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Abstract

Conditional neural processes (CNPs) are a flexible and

efficient family of models that learn to learn a stochas-

tic process from data. They have seen particular ap-

plication in contextual image completion—observing

pixel values at some locations to predict a distribution

over values at other unobserved locations. However,

the choice of pixels in learning CNPs is typically either

random or derived from a simple statistical measure

(e.g. pixel variance). Here, we turn the problem on

its head and ask: which pixels would a CNP like to

observe—do they facilitate fitting better CNPs, and do

such pixels tell us something meaningful about the un-

derlying image? To this end we develop the Partial

Pixel Space Variational Autoencoder (PPS-VAE), an

amortised variational framework that casts CNP con-

text as latent variables learnt simultaneously with the

CNP. We evaluate PPS-VAE over a number of tasks

across different visual data, and find that not only can

it facilitate better-fit CNPs, but also that the spatial

arrangement and values meaningfully characterise im-

age information—evaluated through the lens of clas-

sification on both within and out-of-data distributions.

Our model additionally allows for dynamic adaption of

context-set size and the ability to scale-up to larger im-

ages, providing a promising avenue to explore learning

meaningful and effective visual representations.

1. Introduction

Conditional neural processes (Garnelo et al., 2018a, CNPs)

are a family of models that learn distribution over functions.

In contrast to conventional approaches such as Gaussian

processes, which are effective but become computationally

expensive once the data size increases, CNPs are both flex-

ible regarding the functions they approximate, thanks to

being neural networks, and scalable to large datasets. In the

visual domain, they have been used for contextual image
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Figure 1: (top) The PPS-VAE framework. (bottom) Exam-

ples of meaningful context points induced by the encoder.

completion. Given a context set, a set of ordered pairs—

observed pixel values and their image coordinates—CNPs

learn to impute the other, unobserved, pixels.

While prior work on CNPs primarily focusses on model

choices such as inductive biases that allow capturing various

properties of the context set better (Gordon et al., 2020) or

dependencies between the unobserved pixel values (Garnelo

et al., 2018b), we explore a key dual question—regarding

the context set itself. Where the context set is typically

chosen at random, or derived from some simple statistic

(e.g. pixel variance) to train the CNP, we ask: which pixels

would a CNP like to observe? Do such pixels allow better-

fitting of CNPs, and do they tell us something meaningful

about the underlying image? We explore these questions

from the frame of representation learning, where the context

can be viewed as latent representations of the image—one

that happens to exist in the data space.

From a purely representation-learning perspective, one can

relate the question above with that of learning (a) a dis-

crete feature selector as in Concrete Autoencoder (Balın

et al., 2019, CAE) and (b) a discrete latent ‘code’, as first

established in (van den Oord et al., 2017, VQ-VAE), and sub-

sequently popularised by approaches like DALL-E (Ramesh

et al., 2021). Where the CAE employs a global feature se-

lector, we approximate a posterior distribution and where

1



Autoencoding Conditional Neural Processes for Representation Learning

the VQ-VAE learns an arbitrary code, we learn one that di-

rectly corresponds the pixels in the image and is sufficiently

expressive to capture image content—measured through

reconstruction. Given the interpretation of our model as im-

puting the remainder of the observation from the given pixel

‘codebook’, we bring together the ideas of discrete represen-

tation learning and learning-to-learn stochastic processes

(CNPs) into a single framework—the partial pixel specifica-

tion variational autoencoder (PPS-VAE, shown in Figure 1).

Specifically in this work, we

• develop an amortised variational inference framework

(PPS-VAE) to learn to predict context points that a CNP

can faithfully complete (Section 2),

• provide evidence that learning context along with the CNP

learns a better model over images (Section 3.1),

• demonstrate that the PPS-VAE encodes useful and mean-

ingful information in the learnt context set—evaluated

through both qualitative observation and a classification-

probe task — both in-distribution and out-of-distribution

settings (Section 3.3), and

• highlight the utility, flexibility, and scalability of PPS-

VAE with improved performance using simple post-hoc

augmentations such as dynamic resizing of context sets

and reconfiguration of context sets as tiles (Section 3.3).

2. Model

CNPs. Given function f : X → Y mapping observa-

tions x ∈ X to targets y ∈ Y , and context set C =
{(xm, ym)}Mm=1, a CNP (Garnelo et al., 2018a) learns a

distribution over functions f(x; C)—predicting targets con-

ditioned on context C. For unseen xT = {xt}
T
t=1, the CNP

defines the distribution over yT = {yt}
T
t=1 as

Eq. 1 - CNP’s Predictive Distribution

pθ(yT | xT , C) =

T
∏

t=1

N (yt | µt, σt)

µt, σt = sθ(xt, rθ(C)).

Crucially, it relies on transforming the entire context set C
in a permutation-invariant fashion (Zaheer et al., 2017,

DeepSet) using rθ, to construct the parameters of the distri-

bution through sθ, using neural networks as parameters.

In the image domain, a CNP learns to predict the colour

values yT at unseen locations xT given a set of observed

pixel locations xM and their corresponding values yM . By

observing some small, sparse subset of the image itself, the

task here is to impute the rest of the image. Note that, in this

setting, knowing the set of observed locations xM implies

knowing the set of unseen locations xT , as for images of

y
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Figure 2: CNP generative model (left yellow); PPS-VAE

generative (left) and inference (right) models.

fixed size with x
1 pixel locations, one is the complement

(xT = xM
′) of the other. Learning a CNP in this setting

involves (random) sampling of different context sets and

subsequent imputation of the values at unseen locations,

across a dataset of images.

PPS-VAE. To answer our question of what kinds of con-

text the CNP would like to observe, and how meaningful

this context is, we first cast the CNP as a fully generative

model as shown in Figure 2 (left—yellow area),

Eq. 2 - CNP’s Generative Model

pθ(x,y|M)=pθ(xM) pθ(yM|xM) pθ(yT|xT ,xM ,yM)

Here, M is taken to be a given fixed value, pθ(xM ) defines

a distribution over arrangements of M pixel locations in

an image, and pθ(yM |xM ) a distribution over values at the

given locations. The model can be viewed as generating

data in two stages (autoregressive): first generating the val-

ues corresponding to the context points, and subsequently,

conditioning on these locations and values to impute the

values elsewhere on the image. From this, to get to the full

PPS-VAE generative model, we additionally introduce an

abstractive latent variable a
2 as shown in Figure 2 (left).

The latent variable a acts as an abstraction of the context

set/PPS, providing smooth control over different arrange-

ments and values, while also allowing the model to flexibly

learn the mapping between arrangement of pixel locations

and corresponding pixel vales. The full PPS-VAE genera-

tive model can thus be defined as

Eq. 3 - PPS-VAE: Generative Model

pθ(a,x,y|M)

=pθ(a) pθ(xM |a) pθ(yM |xM ,a) pθ(yT |xT ,xM ,yM )

1
x factorises into xM and xT .

2The parameter θ of the pθ(yM |xM ) distribution is shared
among all data instances. Given that the distribution of values in
a pixel yM can vary enormously depending on the (both global
and local) arrangements of xM , the model will typically struggle
to faithfully learn such a distribution across all data instances. We
tackle this issue by introducing an abstractive latent variable a.
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pθ(a)
abstract.

= N (a|0,1)

pθ(xM |a)
locations

=

M
∏

m=1

GS(xm|g1θ(a))

pθ(yM |xM ,a)
pixel values

=

M
∏

m=1

N (ym|g2θ(xM ,a))

pθ(yT |xT ,xM ,yM )
pixel values

=

T
∏

t=1

N (yt|g
3
θ(xT ,xM ,yM ))

where g1θ , g
2
θ , andg3θ are parametrised neural networks that

transform input values to corresponding distribution param-

eters, and GS is the Gumbel-Softmax distribution (Maddi-

son et al., 2017; Jang et al., 2017) which provides a con-

tinuous relaxation of the discrete distribution—enabling

reparametrised gradient estimation.

The standard CNP formulation estimates the marginal

pθ(y|M) by sampling uniformly at random from p(xM ).
One can instead construct a more informative importance-

sampled estimator by employing a variational posterior

qφ(xM |y,M) in the vein of Kingma & Welling (2014,

VAE). Crucially, given a means to generate locations xM ,

one can simply lookup the image y at those locations to

derive yM—an observation itself—as shown in Figure 2

(right). From a representation-learning perspective, the con-

text set can be seen as a partial pixel specification (PPS) of

the image. The corresponding inference model is

Eq. 4 - PPS-VAE: Inference Model

qφ(a,xM |y,M) = qφ(xM |y) qφ(a|xM ,yM )

qφ(xM |y)
locations

=

M
∏

m=1

GS(xm|h1
φ(y, x<m)) (4a)

qφ(a|xM ,yM )
abstract.

= N (a|h2
φ(xM ,yM )),

where the generative model independently factorises

pθ(xM |a), and the posterior uses an autoregressive formu-

lation. Again, h1
φand h2

φ are parametrised neural networks

that transform inputs to distribution parameters. In Equa-

tion (4a), x<m is the set of pixel locations up to step m. For

m = 1 it is assumed to be null.

Putting the generative and inference models together, we

construct the variational evidence lower bound (ELBO) as

log pθ(y|M) ≥ Eqφ(a,xM |y,M)

[

log
pθ(a,x,y|M)

qφ(a,xM |y,M)

]

,

which can be further expanded as

Eq. 5 - PPS-VAE: ELBO

Eqφ(a,xM |y)

[

log pθ(yT |xT ,xM ,yM )pθ(yM |xM ,a)
]

−

−DKL (qφ(a,xM |y)∥pθ(a,xM ))

where yM and yT are observations derived as y ⊙ xM

and y ⊙ xT respectively—lookups for complementary sets

of pixel locations. Note that the abstractive latent a is

reversed in the generative vs. inference models—a loca-

tion xm sampled from the posterior can only be scored in

the generative model once the corresponding a has been

sampled. This ensures that the complex transformation in-

volved in xM → yM is captured by the abstractive latent.

Inductive biases. In the first instance, given our focus on

the visual domain, we employ a specific variant of CNPs

called the ConvCNP (Gordon et al., 2020), which explic-

itly incorporates translation equivariance and locality con-

straints enforced by convolutional neural network (CNN)

filters. We use this same inductive bias with CNNs in the

inference model qφ(xM |y). We find this to be an important

design decision, as attempting to model these components

using the standard multi-layer perceptron (MLP) Garnelo

et al. (as in 2018a) causes issues, primarily with the model

using the context set/PPS as a generic lookup table, with

little to no spatial meaning (see Appendix D). The CNN-

based setup provides the requisite inductive bias that allows

meaningful spatial arrangement of points (see Section 3.2).

3. Experiments
Our primary goal here is to understand properties of the

context set/PPS. For this we:

• Estimate the log marginal distribution to understand if the

learned (rather than randomly sampled) context set helps

better model the images (Subsection 3.1),

• Analyse the kinds of points the model chooses; 1-to-1

correspondence between the PPS and an image allows us

to perform a visual inspection (see Subsection 3.2),

• Quantify how representative the context set is of the object

classes. We do this through the lens of classification,

by probing the context set on: 1) in-distribution —PPS-

VAE pre-training dataset and the classification dataset

are the same, 2) out-of-distribution (OOD) datasets—pre-

training dataset differs from the classification dataset (see

Subsection 3.3). Moreover we discuss an ability of the

PPS encoder to change capacity during inference, and

• Demonstrate flexibility and scalability through larger im-

ages and OOD reconstruction (see Subsection 3.4).

Datasets. We use four standard vision datasets: FER2013

(Erhan et al., 2013), CelebA (Liu et al., 2015, CelA),

CLEVR (Johnson et al., 2017) and Tiny ImageNet (Mn-
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(a) CLEVR, M = 32 (b) CLEVR, M = 128

(c) CelA, M = 32 (d) CelA, M = 128

(e) t-ImageNet, M = 32 (f) t-ImageNet, M = 128

Figure 3: Visualisation of the spatial arrangement of the context set for PPS-VAE on three datasets (test images): CLEVR

(a,b) and CelA (c,d) and t-ImageNet (f,e). In each figure [a-f] the first row corresponds to the original image, together with

the inferred context set denoted by the yellow squares. The second row corresponds to the reconstructed images.

moustafa, 2017, t-ImageNet) with resolution at 64×64.

Models. For all datasets we train PPS-VAE with M =
{32, 64, 128}. Where concerned with performance on a

metric, PPS-VAE with M = 128 perform the best, re-

sults for other M ’s are in Appendix F. To better ground

the experimental results, we employ three baselines: VQ-

VAE (van den Oord et al., 2017), FSQ-VAE (Mentzer et al.,

2023) and PPS-CAE a variant of CAE (Balın et al., 2019)

where we use the same encoder and set ConvCNP (Gordon

et al., 2020) as a decoder. Also, in Section 3.1 we fit Con-

vCNP with the random selection of points and in Subsection

3.3 we use RAND-PPS model — an encoder that randomly

samples M points from an image. We train the models once

Table 1: Estimated log pθ(y|M)(↑) with 800 samples. For

all models M = 128. - the best performance.

FER2013 CelA CLEVR t-ImageNet

PPS-VAE 4951 14210 16611 16324

PPS-CAE 4471 12162 16089 15832

ConvCNP 4472 12064 15981 15793

and use them in all the experiments (details in Appendix A).

3.1. Model Fit

Here we estimate log pθ(y|M) (see Appendix B) and use

it to compare the models (see Table 1). The first observa-

tion is that PPS-CAE outperforms ConvCNP on all dataset

but one, which provides evidence that learning context set

helps modelling distribution over the images. The second

observation is that learning posterior of the context set (PPS-

VAE) instead of just a prior (PPS-CAE) provides a further

improvement. In Appendix C, for PPS-VAE, we further

estimate log pθ(y|M) for various values of M and find that

for all datasets, increasing M results in better performance.

Findings: Learning (instead of randomly sampling) context

set helps modelling distribution over the images.

3.2. Visual Inspection of PPS

Since there is 1-to-1 correspondence between pixels in the

context set an the original image it allows us to perform a

qualitative observation of the chosen pixels and put forward
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Table 2: Object classification (in-distribution): Classifiers trained over three seeds with early stopping, reporting mean

F1-macro scores. A:13—Chubby, A:20—Male, A:25—Oval Face. - ± - best performance among models with an encoder;

- ± - absolute best performance. 128→256 means the model was trained on M = 128 and evaluated with M = 256.

CelA (A:13) CelA (A:20) CelA (A:25) FER2013 CLEVR t-ImageNet

B
A

S
E

L
IN

E
S

PPS-RAND (points) 60.92 ± 1.28 90.89 ± 0.06 56.20 ± 0.87 34.97 ± 0.38 36.17 ± 3.39 21.86 ± 0.31

PPS-RAND (post-hoc tiles) 66.91 ± 1.01 95.10 ± 0.16 60.09 ± 0.24 43.30 ± 0.43 63.20 ± 0.89 33.52 ± 0.23

PPS-CAE (points) 61.29 ± 0.91 91.35 ± 0.14 58.36 ± 0.45 35.28 ± 0.50 48.50 ± 2.77 22.53 ± 0.30

PPS-CAE (post-hoc tiles) 67.16 ± 0.90 95.46 ± 0.07 60.75 ± 0.67 44.32 ± 0.66 74.85 ± 0.49 33.55 ± 0.20

VQ-VAE 68.59 ± 0.04 94.83 ± 0.13 62.44 ± 0.34 50.98 ± 0.52 75.91 ± 0.47 29.02 ± 0.08

FSQ-VAE 68.19 ± 0.81 95.21 ± 0.11 62.28 ± 0.22 45.46 ± 0.15 73.27 ± 0.36 31.03 ± 0.40

O
U

R

PPS-VAE (points) 69.00 ± 0.38 94.86 ± 0.12 62.13 ± 0.50 46.72 ± 0.62 90.21 ± 0.28 29.56 ± 0.27

PPS-VAE (points) 128→256 69.94 ± 0.50 95.70 ± 0.07 62.02 ± 0.50 51.61 ± 0.57 93.38 ± 0.64 33.93 ± 0.16

PPS-VAE (post-hoc tiles) 70.94 ± 0.09 96.21 ± 0.04 62.94 ± 0.10 49.38 ± 0.39 94.62 ± 0.28 35.00 ± 0.04

Image 73.47 ± 0.49 97.55 ± 0.02 64.49 ± 0.25 61.56 ± 0.17 91.90 ± 0.30 43.68 ± 0.03

hypothesis regarding how PPS-VAE abstracts information

for different settings of M . Results are shown in Figure 3,

with additional examples given in Appendix L.

The patterns that context sets form can be summarised with

the following observations: (1) boundary points between

objects and the background generally describe shape, (2)

points on the object can capture ‘interior’ colour, and part

locations and (3) background points capture complexity

outside the objects (e.g. uniform colour etc.).

We also emphasise that these patterns are more pronounced

when M is sufficiently large (e.g. M = 128). However,

when M relatively small compared to the complexity of an

image, the context set appears scattered—possibly because

the model tries to “cover” the complexity of the image, by

exploring the image space rather than exploiting any region;

the former is likely to reconstruct the whole image better.

Findings: The analysis shows that, when M is sufficiently

large, the context set forms pronounced patterns with the

following three types of points: boundary points around

objects, points inside an object and background points.

3.3. Quantitative Analysis: PPS Probing

Having observed that the context sets/PPS do indeed appear

to capture meaningful features, we conduct further analyses

to quantify how meaningful they can be. We do this through

the lens of classification, by probing the context set/PPS

(yM ) (in in-distribution and out-of-distribution settings) to

see how well it captures class-relevant information. Note

that we simply use this as a mechanism to evaluate how well

the model captures class-specific information; we do not

attempt to engineer a SOTA classifier.

PPS. To evaluate the utility of the context set/PPS yM

suffices (also referred to as points). Using the location

variable xM did not provide further benefit. For all the

datasets we set M = 128, which is ≈ 3.13% of the original

number of pixels. As an additional experiment, we augment

yM at inference time by adding to each pixel in yM 8

neighbouring pixels—creating 3×3 tiles after pre-training.

We call these post-hoc tiles. This achieves two things: (1)

increase the amount of information in the latent without re-

training the model and (2) test if the points in yM represent

content well enough for a task and if surrounding points

help. This augmentation increases the size of PPS to ≈
28.13% of the original number of pixels.

Baselines. The first baseline employs the whole image y

(denoted Image), and is used as a yardstick to see how

well a restricted context set does. The second baseline em-

ploys a random selection of context points yM (denoted

PPS-RAND) to provide contrast against a more informative

selection of context set. Given the discussion in Section 4 of

how the FSQ/VQ-VAE3 can be seen as a selective codebook,

but without spatial meaning, we employ it as an additional

baseline to see how the constraint of spatial relevance af-

fects classification. Finally, we use PPS-CAE to benchmark

global vs instance-specific context sets.

Classification Tasks. The datasets we chose for the pre-

training of PPS-VAE and the baseline models come with

associated classification tasks. Such that t-ImageNet comes

with labels of 200 different classes, FER2013 associate each

facial expression with one of the seventh emotion categories,

CLEVR comes with labels for number of objects in an image

and finally CelebA includes 40 binary attributes associated

with facial characteristic. We select 3 generic attributes:

A:13 — Chubby, A:20 — Male, A:25 — Oval Face.

Classifier. As the base classifier, we employ the Con-

vMixer (Trockman & Kolter, 2023) architecture, training

each instance entirely from scratch. The encoders of PPS-

3See Appendix A.1 for the information about the parametrisa-
tion and the codebook size.
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Table 3: Object classification — out-of-distribution (OOD) setting. Classifiers trained over three seeds with early stopping,

reporting mean F1-macro scores. A:13 — Chubby, A:20 — Male, A:25 — Oval Face. * indicates in-distribution performance

copied from Table 2; - ± - indicates the best OOD performance. All PPS based models are evaluated on points.

CelA (A:13) CelA (A:20) CelA (A:25) CLEVR t-ImageNet
P

P
S

-V
A

E CelA *69.00 ± 0.38 *94.86 ± 0.12 *62.13 ± 0.50 80.27 ± 1.06 29.59 ± 0.25

CLEVR 67.02 ± 0.38 93.39 ± 0.09 60.33 ± 0.25 *90.21 ± 0.28 25.05 ± 0.22

t-ImageNet 67.09 ± 0.34 93.68 ± 0.14 61.28 ± 0.40 80.66 ± 0.59 *29.56 ± 0.27

F
S

Q
-V

A
E CelA *68.19 ± 0.81 *95.21 ± 0.11 *62.28 ± 0.22 69.07 ± 0.63 29.24 ± 0.07

CLEVR 69.21 ± 0.88 94.90 ± 0.03 62.58 ± 0.25 *73.27 ± 0.36 28.48 ± 0.37

t-ImageNet 70.04 ± 0.24 95.07 ± 0.02 62.87 ± 0.24 69.35 ± 0.66 *31.03 ± 0.40

V
Q

-V
A

E CelA *68.59 ± 0.04 *94.83 ± 0.13 *62.44 ± 0.34 68.22 ± 0.31 28.56 ± 0.26

CLEVR 66.28 ± 0.57 92.93 ± 0.12 60.82 ± 0.27 *75.91 ± 0.47 24.16 ± 0.22

t-ImageNet 68.92 ± 0.24 94.40 ± 0.07 62.44 ± 0.13 68.26 ± 0.32 *29.02 ± 0.08

P
P

S
-C

A
E CelA *61.29 ± 0.91 *91.35 ± 0.14 *58.36 ± 0.45 37.22 ± 2.53 23.00 ± 0.64

CLEVR 61.59 ± 0.50 91.77 ± 0.05 58.09 ± 0.50 *48.50 ± 2.77 23.82 ± 0.08

t-ImageNet 61.80 ± 0.91 90.78 ± 0.08 58.29 ± 0.46 37.22 ± 0.34 *22.53 ± 0.30

VAE and the baseline models: VQ-VAE, FSQ-VAE and

PPS-CAE are held frozen during the training of the classi-

fier — only the parameters of ConvMixer are trained. We do

not perform additional data preprocessing or augmentation.

This give us better signal of whether the performance gains

are from information encoded in the representations.

In-Distribution vs Out-Of-Distribution Settings. In the

in-distribution setting the data used to pre-train the model

and the classifier are the same. In the out-of-distribution

setting, we take a pre-trained model over a dataset, say t-

ImageNet, and evaluate it on say, the CelA and CLEVR

datasets. As before, the encoders stay frozen.

3.3.1. IN-DISTRIBUTION SETTING: RESULTS

Based on Table 2 we make the following observations.

PPS vs Baselines. First, the arrangements of points in-

ferred by PPS-VAE is more indicative of the class than

of PPS-RAND. This indicates that the model performs ab-

straction to preserve the information related to class labels.

Second, on average, PPS-VAE performs on par with the

baseline models with the pre-trained encoder: FSQ-VAE,

VQ-VAE on FER2013, t-ImageNet and CelA datasets, while

outperforming the models with a large margin on CLEVR.

The performance on CLEVR is associated with identifying a

right number of objects, hence the high classification perfor-

mance achieved by PPS-VAE shows that it has potential to

represent abstract object information. Also, not surprisingly,

context-set learned by empirical prior of PPS-CAE lags be-

hind of PPS-VAE. This is because PPS-VAE allows us to

infer an instance specific context-set while PPS-CAE infers

global context set, which may lack instance specific infor-

mation required for the task. Finally, ConvMixer trained

on the original images performs the best on average, which

isn’t too surprising since y contains the original information,

while the baselines and PPS-VAE learn abstractions which

may result in information loss.

Post-hoc Tiles. When augmented with the post-hoc tiles

representations inferred by PPS-VAE dominate the base-

lines only marginally lagging behind VQ-VAE on FER2013.

Moreover, the PPS-VAE with post-hoc tiles outperforms

the Image baseline on the CLEVR dataset.

Extrapolation of M at Inference. A differentiating prop-

erty of our model is the ability to increase the capacity of

the latent representation (PPS) at inference time. We can

encode more information in the context set by simply in-

creasing M , without retraining the model unlike in the case

of VQ-VAE and FSQ-VAE. This can be beneficial in scenar-

ios where a downstream task is complex and M used during

the training is not high enough (e.g. due to the computa-

tional constraints) to encode all the relevant information to

achieve desirable performance on the task. Figure 4 depicts

what happens to PPS when the capacity is decreased (left im-

128 → 32 128 128 → 256

Figure 4: Visualisation of PPS for changing of M at infer-

ence time. PPS-VAE was pre-trained with M = 128.
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Table 4: F1-macro scores. Object classification — out-of-

distribution setting but with trained classifiers (trained in

128 → 256 Table 2 experiment).* indicates in-distribution

performance copied from Table 2. A:13—Chubby, A:20—

Male, A:25—Oval Face.

CelA CLEVR t-ImageNet

CelA (A:13) *69.94 ± 0.50 68.47 ± 2.39 67.98 ± 1.80

CelA (A:20) *95.70 ± 0.07 95.71 ± 0.07 95.71 ± 0.05

CelA (A:25) *62.02 ± 0.50 61.11 ± 0.83 61.28 ± 0.96

CLEVR 92.56 ± 0.40*93.38 ± 0.64 92.60 ± 0.40

t-ImageNet 33.80 ± 0.40 33.59 ± 0.13*33.93 ± 0.16

age) or increased (right image). Performance wise when the

capacity is increased 128 → 256 the classification perfor-

mance approaches the post-hoc tiles, even allows achieving

best performance on FER2013 among the baselines (see

Appendix G).

3.3.2. OUT-OF-DISTRIBUTION SETTING: RESULTS

We provide results in Table 3 and make the following ob-

servations. First, PPS-VAE, FSQ-VAE and VQ-VAE still

perform strongly compared to the in-distribution setting.

Moreover, while PPS-CAE displays slight increase in per-

formance on most of the datasets except CLEVR, for both

in-distribution and OOD settings classification performance

is close to random. Second for PPS-VAE, FSQ-VAE and

VQ-VAE, pre-training on t-ImageNet allows better gen-

eralisation to OOD images than when pre-trained on the

other two datasets. Overall we conclude that the context set

learned by the PPS-VAE provides a degree of generalisa-

tion, but this varies with the dataset. The same applies to

FSQ-VAE and VQ-VAE. We provide additional qualitative

observations for PPS-VAE in Appendix M.

Extrapolation of M at Inference. We also test if the in-

creased capacity of PPS can be used in the out-distribution

setting. We reuse the pre-trained encoders and the

classifiers—trained in the previous Subsection see ( 128 →
256 Table 2 experiment). We report results in Table 4 and

note that these are very close to the in-distribution settings

suggesting that increased capacity does not jeopardise out-

of-distribution generalisation. The classifiers can be reused

with minimal loss in the performance if any.

Findings: In-distribution: probing reveals that 1) the con-

text set preserves class label information which is on par

or better than baselines 2) augmented or increased capac-

ity yM provides better features for the classifier than the

original image y on CLEVR dataset. Out-of-distribution:

representations learned by PPS-VAE, FSQ/VQ-VAE are

robust to out-of-distribution images and can be used with a

slight loss of performance on the tasks associated with the

images. The degradation of performance depends on the

Figure 5: Spatial arrangement of the context set for PPS-

VAE tiles. Image size is 256×256, with 8×8 tiles.

pre-training dataset.

3.4. Miscellaneous Properties

3.4.1. SCALABILITY

Encoder of PPS-VAE is autoregressive. As with any autore-

gressive model, a particular bottleneck is its computational

complexity, which gets worse with increasing sequence

length (M ). Let T be a computation complexity of a com-

putational block (e.g. CNN) and let the encoder and the

decoder is build of the same block. Then the computational

complexity will be O(M ∗ T ) assuming M is larger than

the number of the blocks in the decoder. In this section we

discuss how to ameliorate this.

Parallel Inference of Points. One way to speed up the

encoder is to make inference of the points in the context set

independent of each other — inference of all M points in

one shot. However, in previous experiments, we found that

it results in inferior performance compared to an autoregres-

sive encoder (see Appendix E). Instead, we use mixture of

the two — autoregressive encoder, which at each step infers

K points in parallel instead of 1. This reduces complexity

to O(M/K ∗ T ). In our experiments we set K = 8.

Tiles. PPS-VAE is also scalable to large image size. To

achieve this we introduce an additional convolutional layer

to the encoder that reduces the resolution of an image to

specified size - otherwise the model stays the same. For

example, given an image of resolution 256×256 the encoder

reduces it to 32×32 by producing non-overlapping tiles of

size 8×8 (see Figure 5). The decoding is happening in the

original resolution 256×256.

3.4.2. ZERO-SHOT RECONSTRUCTION

Additionally, we test if PPS-VAE can reconstruct an image

from an out-of-distribution dataset. We take a pre-trained

model on one of the three datasets and evaluate on the re-

maining two. The results can be found in Appendix M.
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When PPS-VAE pre-trained on either CelA or t-ImageNet

it can reconstruct images from an out-distribution dataset.

For example when trained on CelA it can reconstruct ge-

ometric shapes of CLEVR or generic object such as car

of t-ImageNet, though with a reduced quality. However,

when pre-trained on CLEVR the reconstruction is poor and

a lot of artefacts are introduced. The same is observed for

FSQ/VQ-VAE (see Appendix M).

4. Related Work

CNPs (Garnelo et al., 2018a) are a flexible and scalable

framework for modelling distributions over functions. The

framework, now more generally referred to as Neural Pro-

cess Family (NPF) have seen increased popularity, with the

different approaches exploring a range of features of the

model. One such approach is the adaption of the CNP to

properties of the data (Gordon et al., 2020; Kawano et al.,

2021; Nassar et al., 2018). Another approach seeks im-

proved modelling of the output dependencies between func-

tion values (Garnelo et al., 2018b). Various other approaches

exist; see Jha et al. (2022) for an extensive survey. While

all such approaches explore the model’s features, to the best

of our knowledge, none explore the characteristics of the

context set itself.

From a representation-learning perspective, the closest to

ours is the VQ-VAE (van den Oord et al., 2017). The ability

to discretise representation, and learn such a discrete ‘code-

book’ through differentiable variational inference that the

VQ-VAE employs, has seen successful use in more advance

models such as DALL-E (Ramesh et al., 2021). However

the types of codebooks that VQ-VAE learns are not inter-

pretable, and it typically needs additional components, such

as learning a separate prior, in order to truly function as a

generative model over observed data.

The perspective of learning latent representations/features

that apply directly on the data domain, can also be compared

to work that exposes attention mechanisms (Bahdanau et al.,

2015; Mnih et al., 2014) employed for tasks. The process

of inferring context points can be interpreted as a locally-

restrictive way of attending to relevant parts of the image

data. Specifically, such a perspective aligns best with hard

attention methods (Mnih et al., 2014) as opposed to soft-

attention (Bahdanau et al., 2015) by virtue of explicitly

selecting particular pixels.

Furthermore, inferring context points can also be viewed

as a variant of Masked Image Modelling (Pathak et al.,

2016, MIM). MIM involves learning models and represen-

tation in a self-supervised fashion by masking parts of an

image and attempting to impute them. More recently, this

has been studied extensively as masked autoencoders (He

et al., 2022, MAE). The imputation task itself is strongly

connected to what CNPs do, and one could ask a similar

question of MIMs that we ask of CNPs: what kinds of

masks do MIMs like to impute? In fact such a question

was indeed asked in work by Shi et al. (2022, ADIOS) who

learnt masks simultaneously with a feature extractor in an

adversarial fashion. This however, is not generative, and

as with as masking-based approaches, involves complica-

tions with how to specify and generate masks in a sensible

manner. A key distinction is in terms of the sparsity of

observed data—MIM and related approaches typically im-

putes a small part of the image, where CNPs have a more

complex task given sparse input. PPS-VAE employs con-

text points as weak specifiers of which parts of the image to

contextualise, leaving to the CNP itself the question of how

to use that specification to capture relevant local and global

information from the data.

5. Discussion

We present PPS-VAE, a novel VAE framework that allows

us to infer context set/PPS for conditional neural processes

(CNPs). We formulate our model and evaluate it across mul-

tiple vision datasets, while exploring the utility of learning

context sets in both unsupervised and supervised manner.

First, we show that the learning distribution over PPS results

in better models for images. Then, we observe that with

the appropriate inductive biases and latent variables, the

model is able to induce context sets that are visually mean-

ingful. We validate this observation quantitatively through

the lens of classification. On the classification tasks, PPS-

VAE achieves superior performance against the baselines

and PPS resulting in better features for a classifier than an

original image is on the CLEVR dataset indicating that the

framework has promise as a model for learning meaningful

representations of data. Additionally, we test our model

on the same classification tasks but in out-of-distribution

settings showing that it can infer PPS that generalises to an

out-of-distribution datasets. Also, we show a differentiating

property of PPS-VAE — an ability to change the capacity of

PPS at inference time. Our model, however, has a number

of limitation which we would like to outline:

• Presently we provide an observatory analysis of the in-

duced context set and put forward hypothesis regarding

types of points the model learns. However, human level

interpretability of the context set is limited. To improve it,

instead of inferring a single location, a more interpretable

encoder could capture M ‘closed’ regions. This would

allow us to compare against the slot-attention models such

as Locatello et al. (2020).

• Exploration of inductive biases, and modelling updates

would be interesting avenues to see if the latent variable

can capture relevant information more cleanly.

• Presently we fix M to a certain value and provide analysis

8
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for its various values. However, it may be limiting to

decide on the value of M beforehand because we do not

know what value would be optimal for each image in a

dataset. Allowing the model to decide on the value of M
during the learning based on dataset may solve this issue.

6. Rebuttal Clarifications

6.1. How the three tasks for CelebA were chosen?

The subset of features we chose were intended to help dis-

criminate generic whole-image attributes rather than sim-

ply the specific attributes e.g. presence of glasses. The

idea being that identifying the presence of a feature/ob-

ject that had no interesting localisation features would not

tell us much about the usefulness of the PPS representa-

tion—glasses for people in CelebA occur roughly in the

same image locations in the same form across the data, as

does a beard, etc., whereas chubbiness, (labelled) gender,

and facial shape types are more interesting from a spatial

layout and associated-feature perspective.

6.2. The role of the latent variable a in the model

(Section 2)

Consider a case where xM denotes the locations of the use-

ful pixels for an image of someone’s face. While knowing

the locations could indicate something useful about the struc-

ture of the face, just knowing the locations does not tell us

about the eye colour, or hair colour, of the specific instance

being reconstructed. Since the parameter θ is a globally

learnt one (i.e it learns a single value across dataset, and is

not conditioned on any one image instance), the distribution

defined by p(yM |xM ) can be quite high variance.

To alleviate this problem, we use the abstractive variable

a to help capture both arrangement of points and some in-

formation about their associated values—so something like

blonde-hair and brown eyes can be better associated together

if such associations are prevalent in the data. For example,

one can view sampling from a as saying sample points for

a ’chubby’ face (spatial layout) with ’green eye’ (feature

value), and then use it to condition the actual sampling of

p(xM |a), and p(yM |xM ,a).

6.2.1. WHY NOT USING A NP (GARNELO ET AL.,

2018B) FOR pθ(yM |xM ,a) THAT ALREADY HAS

AN INHERENT LATENT VARIABLE?

(C)NPs with an inherent latent variable motivates its use

to help prediction given context points. That is, they use

the entire context set (xM ,yM ) to help predict the value

p(yT |xT , z) for the inherent latent z. We on the other hand,

employ the abstractive latent a to predict the context set

itself; i.e. we wish to obtain p(xM |a), p(yM |xM ,a), not

the target predictions (xT ,yT ). The difference is that in

LNPFs (Dubois et al., 2020), the latent variable lies between

the context set and target set. In our case, it comes before

the context set.

6.3. Improved performance of PPS-VAE on CLEVR

over the full image (Table 2)

Our hypothesis is that using a representative subset of pixels

that encodes sufficient information to reconstruct the image

helps regulate the signal-to-noise ratio of the information

necessary for any given classifier. While the relevant in-

formation is likely present in both the PPS representation

and the whole image, for a fixed classifier, lower noise, by

avoiding redundant or extraneous pixels, can result in better

performance. For example, a colour of an object may be

similar to the background colour and this may confuse a

classifier, while PPS-VAE helps focus on the objects.

6.4. Why we did not use the newer CNPs?

It is indeed true that our core idea is agnostic to the type

of CNP employed in the decoder and the newer models e.g.

Nguyen & Grover (2022); Feng et al. (2023a) can be incor-

porated into our PPS-VAE framework. However, the idea

we explore is if, and how well, a model can learn to choose

its own context set, given a sufficiently capable ’completion’

model. As described in Appendix D, we find that the induc-

tive bias provided by the CNNs plays an important role in

ensuring that the model learns to choose context points that

capture spatial regularities and patterns.
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A. Implementation and Training of PPS-VAE

We parameterise the PPS-VAE with CNN neural networks. More concretely, we use convolutional blocks similar to

ConvNetXt (Liu et al., 2022), with Leaky ReLU activation function. We found that with GELU activation function training

of PPS-VAE can be unstable. Also, we do not decrease the H×W dimensions of the original image, hence the induced

x1:M ∈ {0, 1}B×H×W×1 and y1:M ∈ [0, 1]B×H×W×C , where B is the batch size. However, we represent the latent

variable a in a vector such that a ∈ R
B×D. We set D to be 32, however any other values would work.

We optimise the parameters of the model with the AdamW (Loshchilov & Hutter, 2019) optimiser, setting the learning rate

to 2 ∗ 10−4 and we also enable the amsgrad (Reddi et al., 2018). We train the PPS-VAE for 200 epochs This is sufficient for

the models to converge on the datasets (we provide code, which includes the implementation of the model).

A.1. Baseline Models

A.1.1. VQ-VAE

The encoder of the VQ-VAE comprises of the 2 vanilla convolutional layers and 3 ResNet blocks. The decoder comprises

of the 3 ResNet blocks and two transposed convolutions. Between the layers we insert ReLU activation function. The

codebook is initialised with the xavier uniform initialiser (Glorot & Bengio, 2010). The latent representation of an image

z ∈ R
B×J×S×D, where J and S are the reduced height and width of the original image and D is the dimensionality of the

vectors in the codebook. For each of the datasets the number of the scalars in the codebook matches the number of elements

in an original image. For example if an image has 3 colour channels and resolution of 64x64 then the total number of the

scalar elements in the code book will be 64*64*3. The are multiple of ways to achieve this, we stick to the following. We

set the number of vectors in the codebook to 64 and the dimensionality of the vectors to 64*3. We optimise the parameters

of the model with the AdamW optimiser, setting the learning rate to 2 ∗ 10−4 and we also enable the amsgrad. We train the

models for 200 epochs.

A.1.2. FSQ-VAE

For FSQ-VAE we reuse the encoder and the decoder architecture of the VQ-VAE. We set the following number of of levels

per channel: for the colored images: [8, 8, 7, 6, 5] and [6, 6, 5, 5, 5] for black and white images. As in the VQ-VAE we

choose the leves to roughly match the number of elements in an image. We optimise the parameters of the model with the

AdamW optimiser, setting the learning rate to 2 ∗ 10−4 and we also enable the amsgrad. We train the models for 200 epochs.

A.1.3. PPS-CAE

The encoder of PPS-CAE model comprises of M 64*64 learnable parameters. These parameters are used to parameterise the

Gumbel-Softmax distribution. We use the same pθ(yT |xT ,xM ,yM ) decoder as for PPS-VAE. We optimise the parameters

of the model with the AdamW optimiser, setting the learning rate to 2 ∗ 10−4 and we also enable the amsgrad. We train the

models for 200 epochs.

A.2. ConvMixer Classifier

Our ConvMixer classifier has four hyperparameters: depth, kernel size, number of filters and patch size.

Table 5: ConvMixer parameters.

PPS-VAE FSQ-VAE VQ-VAE PPS-CAE Image

depth: 5 5 5 5 5

kernel size: 11 3 3 11 11

number of filters: 256 256 256 256 256

path size: 1 1 1 1 1

We had to reduce the kernel size for the VQ-VAE and FSQ-VAE because it resulted in overfitting and mainly inferior

performance.
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B. Log Marginal Likelihood Estimation

In this section we show how we estimate log marginal likelihood of log pθ(y|M).

B.1. Estimation for PPS-VAE

log pθ(y|M) ≈ log

[

1

N

N
∑

i=1

pθ(a
i,xi,y|M)

qφ(ai,xi
M |y,M)

]

; a
i,xi

M ∼ qφ(a,xM |y,M)

B.2. Estimation for ConvCNP and PPS-CAE

Given the CNP’s generative model:

pθ(x,y|M)=pθ(xM ) pθ(yM |xM ) pθ(yT |xT ,xM ,yM )

we estimate the log marginal likelihood as:

log pθ(y|M) ≈ log

[

1

N

N
∑

i=1

pθ(yT |x
i
T ,x

i
M ,yi

M )

]

; x
i
M ∼ pθ(xM ),

where pθ(yM |xM ) is delta function (=1), because of the deterministic look of yM values.

C. Log Marginal Likelihood vs M
Table 6: Estimated log pθ(y|M)(↑) for PPS-VAE (see Appendix B) with 800 samples.

FER2013 CelA CLEVR t-ImageNet

M = 32 4111 11569 16529 15645

M = 64 4711 13251 16604 16269

M = 128 4951 14210 16611 16324

D. Inductive Bias: MLP CNP

In the earlier version of the PPS-VAE model, we found that the parametisation of the model with MLP layers as in (Garnelo

et al., 2018a) may bias the model to infer points around the edges of an image (see Figure 6a).

(a) M = 30

Figure 6: Visualisation of the spatial arrangement of points in the context sets for the CNP decoder parameterised by the

MLP — conducted on the FashionMNIST dataset. The first row corresponds to the original image, together with the inferred

context set denoted by the yellow circles. The second row corresponds to the reconstructed images. The context sets inferred

on the test images.
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Table 7: Object classification for two datasets: FashionMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky & Hinton,

2009). M = 60. Resnet-18 classifiers trained from scratch over three seeds with early stopping, reporting mean F1-macro

scores. PPS-VAEa is the PPS-VAE with the autoregressive encoder used in the main paper. PPS-VAEi is the PPS-VAE

with independent encoder over xM : qφ(xM |y) =
∏M

m=1 GS(xm|hφ(y)), where hφ is a parametrised neural network that

transform inputs to distribution parameters

FashionMNIST CIFAR-10

PPS-VAEa (points) 88.0 ± 0.0 76.7 ± 0.5

PPS-VAEi (points) 86.0 ± 0.0 68.0 ± 0.0

Table 8: Object classification. PPS-VAE (M vs F1). Classifiers trained over three seeds with early stopping, reporting mean

F1-macro scores. A:13 — Chubby, A:20 — Male, A:25 — Oval Face.

CelA (A:13) CelA (A:20) CelA (A:25) FER2013 CLEVR t-ImageNet

M = 32 57.62 ± 0.85 88.28 ± 0.07 57.57 ± 0.88 29.19 ± 3.73 68.58 ± 0.17 13.59 ± 1.72

M = 64 63.46 ± 0.66 91.81 ± 0.03 60.04 ± 0.70 40.18 ± 0.41 84.91 ± 1.43 21.49 ± 1.75

M = 128 69.00 ± 0.38 94.86 ± 0.12 62.13 ± 0.50 46.72 ± 0.62 90.21 ± 0.28 29.56 ± 0.27

E. Parallel vs Autoregressive Encoder

F. Classification Results: Number of Points in Context Sets vs Classification Performance

G. Classification Results: Increasing Number of Points in Context Sets at Inference Time
Table 9: Object classification. PPS-VAE (M vs F1). Classifiers trained over three seeds with early stopping, reporting mean

F1-macro scores. A:13 — Chubby, A:20 — Male, A:25 — Oval Face.

CelA (A:13) CelA (A:20) CelA (A:25) FER2013 CLEVR t-ImageNet

M = 32 → 64 62.81 ± 0.50 91.34 ± 0.13 58.74 ± 0.70 39.57 ± 0.21 82.61 ± 1.65 20.30 ± 1.23

M = 32 → 128 65.54 ± 0.32 92.80 ± 0.11 60.26 ± 0.99 45.16 ± 0.33 87.59 ± 0.32 25.78 ± 0.20

M = 64 → 128 67.50 ± 0.68 94.11 ± 0.06 61.68 ± 0.42 47.23 ± 0.32 91.15 ± 0.37 27.98 ± 0.70

M = 128 → 256 69.94 ± 0.50 95.70 ± 0.07 62.02 ± 0.50 51.61 ± 0.57 93.38 ± 0.64 33.93 ± 0.16

H. Classification Results: Evaluating Latent Variable a

Table 10: Object classification. Benchmarking latent variable a against vanilla VAE. Classifiers trained over three seeds

with early stopping, reporting mean F1-macro scores. A:13 — Chubby, A:20 — Male, A:25 — Oval Face.

CelA (A:13) CelA (A:20) CelA (A:25) FER2013 CLEVR t-ImageNet

VAE 59.04 ± 0.66 86.26 ± 0.12 58.60 ± 0.27 36.06 ± 0.34 41.88 ± 0.28 10.05 ± 0.05

PPS-VAE (a) 54.26 ± 0.42 83.52 ± 0.09 55.42 ± 0.24 20.83 ± 0.13 39.62 ± 0.11 8.50 ± 0.13

VAE Model: The encoder of the VAE baseline comprises of five convolutional layers: 3 are the vanilla convolutions

with Leaky ReLU activation function inserted between them and 2 vanilla convolutions to model the mean and variance

of the variational posterior distribution, which is Gaussian. Both the mean and the variance are 32 dimensional vectors.

The architecture of the encoder resembles the parametrisation of qφ(a|xM ,yM ). The decoder comprises of five transposed

convolutions with Leaky ReLU activation function inserted between them. We optimise the parameters of the model with the

AdamW optimiser, setting the learning rate to 2 ∗ 10−4 and we also enable the amsgrad.

I. Compute

We run each experiment using the hardware specified in Table 11.

14



Autoencoding Conditional Neural Processes for Representation Learning

Table 11: Computing infrastructure.

hardware specification

CPU AMD® EPYC 7413 24-Core Processor

GPU NVIDIA® A40 x 1

J. Parameters Count
Table 12: Number of parameters in a model.

PPS-VAE FSQ-VAE VQ-VAE PPS-CAE

# parameters 6,183,740 10,541,832 11,511,747 5,278,982

To calculate total number of parameters in the model we use:

params = sum ( p . numel ( ) f o r p in model . p a r a m e t e r s ( ) i f p . r e q u i r e s g r a d )

K. Algorithm

Algorithm 1 PPS-VAE

// ** Inference **

Input: y ∈ R
C×H×W

Initialize x0 ∈ {0, 1}C×H×W = 0, x1:M = [x0]
for i = 1 to M do

xi ∼ qφ(xi|y, x1:M [0 : i])
x1:M .append(xi)

end for

x1:M = sum(x1:M , axis = 0) ∈ {0, 1}1×H×W

// points can be sampled twice, remove duplicates

x1:M = x1:M/x1:M

y1:M = y ∗ x1:M

a ∼ qφ(a|x1:M , y1:M )
// ** Scoring **

DKL = (log qφ(x1:M |y)− log pθ(x1:M |a)) +

+(qφ(a|y1:M , x1:M )− pθ(a))
// get the target variables

x1:T = 1− x1:M , y1:T = y ∗ x1:T

loss(y1:M ) = log pθ(y1:M |x1:M , a)
loss(y1:T ) = log pθ(y1:T |y1:M , x1:M ;x1:T )
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L. Visualisation of Reconstructed Images

L.1. PPS-VAE

L.1.1. DATASET: T-IMAGENET

(a) M = 32

(b) M = 64

(c) M = 128

Figure 7: Visualisation of the spatial arrangement of points in the context sets. The first row corresponds to the original

image, together with the inferred context set denoted by the yellow circles. The second row corresponds to the reconstructed

images. The context sets inferred on the test images.
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L.1.2. DATASET: CLEVR

(a) M = 32

(b) M = 64

(c) M = 128

Figure 8: Visualisation of the spatial arrangement of points in the context sets. The first row corresponds to the original

image, together with the inferred context set denoted by the yellow circles. The second row corresponds to the reconstructed

images. The context sets inferred on the test images.
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L.1.3. DATASET: CELEBA

(a) M = 32

(b) M = 64

(c) M = 128

Figure 9: Visualisation of the spatial arrangement of points in the context sets. The first row corresponds to the original

image, together with the inferred context set denoted by the yellow circles. The second row corresponds to the reconstructed

images. The context sets inferred on the test images.
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L.1.4. DATASET: FER2013

(a) M = 32

(b) M = 64

(c) M = 128

Figure 10: Visualisation of the spatial arrangement of points in the context sets. The first row corresponds to the original

image, together with the inferred context set denoted by the yellow circles. The second row corresponds to the reconstructed

images. The context sets inferred on the test images.

L.2. VQ-VAE

L.2.1. DATASET: T-IMAGENET

Figure 11: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.
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L.2.2. DATASET: CLEVR

Figure 12: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.

L.2.3. DATASET: CELEBA

Figure 13: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.

L.2.4. DATASET: FER2013

Figure 14: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.

L.3. FSQ-VAE

L.3.1. DATASET: T-IMAGENET

Figure 15: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.
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L.3.2. DATASET: CLEVR

Figure 16: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.

L.3.3. DATASET: CELEBA

Figure 17: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.

L.3.4. DATASET: FER2013

Figure 18: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the test images.

M. Visualisation of Out-of-Distribution Reconstruction

M.1. PPS-VAE

M.1.1. TRAINING DATASET: T-IMAGENET

Figure 19: Test dataset CLEVR. Visualisation of the spatial arrangement of points in the context sets. The first row

corresponds to the original image, together with the inferred context set denoted by the yellow circles. The second row

corresponds to the reconstructed images. The context sets inferred on the test images.
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Figure 20: Test dataset CelA. Visualisation of the spatial arrangement of points in the context sets. The first row corresponds

to the original image, together with the inferred context set denoted by the yellow circles. The second row corresponds to

the reconstructed images. The context sets inferred on the test images.

M.1.2. TRAINING DATASET: CLEVR

Figure 21: Test dataset t-ImageNet. Visualisation of the spatial arrangement of points in the context sets. The first row

corresponds to the original image, together with the inferred context set denoted by the yellow circles. The second row

corresponds to the reconstructed images. The context sets inferred on the test images.

Figure 22: Test dataset CelA. Visualisation of the spatial arrangement of points in the context sets. The first row corresponds

to the original image, together with the inferred context set denoted by the yellow circles. The second row corresponds to

the reconstructed images. The context sets inferred on the test images.

M.1.3. TRAINING DATASET: CELEBA

Figure 23: Test dataset CLEVR. Visualisation of the spatial arrangement of points in the context sets. The first row

corresponds to the original image, together with the inferred context set denoted by the yellow circles. The second row

corresponds to the reconstructed images. The context sets inferred on the test images.
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Figure 24: Test dataset t-ImageNet. Visualisation of the spatial arrangement of points in the context sets. The first row

corresponds to the original image, together with the inferred context set denoted by the yellow circles. The second row

corresponds to the reconstructed images. The context sets inferred on the test images.

M.2. FSQ-VAE

M.2.1. TRAINING DATASET: T-IMAGENET

Figure 25: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CLEVR test images.

Figure 26: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CelA test images.

M.2.2. TRAINING DATASET: CLEVR

Figure 27: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the t-ImageNet test images.
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Figure 28: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CelA test images.

M.2.3. TRAINING DATASET: CELEBA

Figure 29: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the t-ImageNet test images.

Figure 30: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CLEVR test images.

M.3. VQ-VAE

M.3.1. TRAINING DATASET: T-IMAGENET

Figure 31: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CLEVR test images.
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Figure 32: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CelA test images.

M.3.2. TRAINING DATASET: CLEVR

Figure 33: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the t-ImageNet test images.

Figure 34: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CelA test images.

M.3.3. TRAINING DATASET: CELEBA

Figure 35: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the t-ImageNet test images.

Figure 36: The first row corresponds to the original image. The second row corresponds to the reconstructed images.

Evaluated on the CLEVR test images.
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