76]. The baseline unifies
depth regularization from monocular depth estimators and depth priors from
pseudo views while using specific hyperparameter settings, such as densification
thresholds and opacity reset configurations for Gaussian splatting. It is outlined
in detail in A.2 and evaluated individually in the ablation studies in Sec. 4.4.

4 Experiments

This section compares Sp2360 with state-of-the-art sparse-view reconstruction
techniques. We also provide detailed ablation studies motivating specific design
choices across different components of our approach. The setup for Iterative 3DGS
(c.f. A.4) translates seamlessly to the iterative distillation procedure (c.f. 3.4)
with diffusion priors, and hence, we refrain from further analysis here.

4.1 Experimental Setup

Evaluation Dataset We evaluate Sp2360 on the 9 scenes of the MipNeRF360
dataset [2], comprising 5 outdoor and 4 indoor scenes. Each scene has a central
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object or area of complex geometry with an equally intricate background. This
makes it the most challenging 360◦ dataset compared to CO3D [45], RealEstate
10K [74], DTU [27], etc. We retain the train/test split of the MipNeRF360 dataset,
where every 8th image is kept aside for evaluation. To create M -view subsets, we
sample from the train set of each scene using a geodesic distance-based heuristic
to encourage maximum possible scene coverage (see supplement for details).

Fine-tuning dataset We fine-tune the in-painting module only on the M input
views. For the artifact removal module, we train 3DGS on sparse and dense
subsets of 360◦ scenes from MipNeRF360 [2], Tanks and Temples [30] and Deep
Blending [19] across a total of 36 scenes to obtain ∼ 10.5K data triplets. We
train 9 separate artifact removal modules holding out the MipNeRF360 scene
we want to reconstruct. On a single A100 GPU, fine-tuning the in-painting and
artifact removal modules takes roughly 2h and 1h, respectively.

Baselines We compare our approach against 7 baselines. FreeNeRF [70], RegN-
eRF [41], DiffusioNeRF [68], and DNGaussian [31] are few-view regularization
methods based on NeRFs or 3D Gaussians. ZeroNVS [50] is a recent generative
approach for reconstructing a complete 3D scene from a single image. We use the
ZeroNVS∗ baseline introduced in ReconFusion [67], designed to adapt ZeroNVS
to multi-view inputs. Conditioning the diffusion model on the input view closest
to the sampled random view enables scene reconstruction for a general M -view
setting. We also compare against 3DGS, the reconstruction pipeline for Sp2360,
and against Sparse 3DGS, our self-created baseline.

Metrics Due to the generative nature of our approach, we employ FID [21] and
KID [3] to measure similarity of distribution of reconstructed novel views and
ground truth images. We also compute two perceptual metrics - LPIPS [72] and
DISTS [16] - to measure similarity in image structure and texture in the feature
space. Despite their known drawbacks as evaluators of generative techniques [5,50],
we additionally provide PSNR and SSIM scores for completeness. Both favor
pixel-aligned blurry estimates over high-frequency details, making them ill-suited
to our setting.

4.2 Implementation Details

We implement our entire framework in Pytorch 1.12.1 and run all experiments on
single A100 or A40 GPUs. We work with image resolutions in the 400-600 pixel
range as this is closest to the output resolution of 512 for both diffusion models.
We set λ1 = 0.2 (same as 3DGS) and vary λdepth, λpseudo in {0.0, 0.05, 0.1} for
Sparse 3DGS. For in-painting, we set τ = 0.8 and fine-tune the in-painting
module at 512×512 resolution for 3000-5000 steps with LoRA modules of rank in
{8, 16, 32} (depending on M). We use a batch size of 16 and learning rates of 2e-4
for the UNet and 4e-5 for the text encoder. The artifact removal module is trained
at 256× 256 resolution for 2500 iterations with batch size 16 and learning rate
1e-4. To enable classifier-free guidance for both models, we randomly dropout
conditioning inputs (text, mask, image, etc.) with probability of 0.1 during
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training. The classifier-free guidance scales are set to sI = 2.5 and sT = 7.0. We
use tmax = 0.99 for both in-painting and artifact removal and linearly decrease
tmin for the in-painting module from 0.98 to 0.90, and from 0.98 to 0.70 for the
artifact removal module. We sample both the in-painted and clean renders for
s = 20 DDIM sampling steps. We also linearly decay the weight of Lsample (c.f.
3.4) from 1 to 0.1 over 30k iterations.

4.3 Comparison Results

We evaluate all baselines on our proposed splits for each scene. We report averaged
quantitative results in Tables 1 and 2 and compare novel view rendering quality
in Fig 3. We outperform all baselines for 9-view reconstruction across all metrics
and are second only to DiffusioNeRF on FID, KID, and DISTS for 3 and 6-view
reconstruction. Unlike the baselines, our approach consistently improves with
increasing M across all metrics.

3DGS RegNeRF DNGaussian DiffusioNeRF ZeroNVS* Ours Ground Truth
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Fig. 3: Qualitative comparison of Sp2360 with few-view methods. Our approach
consistently fairs better in recovering image structure from foggy geometry, where
baselines typically struggle with “floaters” and color artifacts. We encourage the reader
to refer to our supplemental 360° video, where the benefits of our method can be
observed along a smooth trajectory.
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Table 1: Quantitative comparison with state-of-the-art sparse-view reconstruction
techniques on classical metrics. Despite being a generative solution, we outperform all
baselines across all view splits on both pixel-aligned and perceptual metrics.

PSNR ↑ SSIM ↑ LPIPS ↓
Method 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

3DGS 10.288 11.628 12.658 0.102 0.141 0.190 0.709 0.661 0.605
FreeNeRF 9.948 9.599 10.641 0.124 0.129 0.145 0.682 0.679 0.668
RegNeRF 11.030 10.764 11.020 0.117 0.134 0.145 0.663 0.660 0.661
DNGaussian 9.867 10.671 11.275 0.124 0.137 0.179 0.754 0.730 0.729
DiffusioNeRF 10.749 11.728 11.430 0.093 0.116 0.112 0.709 0.678 0.654
ZeroNVS* 10.406 9.990 9.719 0.079 0.079 0.082 0.709 0.711 0.700
Ours 12.927 13.701 14.121 0.211 0.231 0.261 0.647 0.622 0.591

Table 2: Quantitative comparison with few-view reconstruction techniques on
metrics suited for generative reconstruction. We are second only to DiffusioNeRF for 3
and 6-view reconstruction but achieve higher scores for 9 views.

FID ↓ KID ↓ DISTS ↓
Method 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

3DGS 392.620 343.336 292.324 0.313 0.268 0.229 0.476 0.429 0.321
FreeNeRF 347.625 343.833 342.917 0.254 0.249 0.258 0.392 0.388 0.388
RegNeRF 362.856 347.045 349.043 0.291 0.266 0.247 0.399 0.403 0.404
DNGaussian 431.687 420.110 414.307 0.311 0.285 0.281 0.581 0.571 0.544
DiffusioNeRF 273.096 225.661 290.184 0.158 0.104 0.183 0.362 0.319 0.378
ZeroNVS* 351.090 335.155 337.457 0.283 0.282 0.290 0.437 0.429 0.428
Ours 318.470 283.504 230.565 0.273 0.229 0.162 0.384 0.357 0.315
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4.4 Ablation Studies

Sparse 3DGS w/o Artifact R. w/o In-painting w/o Schedule 3DGS Loss Ours Ground Truth
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Fig. 4: Ablation Study on 9-view reconstruction of garden scene. Our fine-tuned
artifact removal module and iterative schedule contribute the most toward quality of
the final reconstruction. 3D Gaussians from Sparse 3DGS act as suitable geometric
prior in the absence of explicit view conditioning.

In Tab 3 and Fig 4, we ablate the relative importance of each component
towards 360◦ reconstruction. We pick the garden scene and its 9 view split for
this study. We first show the benefits of the regularization heuristics in Sparse
3DGS over native 3DGS. We attempt reconstruction using either the in-painting
or artifact removal module and show that their combination works best for
both novel view synthesis and final reconstruction. Interestingly, leaving out
the artifact removal module results in the best PSNR and SSIM scores across
all variants, emphasizing that classical metrics reward blurry reconstructions,
whereas FID and KID favor sharp, realistic details in novel views. We remove the
iterative update formulation and add in-painted clean renders for all novel views
simultaneously. This variant performs worse than Sparse 3DGS, highlighting
the need for autoregressive scene generation in our setting. Additionally, we try
to supervise the renderings at novel views using the original 3DGS objective.
However, this performs slightly worse than Eq 5. Note that an SDS-based
formulation [50] is not applicable here due to the two-step nature of generative
view synthesis.

4.5 Scaling to More Views

In Fig 5, we analyze the relevance of diffusion priors with increasing M . We
evaluate Sp2360 and 3DGS on view splits of increasing size with
M ∈ {3, 6, 9, 18, 27, 54, 81}. For M ≤ 27, our method consistently improves
3DGS’ generalization at novel views. We observe that as ambiguities resolve with
increasing scene coverage, diffusion-based regularization becomes less important,
and for M ≥ 54, our method performs either equally or slightly worse across the
6 performance measures.

4.6 Efficiency

Our approach focuses on limited use of multi-view data, minimal training times,
and fast inference. We fit 3D Gaussians to our initial M inputs inside 30 mins
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Table 3: Ablation study on the 9 view split of garden scene. Our combination of
diffusion priors complements each other effectively. Without an iterative schedule to
fuse novel views, our method fairs worse than a regularized baseline. Using the 3DGS
objective for novel view renders leads to slightly worse performance on FID and KID.

Method FID ↓ KID ↓ DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑

3DGS 223.594 0.146 0.247 0.502 14.470 0.287
Sparse 3DGS 200.703 0.127 0.247 0.522 16.589 0.367
Sp2360 w/o Artifact R. 209.477 0.120 0.253 0.528 16.850 0.380
Sp2360 w/o In-painting 151.098 0.071 0.230 0.524 15.121 0.299
Sp2360 w/o Schedule 214.674 0.111 0.277 0.576 14.132 0.292
Sp2360 w/ LD−SSIM 133.875 0.051 0.225 0.502 15.677 0.326
Sp2360 124.768 0.048 0.224 0.504 15.759 0.326

Fig. 5: Scalability of Sp2360 with input views. Our combination of fine-tuned
diffusion priors improves performance of 3DGS up to 27 input views of the bicycle scene,
alleviating the need for dense captures.

and fine-tune the in-painting module in ∼ 2 hrs. Sp2360 trains inside 30 mins on
a single A100 GPU, significantly faster than all baselines with NeRF backbones.
FreeNeRF takes ∼ 1 day while RegNeRF takes > 2 days to train on a single
A40 GPU. Both ZeroNVS* and DiffusioNeRF require ∼ 3 hrs to distill 2D
diffusion priors into Instant-NGP [39], whereas ReconFusion trains in 1 hour on
8 A100 GPUs 1. All 3 approaches use custom diffusion models that take several
days to train on large-scale 3D datasets. On the contrary, we only need 10.5K
samples to obtain a generalized artifact removal module that efficiently eliminates
Gaussian artifacts and recovers image details in the foreground and background.
We currently use a leave-one-out mechanism for the 9 scenes in MipNeRF360 to
train the artifact removal module for a particular MipNeRF360 scene. However,
we only do this to have enough diverse data pairs across the 3 datasets. This
requirement can be easily alleviated using multi-view training data from other
sources. Given the availability of a generalized artifact removal module, our entire
pipeline can reconstruct a 360 scene in under 3.5 hrs on a single A100 GPU.
Courtesy of our 3D representation, we retain the real-time rendering capabilities
of 3DGS.

1 Source: ReconFusion authors
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5 Limitations & Future Work

Despite being a low-cost and efficient approach for reconstructing complex 360◦

scenes from a few views, Sp2360 has certain limitations. Our approach is limited by
the sparse geometry prior from an SfM point cloud, estimated from few views. For
example, the point cloud for 9 views of the bicycle scene only has 628 points. This
prevents our method from achieving even higher fidelity and restricting artifacts
in distant, ambiguous novel views. Owing to the SfM geometry initialization, our
method also cannot reconstruct an entire scene with plausible details from 3 and
6 views and is only limited to novel view synthesis for viewpoints close to the
train viewpoints. DUSt3R [63] is a recent stereo reconstruction pipeline that can
potentially provide a stronger geometry prior. We also plan to evaluate Sp2360
on the MipNeRF360 splits released by ReconFusion and CAT3D, which provide
more scene coverage than our proposed splits, facilitating better extrapolation
by diffusion priors at distant novel views. However, due to lower overlap across
views, COLMAP is not able to register all training images to a unified point
cloud, preventing an appropriate initialization for Sp2360. Integrating DUSt3R
would alleviate this issue as it does not rely on high overlap across image pairs
for 3D reconstruction. We plan to integrate DUSt3R for pose-free sparse-view
reconstruction aided by our diffusion priors for future work.

6 Conclusion

We present Sp2360, a low-cost, data-efficient approach to reconstruct complex
360◦ scenes from a few input images. We proposed a system that combines
diffusion priors specialized for in-painting and Gaussian artifact removal to
generate artificial novel views, which are iteratively added to our training image
set. In our experiments we show that our approach approves over previous
methods on the challenging MipNeRF360 dataset and illustrate the contributions
of individual components in our ablation studies. For future work, we see the
potential of our system to be improved with additional geometry cues from 3D
vision foundation models.
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