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ABSTRACT

Motivated by the recency effect in online learning, we study algorithms for single-pass
sliding-window streaming multi-armed bandits (MABs) in this paper. In this setting, we are
given n arms with unknown sub-Gaussian reward distributions and a parameter W . The
arms arrive in a single-pass stream, and only the most recent W arms are considered valid.
The algorithm is required to perform pure exploration and regret minimization with limited
memory. The model is a natural extension of the streaming multi-armed bandits model
(without the sliding window) that has been extensively studied in recent years. We provide a
comprehensive analysis of both the pure exploration and regret minimization problems with
the model. For pure exploration, we prove that finding the best arm is hard with sublinear
memory while finding an approximate best arm admits an efficient algorithm. For regret
minimization, we explore a new notion of regret and give sharp memory-regret trade-offs
for any single-pass algorithms. We complement our theoretical results with experiments,
demonstrating the trade-offs between sample, regret, and memory.

1 INTRODUCTION

The stochastic multi-armed bandits (MABs) model is a fundamental model extensively studied in machine
learning (ML) and theoretical computer science (TCS). In its most common form, we are given n arm with
unknown sub-Gaussian reward distributions, and we could learn the instance by sampling from the arms.
The most important problems in the model include pure exploration, where the goal is to identify the best or
a near-optimal arm, and regret minimization, where the aim is to devise a sampling strategy that performs
competitively against the best arm in hindsight. The multi-armed bandits model has found broad applications
in experiment design and clinical trials (Robbins, 1952; Pallmann et al., 2018; Simchi-Levi & Wang, 2023),
financial strategies (Shen et al., 2015; Trovò et al., 2018), information retrieval (Radlinski et al., 2008; Losada
et al., 2017), algorithm design (Bouneffouf et al., 2017; Gullo et al., 2023), to name a few.

Classical algorithms for MABs often assume the entire set of n is stored in the memory for repeated access.
However, this assumption can be unrealistic in modern online learning and large-scale applications, where
arms may arrive sequentially in a stream, and the available memory is insufficient to store all of them. To
address this challenge, the work of Liau et al. (2018); Assadi & Wang (2020) introduced the streaming
multi-armed bandits model. In this model, the arms arrive one after another in a stream, and the algorithm
would ideally maintain a memory substantially smaller than the total number of arms. The maximum number
of arms maintained in the memory is defined as the space complexity of the algorithm. The streaming MABs
model has attracted considerable attention since its introduction, and a flurry of work has established near-tight
trade-offs for pure exploration (Assadi & Wang, 2020; Jin et al., 2021; Maiti et al., 2021; Assadi & Wang,
2022; 2024; Karpov & Wang, 2025) and regret minimization (Liau et al., 2018; Maiti et al., 2021; Agarwal
et al., 2022; Wang, 2023; He et al., 2025) in various settings.
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While most work on streaming MABs targets global objectives, such as identifying the best arm overall, many
applications exhibit a recency effect, where recent arms matter more. For example, movie recommendation
systems must adapt quickly to shifting trends. A related motivation comes from privacy constraints: regula-
tions and policies often mandate data deletion after limited periods. GDPR requires data retention only for
the “necessary” duration (GDPR, 2016), Apple retains user data for 6 months (Apple Inc., 2021), and Google
limits anonymized advertising data to 9 months (Google LLC, 2025). Alas, streaming MABs algorithms
usually do not take any recency effect into consideration. For instance, the pure exploration algorithms, e.g.,
the ones in Assadi & Wang (2020); Jin et al. (2021); Maiti et al. (2021), may output an arm that arrives very
early in the stream, which is far from being recent. Similarly, the regret minimization algorithms in Maiti
et al. (2021); Wang (2023); He et al. (2025) may commit to an arm that is outside the pool of recent arms1.
As such, the following motivating open question could be asked: could we design efficient streaming MABs
algorithms that incorporate the recency effect?

Sliding-window streaming multi-armed bandits. One of the most common models that capture the recency
effect is the sliding-window streaming model (Datar et al., 2002; Datar & Motwani, 2016). In a typical
sliding-window stream, a total of n data items (arms in the context of MABs) are arriving in a stream, and
only the past W items are considered valid. The sliding-window streams have been extensively studied in
various contexts, including frequency estimation (Datar et al., 2002; Braverman & Ostrovsky, 2007), graph
algorithms (Crouch et al., 2013; Crouch & Stubbs, 2014; Zhang et al., 2024), clustering (Braverman et al.,
2016; Borassi et al., 2020; Epasto et al., 2022; Woodruff et al., 2023; Cohen-Addad et al., 2025), among
others (Tao & Papadias, 2006; Zhang et al., 2016).

Inspired by the success of sliding-window streams on various problems, we define the natural notion of
sliding-window streaming MABs to explore the recency effect. Here, we are given n arms arriving in a
(single-pass) stream, and we are additionally given a window size W . When the t-th arm arrives, the arms
with the arrival orders in [t−W + 1, t] are considered the valid set of arms at this point. The algorithm is
allowed to store any arm (not limited to the window) regardless of whether the arm is valid 2. The central
problems here are therefore the pure exploration and regret minimization in sliding-window streaming MABs.

1.1 OUR CONTRIBUTIONS

We give a comprehensive analysis of pure exploration and regret minimization algorithms for sliding-window
streaming MABs in this paper.

Pure explorations. For pure explorations, we studied both pure exploration, where the goal is to return the
exact best arm, and ε exploration, where the goal is to return an arm whose mean is ε-close to the best. In
both notions, the best arm is defined as the arm with the highest mean reward in the sliding window. Our
main conceptual message is that finding the exact best arm is hard unless using Ω(W ) arms of memory space,
but finding the approximation best arm is possible with sample and space efficiency.

Result 1 (Informal of Theorems 1 and 2). Any algorithm that finds the best arm at any step with
probability at least 99/100 in the sliding-window streaming multi-armed bandits requires Ω(W ) arm
memory, even with an unlimited number of arm pulls. On the other hand, there exists an algorithm that
finds an ε-best arm with probability at least 1− δ at any steps with O( 1ε ) arm memory and O( n

ε2 log
W
δ )

arm pulls.

By a standard probability boosting argument, the success probability of 99/100 generalizes to any probability
of 1/2 + Ω(1). On the other hand, our results demonstrate that we can identify an approximate best arm with
arbitrary constant accuracy using only O

(
1
ε

)
memory.

1This intuitively means the algorithm incurs large regret, although the definition of regret has more nuance in such
cases. See Section 1.1 and Section 2 for details.

2The arms outside the sliding window could still be useful in various subroutines, e.g., comparing the means.
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Given that there are at most W valid arms at any given time, the lower bound implies that exact pure
exploration would require the algorithm to store everything. However, since ε is typically set to a constant,
the algorithm shows that approximate pure exploration essentially requires only constant memory.

Regret minimization. The second part of our paper is for regret minimization. A significant challenge here is
how we should define regret in the sliding-window model. The most natural definition would be to define the
regret as the cumulative gap between µ∗(t,W ) and the means of the pulled arms in each window, and the
only restriction is that the total number of arm pulls should be T . Here, µ∗(t,W ) is the mean reward of the
optimal arm in the window W at time t. However, such a definition has a fatal issue: since the algorithm could
control the number of arm pulls before the window moves, the definition of the regret becomes a function of
the algorithm, which means it could not be well-defined.

To bypass the challenge, we introduce the notion of epoch-wise regret such that the optimal reward sequences
are independent of the arm pulls used by the algorithm. Our notion of regret minimization is to divide the
total number of arms pulls T to equal-sized epochs. In particular, there will be n−W + 1 epochs, and each
epoch will contain T

n−W+1 arm pulls. Total regret is defined as cumulative regret across epochs, and the
algorithm is required to pull arms a constrained number of times in each time window. A formal definition of
our regret notion can be found in Definition 6,

We believe that the introduction of the regret notion is a significant contribution; otherwise, there is no
obvious way to study regret minimization in sliding-window streaming MABs. Moreover, the epoch-wise
regret definition captures many practical scenarios. For instance, in the case of movie recommendations for
entertainment companies, we treat the “sliding window” as time periods of, e.g., 1-2 months. Old movies
eventually get taken off the theater; furthermore, assuming the theater visits are roughly the same in each
time period, we can divide the total visits into the time periods to conduct epoch-wise regret minimization.

Our main conceptual finding for regret minimization is that a memory of Ω(W ) arms is necessary to achieve
o(T ) regret; furthermore, there is a sharp memory-regret transition around the Θ(W ) arm memory.

Result 2 (Informal of Theorem 3). Any algorithm that achieves o(T ) regret in the epoch-wise regret
setting requires Ω(W ) arm memory. Furthermore, there exist algorithms that given a stream of n arms
and parameters T and W , with O(W ) memory achieve O(

√
W · (n−W ) · T ) regret.

In the centralized setting, the tight bound for regret minimization is O(
√
nT ), even with unlimited memory.

Since O(
√
W (n−W )T ) = O(

√
nT ) when W is considered a constant, this shows that our bound for

epoch-wise regret setting is indeed tight for the general case. While the low-regret algorithms in Result 2 are
relatively straightforward, our lower bounds show that, perhaps surprisingly, these are essentially the best
we could do. We find the conceptual message quite interesting, and we believe it could serve as important
guidelines for related applications. A variant of our regret setting is when the best arm does not expire with
the movement of the sliding window. While the setting is less interesting, we do believe it has applications as
well. A discussion of this setting can be found in Section D.

Experiments. We conducted experiments for both pure exploration and regret minimization applications3.
For pure exploration, we implemented the ε-best pure exploration algorithm, and for regret minimization, we
used the O(W )-memory algorithms outlined in Result 2. These are the first algorithms designed to work with
multi-armed bandits (MABs) under a sliding-window setting.

In our pure exploration experiments, we tested configurations with n ∈ {1000, 2000, 5000} and n ∈
{10, 20, 50}. The results indicate a relatively smooth trade-off between the quality of the returned arm and
the memory used. The error exceeded 0.6 in all settings when we employed a memory size of 0.05W ;

3Our code is available on anonymous Github: https://anonymous.4open.science/r/
sliding-window-MABs-CF74/.

3

https://anonymous.4open.science/r/sliding-window-MABs-CF74/
https://anonymous.4open.science/r/sliding-window-MABs-CF74/


141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

however, it dropped to below 0.3 with a memory size of 0.3W . On the other hand, we can easily show
that existing algorithms could result in 0.6 error (Section E) , and our empirical results essentially mean
that with 0.3W memory, the error could be reduced by 50%. For the regret minimization experiments, we
tested configurations with n ∈ {500, 1000, 2000} and n ∈ {10, 20, 50}, while setting the number of pulls
for each epoch to T

n−W+1 = 1000. The results revealed sharp changes in regret around the memory size W ,
confirming our theoretical predictions. The total regret decreased by more than 50% for most configurations
when the memory size increased from 0.05W to W .

2 PROBLEM DEFINITION AND PRELIMINARIES

In this section, we give the formal definition of the problems we investigated and some standard technical
tools. We start with a formal definition of stochastic MABs.
Definition 1 (Stochastic multi-armed bandits (MABs) model). In the stochastic multi-armed bandits model,
we have a collection of n arms {armi}ni=1, and each arm follows a distribution with mean µi ∈ [0, 1]. Each
pull of armi returns a sample from the distribution with mean µi.

Note that by the central limit theorem, sampling from arbitrary distributions over [0, 1] is essentially the
same as sampling from an arbitrary sub-Gaussian distribution (up to a scaling factor). The sliding-window
streaming MABs could therefore be defined as follows.
Definition 2 (The sliding-window streaming MABs model.). In the sliding-window streaming MABs model,
we have a collection of n arms {armi}ni=1 arranged in order and a window size W 4. Each arm follows a
distribution with mean µi ∈ [0, 1]. The arms arrive one by one in the stream, and we let {armi}ti=t−W+1 be
the set of valid arms that arrived in the W latest steps. When a new arm arrives, the algorithm can pull the
arriving arm and the arms in memory. The algorithm can also decide whether to store the new arm in memory
or discard it, and the algorithm can discard some arms stored in memory to free up space. At any point, the
collection of arms that the algorithm could access are the arms in memory and the arriving arm.

We can now define the sample and space complexity of a sliding-window streaming MABs algorithm.
Definition 3 (Sample complexity). The sample complexity of a sliding-window streaming MABs algorithm is
defined as the total number of pulls of the algorithm.
Definition 4 (Space complexity). The space complexity of a sliding-window streaming algorithm is defined
as the maximum number of arms that we store in the memory at any time during the algorithm.

Pure exploration. One of the most natural problems in the MABs problem in the sliding-window model
is the pure exploration problem, where the algorithm is asked to return the best or near-best arms. In what
follows, we discuss the necessary notions before formally defining the pure exploration problems.
Definition 5 (Best arm in the window). Assume that we have a collection of n arms {armi}ni=1 with means
µi and arranged in the streaming arriving ordered. Let W be the window size and t be the index of the current
arriving arm. Then, for any t ∈ [n], the best arm in the window arm∗(W, t) is the arm with the highest mean
µ∗(W, t) among the W latest arms {armi}ti=t−W+1.

Note that the notation arm∗(W, t) is a function of t and W . We also call the set of arms {armi}ti=t−W+1
valid at time step t for fixed t and W .

We are ready to introduce the pure exploration problem for the sliding-window streaming MABs model.
Problem 1 (Exact pure exploration in sliding-window MABs). Given a stream of n arms {armi}ni=1 and a
window size W , we say a sliding-window streaming MABs algorithm ALG solves

4We emphasize that the parameter W is an input parameter (not the algorithm’s choice).
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• weak pure exploration with probability 1 − δ if at any time t ∈ [n], ALG can output the best arm in the
window with probability at least 1− δ.

• strong pure exploration with probability 1 − δ if ALG can output the best arm in the window at all time
t ∈ [n] with probability 1− δ.

Next, we could analogously define the ε exploration problem in both the weak and the strong versions for the
sliding-window streaming MABs.
Problem 2 (ε exploration in sliding-window MABs). Given a stream of n arms {armi}ni=1, a window size
W , and a parameter ε, we say a sliding-window streaming MABs algorithm ALG solves

• weak ε exploration with probability 1− δ if at any time t ∈ [n], ALG is able to output an arm with mean
reward µ such that µ ⩾ µ∗(t,W )− ε with probability at least 1− δ.

• strong ε exploration with probability 1− δ if ALG is able to output an arm with mean reward µ such that
µ ⩾ µ∗(t,W )− ε at all time t ∈ [n] with probability 1− δ.

Here, as defined in Definition 5, µ∗(t,W ) is the mean reward of the best arm in the window.

Regret minimization. In Section 1.1, we have discussed the high-level definition for our regret notion in
sliding windows, i.e., the epoch-wise regret. We now introduce the formal definition as follow.
Definition 6 (Regret minimization with epoch-wise regrets). Let {armi}ni=1 be a collection of n arms, and
let W and T be the window size and the total number of trials. We divide T into (n−W + 1) equal-sized
epochs with T

n−W+1 in each epoch. Let t be the variable for the index of the arriving arm, and for any t, the
algorithm is required to conduct exactly T

n−W+1 arm pulls among {armi}ti=t−W+1. We define the regret

of the j-th epoch as RE(j) =
∑T/(n−W+1)

τ=1 (arm∗(W, t)− armi(τ)), where i(τ) is the arm index pulled by
the algorithm. The total regret is defined as RT =

∑T/(n−W+1)
j=1 RE(j), i.e., the regret over the epochs.

3 A LOWER BOUND FOR PURE EXPLORATION IN SLIDING-WINDOW MABS

The most natural pure exploration problem is pure exploration which asks to return the best arm. In the vanilla
streaming multi-armed bandits (MABs) model, pure exploration can be solved with O(n/∆2

[2]) samples and
a single-arm memory, where ∆[2] represents the difference between the mean of the best and the second-best
arms. As such, one would naturally wonder whether the same story applies to the sliding-window model. In
this section, we will show that pure exploration is surprisingly much harder in the sliding-window streams:
unless the algorithm uses Ω(W ) space, we cannot obtain any algorithm that solves pure exploration.

The hard instance for our lower bound is a stream with descending mean rewards of arms, i.e., µ1 > µ2 >
· · · > µn for arms . The optimal solution for the sliding-window MABs would be to select armn−W+1,
which is the oldest non-expired arm. However, to always keep the oldest arm that has not expired in the
memory, we would naturally need W memory. The following theorem formalizes the above intuitions.
Theorem 1. Any algorithm that given n arms in a sliding-window stream with a window size of W , solves the
weak or strong pure exploration problem in sliding-window streaming multi-armed bandits with a probability
of at least 99/100 has a space complexity of at least Ω(W ), even if the sample complexity is unbounded.

Proof. We prove the theorem for weak pure exploration, since the task of strong pure exploration is only
harder. In other words, since the answer for strong exploration is always valid for weak exploration, the
former task should use at least the same amount of memory and samples.

By Yao’s minimax principle (Yao, 1977), it is sufficient to prove the lower bound for deterministic algorithms
over a challenging distribution of inputs. Let n = 2W . We construct the instance {arm1}ni=1 such that
µi = 1− i

3W . To solve the weak pure exploration problem with a probability of at least 99
100 , the algorithm

5
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must correctly identify at least 49
50 of the best arms in the second half of the stream {armi}ni=1. If the algorithm

fails to do this, the overall success probability would drop below 1 · 12 + 49
50 ·

1
2 = 99

100 .

Let T ⊂ {W + 1,W + 2, . . . , 2W} represent the collection of times when the algorithm correctly identifies
the best arm in the window during the second half of the stream. Define A = {arm∗(W, t)|t ∈ T} as the
set of best arms in the window at times t ∈ T . For any t ∈ {W + 1,W + 2, . . . , 2W}, the best arm in the
window arm∗(W, t) should be armt−W+1 because the expected values of the arms monotonically decrease
in this instance. Therefore, we have A = {armt−W+1|t ∈ T}. Given that T ⊂ {W + 1,W + 2, . . . , 2W}
and |T | ⩾ 49

50W , it follows that A ⊂ {arm2,arm3, . . . ,armW+1} and |A| = |T | ⩾ 49
50W .

For any W + 1 ⩽ t < 2W , arm∗(W, t) = armt−W+1 has already arrived by time W + 1. Therefore, for
any t ∈ T ∩ [2W − 1], arm∗(W, t) must be stored in memory by time W + 1 so that it can be returned at
time t. This means that at least |A| − 1 = 49

50W − 1 arms must be stored in memory at time W + 1. Hence,
according to Yao’s minimax principle, the algorithm must have a space complexity of at least Ω(W ).

Note that the success probability of 99/100 in the theorem is not inherently special: by a simple probability
boosting argument, we can always maintain O(1) copies of the algorithm and output the majority with
asymptotically the same memory and number of samples. As such, our lower bound in Theorem 1 applies to
any success probability of 1/2 + Ω(1).

4 SLIDING-WINDOW ALGORITHMS AND LOWER BOUNDS FOR ε-PURE EXPLORATION

Section 3 depicts a very pessimistic picture for the pure exploration of the best arm in sliding-window
streaming MABs. A natural question to follow is whether we could get positive results using a relaxed notion.
A natural candidate for this purpose is the ε exploration under the (ε, δ)-PAC framework. Here, instead of
returning the single best arm, we are allowed to obtain an arm whose gap is within ε additive to the best, i.e.,
return an arm with mean reward µ ⩾ µ∗ − ε. In this section, we present the bounds for both strong and weak
ε exploration. Our main results are:

• A pure exploration algorithm that solves weak ε exploration with probability 1− δ in the sliding-window
streaming MABs model with O

(
n
ε2 log

W
δ

)
sample complexity and O

(
1
ε

)
space complexity.

• A lower bound shows that for any algorithm to solve strong ε exploration with probability 99/100 in the
sliding-window streaming MABs model, the algorithm has to use Ω( n

ε2 log
n
W ) sample complexity. Since

n ≫ W in most cases, the lower bound separated the weak and strong ε exploration problems in the
sliding-window streaming MABs model.

• Finally, we give a nearly-matching algorithm for strong ε exploration with probability 1− δ in the sliding-
window streaming MABs model with O

(
n
ε2 log

n
δ

)
sample complexity and O

(
1
ε

)
space complexity.

4.1 AN EFFICIENT ALGORITHM FOR WEAK ε-PURE EXPLORATION

We start with introducing a streaming algorithm designed for weak ε exploration.
Theorem 2. There exists a streaming algorithm that, given n arms arriving in a sliding-window stream with
a window size W and a confidence parameter δ, solves weak ε exploration with a probability of at least 1− δ
using a sample complexity of O

(
n
ε2 log

W
δ

)
and a space complexity of O

(
1
ε

)
.

At a high level, the algorithm follows the idea of partitioning the range [0, 1] into O
(
1
ε

)
segments (“buckets”)

of equal length. An arm is considered to belong to a bucket if its mean value falls within the range of that
segment. For an arm armi that belongs to bucket B, any arm arm′ that is in a nearby bucket would serve as
an ε-approximation of armi. If we pull each arm an adequate number of times, we can ensure that any arm is
placed into a bucket that is close enough to its mean; thus, the non-expired arm from the highest bucket will
be an ε-best arm. To optimize memory usage, we store only the latest arm for each bucket instead of all the

6
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arms that belong to that bucket. Our algorithm for weak ε exploration is presented in Algorithm 1, with the
pulling size set to s = (9/2ε2) · ln 6W/δ.

Algorithm 1: Efficient Algorithm for ε exploration in Sliding-window Streaming MABs: BUCKET(s)

Input: Data stream {armi}ni=1, window size W , confidence parameter δ and accuracy parameter ε;
Input: Sample complexity: s = 9

2ε2 ln
6W
δ for weak exploration and s = 9

2ε2 ln
6n
δ for strong

exploration;
Output: ε-best arms {ârmi}ni=1;
N ← 3

ε ;
Generate N buckets B1, B2, · · · , BN ;
for each arriving arm armi do

Pull armi for s times and evaluate empirical mean µ̂i;
Store armi in Bj such that (j − 1) ε3 < µ̂i ⩽ j ε

3 and discard the arms stored in Bj previously;
Discard all stored arms that are expired;
ârmi ← the arm stored in Bk such that k = maxi⩽N{Bi ̸= ∅}

end
return {ârmi}ni=1

4.2 A LOWER BOUND FOR STRONG ε-PURE EXPLORATION

We will now discuss the lower bound for strong ε exploration that has an extra log n factor. In particular,
if we show that when W ≪ n (e.g., W = log n), there is a lower bound of Ω( n

ε2 log n) samples for strong
exploration, it would imply a separation between the weak and strong ε exploration since the weak exploration
only requires Ω( n

ε2 logW ) samples by Algorithm 1 BUCKET
(

9
2ε2 ln

6W
δ

)
. Then we have:

Lemma 4.1. For infinitely many choices of parameters n, ε, and W ⩽ n0.99, there exists a distribution of
arms D(n,W, ε) such that any algorithm that solves the strong ε exploration with probability at least 99/100
on D(n,W, ε) requires at least Ω( n

ε2 log n) samples. The lower bound holds even if the algorithm is with
unbounded memory.

The technical statement for Lemma 4.1 is more general and gives Ω( n
ε2 log

n
W ) samples for W ∈ [1, n/8],

although the bound is less informative when W is large. At a high level, our lower bound works by reducing
solving independent copies of the ε-best arm identification to the sliding-window streaming ε exploration
case. Mannor & Tsitsiklis (2004) proved that O

(
n
ε2 log

(
1
δ

))
pulls are necessary to identify an ε-best arm

among n arms with a probability of at least 1− δ.

In the slide-window setting, since arms will expire after W time, the information from one window does
not affect another disjoint window. There are Θ( n

W ) windows in a sliding-window stream that are disjoint.
Since each window requires at least O

(
W
ε2 log

(
n
W

))
pulls to solve its exploitation with a probability of at

least 1−Θ
(
W
n

)
, it follows that O

(
n
ε2 log

(
n
W

))
pulls are necessary to achieve strong ε exploration with a

probability of at least 99/100.

4.3 AN EFFICIENT ALGORITHM FOR STRONG ε-PURE EXPLORATION

We introduce a streaming algorithm for strong ε exploration. The algorithm uses essentially the same
subroutine as in Algorithm 1, but it uses a larger pulling size of s = 9

2ε2 ln
6n
δ to beat a union bound.

Lemma 4.2. There exists a streaming algorithm that, given n arms arriving in a sliding-window stream with
a window size W and a confidence parameter δ, solves strong ε exploration with a probability of at least
1− δ. This algorithm achieves a sample complexity of O

(
n
ε2 log

n
δ

)
and a space complexity of O

(
1
ε

)
.
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5 REGRET MINIMIZATION IN SLIDING-WINDOW STREAMING MABS

In this section, we investigate regret minimization for sliding-window streaming multi-armed bandits (MABs).
Recall that in Definition 6, we defined regret minimization with the concepts of epoch-wise regret. Here, we
have n−W + 1 equal-sized epochs, and we must perform T

n−W+1 pulls in each epoch. The question is how
to minimize the cumulative regret over the entire horizon [T ].

The most natural idea is to adapt strategies in streaming MABs, e.g., (Wang, 2023), to get a low regret
algorithm. In particular, when a new arm arrives, we can use Algorithm 1 to pull the arm O( 1

ε2 log n) times
and place it in the bucket. By the guarantees of Algorithm 1, we will be able to get ε-best arms at any step
with high probability. This strategy incurs a regret of O( 1

ε2 log n) when identifying the ε-best arm during
each epoch. Additionally, there is a regret of O(ε T

n−W+1 ) for the remaining pulls on the ε-best arm we
identify within each epoch. As a result, the total regret is O( n

ε2 log n + εT ). The regret is minimized by

choosing ε = O( 3

√
n logn

T ), which gives a total regret of O(T
2
3 (n logn)

1
3 ).

Alas, this strategy has a fatal issue: Algorithm 1 requires O
(
1
ε

)
memory space; and since in most cases

T ≫ n≫W , the memory of 1/ε = O( 3

√
T

n logn ) could be way bigger than the window size W . Thus, it is
not immediately clear whether we could get low-regret algorithms with small memory in this setting. In this
section, we show that the issue of the aforementioned algorithm is not an artifact: we prove a strong lower
bound showing that a total regret of O

(
T
W 2

)
is unavoidable if we only have o(W ) space.

Theorem 3. There exists a family of streaming stochastic multi-armed bandit instances such that, for any
given parameters T , n, and W , where T ⩾ n ⩾ 16W , any single-pass streaming algorithm for a sliding-
window stream of length n with a window size W and a memory capacity of W−1

2 arms must incur a total
expected regret given by E [RT ] ⩾ T

64W 2 .

Furthermore, there exists an algorithm that given n arms arriving in a stream and parameters W and T ,
achieves O(

√
W · (n−W ) · T ) total regret with W memory.

At a high level, our lower bound is obtained by constructing W arms whose means decrease by 1
W and W

arms with the same mean, and the pattern is repeated over the stream. Since we can only store at most half of
these arms, if the best arm in the epoch is missed, the regret for each pull will be at least 1

2W . This leads to a
total regret of Ω

(
T
W 2

)
. Our upper bound is obtained by running UCB-based algorithms on each window.

6 EXPERIMENTS

We conduct experiments for both ε-exploration and regret minimization in the sliding-window streaming
setting. Our main empirical finding is that, consistent with our theoretical results, both the ε-exploration
and regret minimization algorithms demonstrate trade-offs between memory and quality/regret. The regret
minimization algorithm demonstrates a sharp change around the O(W )-arm memory. We will briefly
demonstrate the experiments of the ε-exploration and regret minimization algorithms in epoch-wise settings.
Additional experimental results can be found in Section F.

The data. We use synthetic data with streams of arms to conduct our experiments. We use different types of
instances for exploration and regret minimization as follows.

• For exploration, we sample n arms with the distribution Bern(p) such that p is from a uniform distribution5.
We note that the “uniform” type of instances are more suitable for ε-exploration since the quality decrement

5We use Bern(p) to denote Bernoulli distribution with mean p.
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of the returned arms could be better captured. We use n ∈ {1000, 2000, 5000} and W ∈ {10, 20, 50} for
ε-exploration experiments.

• For regret minimization, we need instance distributions consistent with our instance distribution in Section 5.
For the epoch-wise regret minimization, we sample n− n/W arms with distribution Bern(0.25) and n/W
arms with distribution Bern(0.95). We then permute the arms uniformly. Due to constraints on running
time, we use n ∈ {500, 1000, 2000} and W ∈ {10, 20, 50} for ε-exploration experiments.

To mitigate the noise from randomness, for each parameter setting with fixed memory size, we conduct
10 independent runs of experiments and take the average. For the quality of the arm and the regret
minimization, we also report error bars and the ranges of the regrets.

The algorithms. We conduct experiments with the following algorithms: for ε-exploration, we use the
Algorithm 1. For regret minimization, we adapt the algorithm with W -arm memory discussed in Section 5.
To handle the case of m < W -arm memory, we simulate the reservoir sampling: after the memory is full, for
each arriving arm, we toss a fair coin with bias m/t for the t-th arriving arm to decide whether we admit the
new arm to the memory (by uniformly at random discarding an arm existing in the memory).

Figure 1: The performances of ε-exploration and regret minimization, n = 2000, W = 20.

Summary of the experiments. A sample of the performances for ε-exploration and regret minimization is
given in Figure 1 (for n = 2000 and W = 20; see Section F for more parameter settings). As we can observe
from the figures, for all the experiments, there is generally a trade-off between the arm quality/regret and
memory. The trade-off in ε-exploration is generally smoother, and the regret minimization for the everlasting
best arm demonstrates a sharp drop of regret around the W -memory point. These results are consistent with
our theoretical findings for sliding-window streaming MABs algorithms.

7 CONCLUSION AND FUTURE WORK

In this work, we initiated the study of multi-armed bandits (MABs) in the sliding-window model. Our results
built the fundamental hardness of online learning in the sliding-window MABs model, and we provided
important insights for related applications, e.g., using ε-exploration rather than pure exploration in practice.
There are several open directions to follow up on our work. For instance, one appealing question is the
multi-pass setting: if the algorithm is allowed to make multiple passes over the stream, it might be possible
for the algorithm to achieve better memory efficiency. The sliding-window model for other variants of MABs,
e.g., the linear bandits, can be another interesting direction to pursue.

9
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