
Under review as a conference paper at ICLR 2022

TACTICS ON REFINING DECISION BOUNDARY
FOR IMPROVING CERTIFICATION-BASED ROBUST
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In certification-based robust training, existing methods utilize relaxation based
methods to bound the worst case performance of neural networks given certain
perturbation. However, these certification based methods treat all the examples
equally regardless of their vulnerability and true adversarial distribution, limit-
ing the model’s potential in achieving optimal verifiable accuracy. In the paper,
we propose new methods to include the customized weight distribution and auto-
matic schedule tuning methods on the perturbation schedule. These methods are
generally applicable to all the certifiable robust training with almost no additional
computational cost. Our results show improvement on MNIST with ε = 0.3 and
CIFAR on ε = 8/255 for both IBP and CROWN-IBP based methods.

1 INTRODUCTION

Deep neural networks (DNNs) have been shown to be highly vulnerable to adversarial attacks,
carefully-crafted inputs that are nearly indistinguishable from naturally-occurring data but are mis-
classified by the network (Goodfellow et al., 2014; Szegedy et al., 2014). There exist many algo-
rithms for both crafting adversarial attacks (Papernot et al., 2016) and building neural networks that
are robust against such attacks. Fast gradient sign method (FGSM) (Goodfellow et al., 2014) was
the very first approach to generate strong adversary. Projected gradient descent (PGD) (Madry et al.,
2018) is one of the most successful and widely-used defense methods available. Adversarial training
seeks to minimize the worst-case loss under adversarial perturbations within a pre-defined pertur-
bation level, where multi-step PGD is used to estimate the worst-case attack during training. Com-
pared to standard training, the adversarial term introduces risk of over-fitting (Moosavi-Dezfooli,
2021; Rice et al., 2020; Wang et al., 2019) and training instability (Tsipras et al., 2019; Zhang et al.,
2020b) for adversarial training. There exist many related works on improving the model perfor-
mance by additional regulation (Zhang et al., 2020b; Cisse et al., 2017) and customizing training
curriculum (Zhang et al., 2019; Wang et al., 2020; Cai et al., 2018) for attack-based scenario. While
adversarial training has been shown to be empirically effective against many types of attacks, it can-
not be proven that the resultant models are robust against all adversaries. In fact, it has been shown
that many defense methods dependent on heuristic techniques, including adversarial training, can be
bypassed by stronger adversaries (Athalye et al., 2018).

This has motivated a separate branch of research focused on robustness certification/verification:
computing provable guarantees on the robustness performance of neural networks against inputs
with arbitrary perturbations within some `p norm-bounded ball. There are two main types of ver-
ification methods: complete and incomplete verification. The former computes exact robustness
bounds using computationally-expensive methods such as mixed-integer programming (MIP) (Tjeng
et al., 2019; Bunel et al., 2018), whereas the latter provides looser robustness bounds with different
branches of methods like randomized smoothing (Cohen et al., 2019; Salman et al., 2019; Lecuyer
et al., 2019), Lipschitz-based robustness(Trockman & Kolter, 2021; Tsuzuku et al., 2018) and con-
vex adversarial polytype (Weng et al., 2018; Zhang et al., 2018; Dvijotham et al., 2018b; Gowal
et al., 2019) on which in this paper we mainly focus. A sparsely related branch of research, called
certified robust training (Dvijotham et al., 2018a; Gowal et al., 2019; Zhang et al., 2020a), aims to
train a certifiably robust model. These methods compute verified robustness bounds and incorporate

1

Under review as a conference paper at ICLR 2022

them into the training process, such that the resultant models can then be proven to be robust using
a verification method.

Currently, the most efficient certified training method is interval bound propagation (IBP) (Gowal
et al., 2019), which requires only two additional forward passes during training. It is important to
note that IBP is significantly more efficient than adversarial training, which often require many PGD
steps to achieve high robustness (Madry et al., 2018). In standard certified training, a uniform ε and
loss function weight are usually used across all the training examples, this is not ideal for optimal
verified accuracy since the examples are not necessarily equivalent in terms of vulnerability.

1.1 OUR CONTRIBUTIONS

In this paper, we propose two novel methods to improve robustness via refining certified decision
boundary for verifiable adversarial training methods such as IBP and CROWN-IBP. In particular,
our algorithms are generally applicable to all the verifiable adversarial training methods at almost no
additional computational cost. We sum up the key contributions as following: 1. Zeng et al. (2020)
pointed out the adversarial example distribution deviates from the clean data. We further analyze
the importance weight to correct empirical distribution from a novel perspective and theoretically
prove more weight is needed for the examples closer to decision boundary if sampled from clean
data distribution. 2. Building upon previous analysis, we come up with a symmetrical re-weighting
function based on worst case margin of the correct labels, emphasizing the examples around the
decision boundary. 3. For verifiable adversarial perturbation, empirically a slightly larger εtrain
achieves optimal evaluation robustness accuracy on εeval, while this uniform setup is not ideal for
examples around decision boundary. To address the issue of large perturbation, we developed an
auto-tuning algorithm to customize the εtrain for each individual example.

2 BACKGROUND

2.1 ADVERSARIAL ATTACKS AND TRAINING

Let D = {(xi, yi)}ni=1 represent the dataset, where xi ∈ X and yi ∈ Y = {0, 1, ..., C − 1}. Let
B(xi, ε) denote the set of points in the `p-norm ball with radius ε around xi. The objective function
is

min
θ

1

n

n∑
i=1

l(fθ(x
′
i), yi), where x′i = arg max

x′∈B(xi,ε)

l(fθ(x
′), yi) (1)

fθ : X −→ RC is a score function and l : RC × Y −→ R is the loss function. Adversarial training
tackles this min-max problem by alternating between solving inner loop by attack method to estimate
the worst-case adversarial scenario in B(xi, ε) and outer loop to update the model parameters and
minimize loss function.

2.2 CERTIFIED TRAINING

Robustness Verification. Different from attack-based training, certified training provides a guaran-
tee for worst case scenario via bounding the neural network outputs. The certified accuracy is the
lower bound of robustness accuracy under any attack method, thus improving the certified accuracy
helps in understanding the potential of the neural network in defending against adversarial attacks.

Interval Bound Propagation. There have been many proposed neural network verification algo-
rithms that can be used to compute worst case output. IBP (Gowal et al., 2019) utilizes a simple,
interval arithmetic approach to propagate bounds through a network. Let zk−1 denote the input to
a layer zk. IBP bounds zk by computing lower and upper bounds zk, zk such that zk ≤ zk ≤ zk
holds element-wise. For affine layers represented by hk(zk−1) = Wzk−1 + b, IBP computes:
zk = W

zk−1+zk−1

2 − |W |zk−1−zk−1

2 + b and zk = W
zk−1+zk−1

2 + |W |zk−1−zk−1

2 + b. Propa-
gating the bounds through the network allows us to compute the upper and lower bound of last layer
logits zK , zK and evaluate if an input x is verifiably robust. The logit of the true class equals the
lower bound and the logits of other classes equal to the upper bound:

2

Under review as a conference paper at ICLR 2022

ẑK,m =

{
zK,m if m is the true class
zK,m otherwise

(2)

IBP training uses a hyperparameter schedule on ε (starting from 0 and increasing to εtrain, typically
set at εtrain which is slightly larger than εeval) and a mixed loss function that combines natural
and robust cross-entropy loss: minθ E(x,y)∼P [κl(zK , y) + (1 − κ)l(ẑK , y)], where P is the data
distribution, l is the cross entropy loss, κ is a hyperparameter that balances the weight between
natural and robust loss, and ẑK represents the worst case logits computed using IBP.

CROWN-IBP. CROWN was introduced by Zhang et al. (2018) and achieves a tight bound by adap-
tively selecting the linear approximation. Zhang et al. (2020a) proposed CROWN-IBP combining
IBP forward bounding pass and CROWN style backward bounding pass. CROWN-IBP trained
models has a tighter bound compared with IBP models under the IBP metric, with incurring cost on
computational efficiency from CROWN backward propagation and generally requiring more epochs
for training stability.

2.3 ATTACK-BASED RE-WEIGHTING

Motivated by the idea that all data points are not equally vulnerable to adversarial attack,
researchers proposed methods to re-weight the minimax risk by adding a re-weighting term
ω(xi, yi) ahead of individual example loss. For instance, Zeng et al. (2020) noted the adversar-
ial distribution deviation from the clean examples and assigned weights that monotonically de-
creases with the examples’ confidence margin. The “confidence margin” is calculated by attack
methods such as PGD, then the risk is re-weighted by a parameterized exponential family as:
minθ

1
n

∑n
i=1 ω(xi, yi)l(fθ(x

′
i), yi), s.t. ω(xi, yi) = exp(−α margin(fθ,xi + δi, yi)) , where α

is a positive hyper-parameter and the new risk biases larger weights towards the mis-classified ex-
amples.

Zhang et al. (2020c) propose GAIRAT (Geometry-Aware Adversarial Training), a method to
reweight adversarial examples based on how close they are to the decision boundary. During the
training process, GAIRAT explicitly assigns larger/smaller weights to data points closer/farther to
the decision boundary respectively: ω(xi, yi) = (1 + tanh(λ + 5 × (1 − 2 × κ(xi, yi)/K)/2,
where λ is a hyper-parameter, K is the maximal allowed attack iteration and κ is the least iteration
number that the attack method requires to fool the classifier. Similar to re-weighting, Wang et al.
(2021) improves clean image performance by prioritizing the robustness between the most dissimilar
groups

2.4 CUSTOMIZED ADVERSARIAL TRAINING

In most adversarial training methods, the adversarial attack strength usually follows a pre-defined
scheduler throughout the training process. For instance, the perturbation ε is a uniform number for
all examples and usually gradually increases. Cheng et al. (2020) argued that this assumption may
be problematic given the fact that adversarial examples are not equally vulnerable and proposed
an auto-tuning ε method by assigning individual εi to each data and increasing it if the current
attack is successful. In Zhang et al. (2020b), they proposed friendly adversarial training (FAT) by
progressively increasing the attack perturbation with early-stop PGD and alleviating the issue of
strong adversarial attack and cross-over mixture.

3 OUR PROPOSED METHODS

3.1 BOUND-BASED WEIGHTED LOSS

In classical classification tasks, training minimizes the following loss function:
E(x,y)∼P [l(fθ(x), y)] estimated by 1

n

∑n
i=1[l(fθ(xi), yi)]. For adversarial training, let x′ be

the worst case input under verifiable adversary or perturbed example from attack, the adversarial
examples (x′, y) ∼ P ′, where P ′ is an unknown distribution dependent on the clean example dis-
tribution P , perturbation method and neural network parameters. In practice, the training objective
is usually 1

n

∑n
i=1[l(fθ(x′i), yi)] estimating E(x,y)∼P [l(fθ(x′), y)], while the true objective should

3

Under review as a conference paper at ICLR 2022

be E(x′,y)∼P ′ [l(fθ(x′), y)]. There exists a discrepancy between the true distribution and empirical
sampling method. To bridge this gap, we follow Zeng et al. (2020) and introduce importance weight

s(fθ,x
′
i, yi) :=

P ′(x′i, yi)

P (xi, yi)
(3)

s.t.

1

n

n∑
i=1

[l(fθ(x′i), yi)s(fθ,x
′
i, yi)] ≈ E(x,y)∼P [l(fθ(x′), y)

P ′(x′, y)

P (x, y)
]

≈ E(x′,y)∼P [l(fθ(x′), y)]

(4)

As further exploration, we analyze the importance weight:

P ′(x′i, yi)

P (xi, yi)
=
P ′(x′i|yi)P ′(yi)
P (xi|yi)P (yi)

=
P ′(x′i|yi)
P (xi|yi)

(5)

where the first equality follows from the definition of conditional probability and second equality is
from the fact that the label yi and its distribution does not change through the adversarial process.

The probability ratio gives us more insight in designing the parametric function for importance
weight. Given label yi, there exists a distribution of its corresponding clean image space P (x|yi)
and similarly for worst case input space P ′(x′|yi). If the distribution of its corresponding worst
case x′i gets more concentrated compared to clean image distribution P (x|yi), then more weight
should be given to this example and vice versa.

Theorem 1. Given a binary classification task Rn −→ {+,−} with equal prior probability, assume
the corresponding examples x+ and x− are uniformly distributed in region S+,S− ⊂ Rn,S+ ∩
S− = ∅. If there exists a bijection mapping m := S+ 7→ S−,S− 7→ S+ s.t. the post-mapping
example x′+ and x′− distribution remains uniform in each region, the expectation of conditional

distribution ratio P ′(x′|y)
P (x|y) over original distribution P (x, y) is great or equal than 1.

Figure 1: Example distribution movement: far away from decision boundary(left) vs close to deci-
sion boundary(right)

Example 1. Figure 1 shows two extreme cases of adversarial example x′ distribution movement
from clean x distribution given decision boundary in a simplified 2D scenario. When x is far away
from decision boundary, the direction of attack or movement towards worst case example under
verifiable adversary is same for all the x. In this case, P

′(x′|y)
P (x|y) ≈ 1. In the second scenario, assume

the decision boundary is a perfect semicircle representing the local curvature of decision boundary
and perturbed examples from both classes follow a uniform distribution, then the examples with
′−′ label in the outer arc condensed into the inner arc and vice versa for examples with ′+′ label
moving to the external arc. Due to the existence of curvature, the area of the outer arc Sin is

4

Under review as a conference paper at ICLR 2022

greater than the inner arc Sout. Therefore, from Theorem 1 the expectation of P ′(x′|y)
P (x|y) is greater

than 1. Another detailed example is illustrated in Appendix B. In this later example, the uniform
perturbation assumption replaced the post-mapping uniform distribution assumption, which is more
realistic for adversarial scenario.

From the two extreme case analysis, we claim that the importance weight around decision boundary
should be larger due to the local curvature, since any arbitrary x′ and x distribution pairs (local cur-
vature is relatively larger than perturbation distance but its effect is not negligible on post adversarial
distribution) can be seen as an intermediate case of two extremes. Therefore, we design a parametric
weight function emphasizing the examples around the decision boundary in a symmetrical manner.

Similar to Zhang & Liang (2019), we define the margin of classifier f for a data point (x, y) as the
probability difference between correct label and the most confident label among others. Specially,
we use bound-based method such as IBP to get the margin under perturbation: P̂ = softmax(ẑK),
where ẑK is the worst case logits as defined in equation 2, P̂ is the probability distribution calculated
by softmax function given ẑK .

margin(f,x, y) = P̂ (f(x) = y)−max
m 6=y

P̂ (f(x) = m) (6)

The margin is positive when the example can be certified robust, otherwise the margin is negative.
The magnitude of margin heuristically indicates the ”distance” of the example towards the current
decision boundary. Left half of Figure 2 shows our implementation of re-weighting against vulnera-
bility of examples, where the size of the labels indicate the weights and corresponding perturbations
on clean data points. The most vulnerable examples are around the decision boundary, since the
worst case scenario of a small perturbation could cross the decision boundary and fool the classi-
fier. For the perturbed data points with smaller margin absolute value (closer to boundary), despite it
being correctly classified, we assign larger weights to help the model focus on these data and accom-
modate more slightly mis-classfied data. On the other hand, for the data points farther from decision
boundary, if it is mis-classfied (large negative margin), there is no need to assign large weight since
the model capacity is limited. For correctly classified data, we also assign small weights because
they are less related to the decision boundary.

Figure 2: Left: Re-weighting examples based on vulnerability, Right: Auto-tuning ε: customize the
perturbation for mis-classified examples

We parameterize the importance weight in the following form:

ωi = e−γ∗(|margin(fθ,x′i,yi,ε)|) + α ∼ s(fθ,x′i, yi) (7)

where γ and α are both positive hyper-parameters to balance the effect of re-weighting. The full
loss function after re-weighting is then defined as:

κ
1

n

n∑
i=1

l(zK , y) + (1− κ)
1∑
ωi

n∑
i=1

ωil(ẑK , y) (8)

where κ is a hyper-parameter to balance the trade-off between clean loss and re-weighted robustness
loss.

5

Under review as a conference paper at ICLR 2022

As comparison with other re-weighting techniques, Zhang et al. (2020c) gives larger weights to the
vulnerable points defined by least attack iterations to fool the model. Zeng et al. (2020) parameter-
izes the weight with a similar exponential function given attack-based margin. Both of their heuris-
tic weight functions monotonically decrease against margin, in which case a heavily mis-classified
point shares a large weight and a well classified point has a smaller weight. Our bound-based method
method, backed up by a qualitatively theoretical analysis, emphasizes the data points symmetrically
around the decision boundary.

3.2 AUTO-TUNING ε

In certified training, the training perturbation magnitude εtrain is usually larger than the εeval for
optimal test accuracy. As Table 1 shows the robustness error against different εtrain and εeval, the
optimal testing accuracy for εtest = 0.3, 0.35 were both achieved at εtrain = 0.4 while smaller
εtrain fails certifying larger εtest.

Table 1: IBP certified robust error on MNIST data
εtest = 0.30 εtest = 0.35 εtest = 0.40 εtest = 0.45

εtrain = 0.30 9.81% 100% 100% 100%
εtrain = 0.35 8.76% 12.13% 100% 100%
εtrain = 0.40 8.66% 11.40% 15.82% 100%

εtrain = 0.45 (training gets unstable) 25.13% 30.62% 37.63% 47.88%

With slightly larger perturbation during training, the model is more capable to handle unseen data
in the testing. This observation is empirical, however, due to the limitation of model capacity, it is
difficult for the model to handle all the examples with very large perturbation. When εtrain = 0.45,
we notice the training instability between different random seeds. Our intuitive explanation is shown
in the right half of Figure 2: With large perturbation, for the vulnerable points around decision
boundary, the worst case prediction (indicated by orange dots) protrudes the ideal boundary with
a large margin and it is sometimes impossible for the model to fit these points. Including these
worst case scenarios in training encourages over-fitting and compromises the model’s ability to find
the right boundary. In implementation, very large perturbation does not help improve the verified
accuracy. Besides, during the training stage, a fast growing perturbation schedule may potentially
cause instability.

Following the above discussion, a natural solution would be customizing perturbation for each ex-
ample in the training set. For the majority of points in the interior of decision zone, we would like to
encourage large perturbation for the model to enforce a thick decision “gap” (grey colored thick line)
for robustness consideration. Ideally, we would like to have the interior points to see large perturba-
tions for optimal robustness and boundary points with moderate perturbations to avoid over-fitting.
In the following, we propose an adaptive procedure to customize the perturbation for each example
based on verified bound. The algorithm is shown in Algorithm 1.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION

We directly use the code from (Zhang et al., 2020a) provided for IBP and CROWN-IBP and leverage
the same CNN architecture(DM-Large) and training scheduler on MNIST and CIFAR-10 datasets.

For MNIST IBP schedule, the neural network is trained for 100 epochs with a batch size of 100.
The base scheduler of training ε starts from 0 after 3 warm-up epochs and linearly grows to desired
maximum training ε with 17 ramp-up epochs, after which base ε stays at the targeted level. The
Adam optimizer learning rate is initialized at 0.001 and decays by 10 times after 25 and 42 epochs.
With MNIST CROWN-IBP schedule, the model is trained for 200 epochs with a batch size of 256.
The ramp-up stage starts from epoch 10 and ends at epoch 50.

For CIFAR-10 dataset, a total of 3200 epochs including 320 warm-up epochs is used for training
with a batch size of 1024 and learning rate of 0.0005 following two 10× decay after epoch 2600
and 3040. As a standard treatment, random horizontal flip and crops are used as data augmentation.

6

Under review as a conference paper at ICLR 2022

Algorithm 1: Bound-based Auto-Tuning algorithm
Input: Training data set (X,Y), standard perturbation scheduler, perturbation bound method,

auto-eps maximum perturbation offset εmaxoff, network parameters θ, learning rate η
initialize perturbation offset εi,off = 0 for all the examples, initialize θ
for epoch = 1,...,N do

for batch = 1,...,M do
εbase ← scheduler()
for i = 1,...,B do

εi ← εbase − εi,off
get the upper and lower bound of classification logits with bound method:

ˆz(εi) = {z(εi), z(εi)} ← bound(fθ,xi, yi, εi)

calculate the softmax worst case probability: P̂ = softmax(ẑ(εi))

calculate the margin: margini = P̂ (yi)−maxm 6=yi P̂ (m)
if margini < 0 then

εi,off ← −margini × εi,maxoff
else

εi,off ← 0
end

end
update the network parameter: θ ← θ − η∇θ

∑B
i=1 l(fθ(xi + εi, yi))/B

end
end

Notice for CROWN-IBP implementation, we reduce the training batch size from 1024 to 256 due to
memory constraint.

The hyper-parameter κ defined in equation 8 linearly decreases from 1 to 0.5 during ramp-up stage.
According to Zhang et al. (2020a), this scheduler (κstart = 1, κend = 0.5) achieves better clean ac-
curacy than (κstart = 0, κend = 0) and (κstart = 0, κend = 0) by ending up with weight on natural
cross entropy loss. All the experiments were performed on 3 random seeds for reproducibility.

Our methods are generally applicable to any certifiable adversarial training method. In the next
section, we first leverage IBP for illustrative examples followed by CROWN-IBP results.

4.2 RESULTS

4.2.1 EFFECTS OF RE-WEIGHTING

In Table 2, we show the effect of hyper-parameters used for the re-weighting under IBP, where
a larger γ indicates a stronger re-distribution of weight for examples and α is a small number to
prevent weight vanish when |margin| is close to 1. The hyper-parameters are evaluated on CIFAR-
10 at ε = 8/255 and MNIST at ε = 0.4. Our optimal hyper-parameter turns out to be γ = 5, α = 0.1
for both data sets. Re-weighting method gains 0.24% verified accuracy on MNIST and 0.82% on
CIFAR-10.

The goal of re-weighting is to approximate the true adversarial distribution by sampling from clean
data distribution. Unfortunately, it is difficult to visualize the intractable distribution. From another
perspective, we can interpret re-weighting as concentration on the robustness decision boundary
and encouragement for larger margin. Figure 3 shows the comparison of margin distribution for
CIFAR-10 testing data set under testing ε = 8.8/255. With the vanilla model, the example margins

Table 2: Robustness against different hyper-parameters with re-weighting with IBP
Dataset εeval εtrain γ α Clean err.(%) Verified err.(%)

MNIST 0.3 0.4 baseline 2.28± 0.12 8.66± 0.05

1 0.1 2.28± 0.13 8.68± 0.06
5 0.1 2.30± 0.07 8.42± 0.07
10 0.1 2.28± 0.05 8.61± 0.05

CIFAR-10 8/255 8.8/255 baseline 49.44± 0.49 72.26± 0.16

1 0.1 49.06± 0.01 72.32± 0.03
5 0.1 49.46± 0.27 71.44± 0.04
10 0.1 50.11± 0.38 71.60± 0.11

7

Under review as a conference paper at ICLR 2022

concentrate around the decision boundary. The re-weighting dilutes the example frequency to both
sides, thus the classification results are less sensitive to perturbation change.

Figure 3: Distribution of margin: vanilla robust training vs re-weighting

4.2.2 EFFECTS OF AUTO-TUNING ε

In robust training, a εtrain usually produces good defensive model for εeval which is slightly smaller
than itself. Practitioners refrain from using an even larger ε due to the marginal gain of robustness
accuracy with the cost of sacrificing natural accuracy.

The idea of using auto-tuning ε is to prevent improperly large perturbation for vulnerable points
around decision boundary. When εtrain is considerably larger than the testing ε, the worst case points
exceed the decision boundary by a unrecoverable large margin due to model capacity. Our auto-
tuning εmethod trims the unnecessary perturbation to alleviate the counter effect for robust training.

Table 3: Robustness against different hyper-parameters with auto-tuning ε with IBP
Dataset εeval εtrain εmaxoff Clean err.(%) Verified err.(%)

MNIST 0.3 0.4 baseline 2.28± 0.12 8.66± 0.05

0.05 2.08± 0.08 8.52± 0.17
0.1 2.04± 0.05 8.46± 0.23
0.15 2.04± 0.10 8.36± 0.12
0.2 2.17± 0.02 8.78± 0.06

CIFAR-10 8/255 8.8/255 baseline 49.44± 0.49 72.26± 0.16

0.005 49.17± 0.29 72.75± 0.53
0.01 49.21± 0.74 73.23± 0.50
0.015 49.21± 0.19 73.37± 0.27

CIFAR-10 8/255 14/255 baseline 55.13± 0.73 70.50± 0.62

0.005 55.78± 0.30 69.29± 0.58
0.01 55.53± 0.88 69.44± 0.43
0.015 55.62± 0.34 69.93± 0.64

Table 3 shows the hyper-parameters choice for auto-tuning ε. For the MNIST data set, we found
the optimal hyper-parameter εmaxoff around 0.15 where the certified accuracy gains by 0.3% from
baseline.

For the CIFAR data set, the standard εtrain 8.8/255 is only 10% larger than the εeval. In this case,
our auto-tuning ε method performs worse compared to the baseline results because the extra 10%
is necessary for certified training. By using larger εtrain, it is possible to reach even smaller testing
error. To show the effect of auto-tuning ε method, we will increase the εtrain until the testing verified
accuracy stabilizes. For εtrain = 10/255, 14/255, 18/255, 22/255, we come up with verified accu-
racy = 70.62%± 0.62%, 70.50%± 0.62%, 70.31%± 0.83%, 71.19%± 0.21% which are roughly
2% lower than the standard result. We choose ε = 14/255 as the “sweet point”, beyond which any
increase in ε does not provide any improvement in accuracy because the very large perturbation is
harmful to training. With the optimal εmaxoff = 0.01, the verified accuracy is improved by 1.21%
from baseline.

8

Under review as a conference paper at ICLR 2022

4.2.3 COUPLING OF TWO METHODS

By coupling two methods, we can further combine the improvements and achieve even better results.
As shown in Table 6, for MNIST, using both optimal hyper-parameters from above individual tests
we reach a verified accuracy of 8.01%, gaining 0.65% from baseline. For CIFAR-10, our best
results beats the IBP baseline by 2.17%. We performed more experiments on other εeval and other
architecture and defer the results to Appendix C.

Table 4: Robustness improvement summary with IBP
Dataset εeval εtrain re-weight auto-eps Clean err.(%) Verified err.(%)

MNIST 0.3 0.4 baseline 2.28± 0.12 8.66± 0.05

X 2.04± 0.10 8.36± 0.12
X 2.30± 0.07 8.42± 0.07
X X 2.09± 0.06 8.01± 0.04

CIFAR-10 8/255 14/255 baseline 55.13± 0.73 70.50± 0.62

X 55.66± 1.05 69.8± 0.39
X 55.78± 0.30 69.29± 0.58
X X 55.05± 0.17 68.33± 0.21

4.2.4 RESULTS ON CROWN-IBP

To illustrate that our methods generally work for all the certifiable training, we apply the same
methods and optimal hyper-parameters from IBP setup directly to CROWN-IBP. For MNIST data,
we achieves 0.32% improvement from baseline by re-weighting and 0.13% from auto-eps, com-
bining the two is similar to using auto-eps only though. For CIFAR data, note that we use train-
ing batch size 256 instead of 1024 in Zhang et al. (2020a), the standard εtrain 8.8/255 has veri-
fied error 68.10% ± 0.12% at εeval = 8/255 from our experiments. By elevating the bulk εtrain to
14/255, the verified error increases to 68.35%±0.43%. After applying the two methods, we achieve
66.72%± 0.7% and beat the baseline by 1.38%.

Table 5: Robustness improvement summary with CROWN-IBP
Dataset εeval εtrain re-weight auto-eps Clean err.(%) Verified err.(%)

MNIST 0.3 0.4 baseline 1.85± 0.11 7.02± 0.08

X 1.62± 0.01 6.89± 0.05
X 1.86± 0.04 6.70± 0.30
X X 1.74± 0.02 6.90± 0.05

CIFAR-10 8/255 14/255 baseline 54.29± 0.73 68.35± 0.43

X 54.73± 0.34 67.12± 0.08
X 53.41± 0.42 67.40± 0.32
X X 53.65± 0.89 66.72± 0.7

5 CONCLUSIONS

This paper proposed new methods to refine the decision boundary to improve the certifiable robust-
ness accuracy. We prove the necessity to assign more weights towards adversarial examples around
decision boundary by parameterizing the true adversarial distribution. A future direction could be
exploring the adversarial mechanism for better approximation of re-weight function and promoting
the idea of re-weighting to other non-adversarial tasks. For auto-tuning, our initial interest was to
prevent extremely large εtrain and a relatively large εtrain is necessary to show the effect. In practice,
we can increase εtrain until accuracy stabilizes and achieve further optimal verified error. Our intu-
itive approach indeed finds a proper perturbation for each example. Given the fact that a larger εtrain
achieves optimal certifiable accuracy still exists as an empirical finding (Gowal et al., 2019; Zhang
et al., 2020a), a rigorous theoretical thinking is needed to justify this approach.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

This paper does not contain ethics concerns.

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Circumventing defenses to adversarial exam-
ples. ICML, 2018.

Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar. A unified view
of piecewise linear neural network verification. NeurIPS, 2018.

Qi-Zhi Cai, Min Du, Chang Liu, and Dawn Song. Curriculum adversarial training. IJCAI, 2018.

Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, and Cho-Jui Hsieh. Cat: Customized adver-
sarial training for improved robustness. arXiv:2002.06789, 2020.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. PMLR, 2017.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. PMLR, 2019.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan
O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned ver-
ifiers. arXiv:1805.10265, 2018a.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli.
A dual approach to scalable verification of deep networks. UAI, pp. 550–559, 2018b.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv:1412.6572, 2014.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable verified training for
provably robust image classification. ICCV, 2019.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. arXiv preprint arXiv:1802.03471,
2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICLR, 2018.

Peilin Kang Seyed-Mohsen Moosavi-Dezfooli. Understanding catastrophic overfitting in adversarial
training. arXiv:2105.02942, 2021.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. IEEE, 2016.

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning. PMLR,
2020.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. In NeurIPS, volume 32, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. ICLR, 2014.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. ICLR, 2019.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
In ICLR, 2021.

10

Under review as a conference paper at ICLR 2022

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. ICLR, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certifica-
tion of perturbation invariance for deep neural networks. In NeurIPS, 2018.

Shiqi Wang, Kevin Eykholt, Taesung Lee, Jiyong Jang, and Ian Molloy. Adaptive verifiable training
using pairwise class similarity. AAAI, 2021.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. PMLR, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. ICLR, 2020.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S.
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu networks.
PMLR, 2018.

Huimin Zeng, Chen Zhu, Tom Goldstein, and Furong Huang. Are adversarial examples cre-
ated equal? a learnable weighted minimax risk for robustness under non-uniform attacks.
arXiv:2010.12989, 2020.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. ICML, 2019.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. NIPS, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks.
ICLR, 2020a.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
halli. Attacks which do not kill training make adversarial learning stronger. arXiv:2002.11242,
2020b.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli.
Geometry-aware instance-reweighted adversarial training. arXiv:2010.01736, 2020c.

Yuchen Zhang and Percy Liang. Defending against whitebox adversarial attacks via randomized
discretization. PMLR 89:684-693, 2019.

11

Under review as a conference paper at ICLR 2022

APPENDIX

A PROOF OF THEOREM 1

Theorem 1 (Restated). Given a binary classification task Rn −→ {+,−} with equal prior probabil-
ity, assume the corresponding examples x+ and x− are uniformly distributed in region S+,S− ⊂
Rn,S+ ∩ S− = ∅. If there exists a bijection mapping m := S+ 7→ S−,S− 7→ S+ s.t. the post-
mapping example x′+ and x′− distribution remains uniform in each region, the expectation of con-

ditional distribution ratio P ′(x′|y)
P (x|y) over original distribution P (x, y) is great or equal than 1.

Proof. let x+,x−,x
′
+,x

′
− denote the pre-mapping and post-mapping examples for 2 labels, be-

cause both pre-mapping and post-mapping examples are uniformly distributed in each region,
P (x+|y+), P (x−|y−), P ′(x′+|y+), P ′(x′−|y−) are constant. let S+ =

∮
x∈S+ dx, S− =

∮
x∈S− dx

be the ”volume” of set S+,S−.
Given total conditional probability equals 1:∫

x∈S+
P (x+|y+)d(x) = 1

⇐⇒ P (x+|y+)

∫
x∈S+

d(x) = 1

⇐⇒ P (x+|y+) = 1/S+

Similarly we have other conditional probability equals the inverse of volume.
Hence,

E(x,y)∼P [
P ′(x′|y)

P (x|y)
] = P (y+)

∫
x∈S+

P (x+|y+)
P ′(x′+|y+)

P (x+|y+)
d(x)

+ P (y−)

∫
x∈S−

P (x−|y−)
P ′(x′−|y−)

P (x−|y−)
d(x)

= 0.5(
S+

S−
+
S−
S+

) ≥ 1

where the second equality comes from the balanced prior assumption(P (y+) = P (y−))

Notice we cannot directly cancel the conditional probability on the numerator and denominator,
otherwise integrating x′ over dx is not tractable. The inequality holds when S− 6= S+.

12

Under review as a conference paper at ICLR 2022

B A CONCRETE EXAMPLE ON IMPORTANCE WEIGHT EXPECTATION

Figure 4: An ideal example illustrating importance weight expectation around decision boundary
with curvature

Example 2. We assume label-balanced data x ∈ R2 and y ∈ {+,−} and positive constant σ, the
clean data with label 1 were uniformly distributed in the inner ring Cin = {x|σ < ‖x‖2 < 2σ}
and data with label 0 were uniformly distributed in the outer ring Cout = {x|2σ < ‖x‖2 <
3σ}. Then p(y = +) = p(y = −) = 0.5 and clean data distribution is: p(x|y) =

1
3πσ2 if y = +, σ < ‖x‖2 < 2σ
1

5πσ2 if y = −, 2σ < ‖x‖2 < 3σ

0 otherwise
assume the linear classifier f : R→ R uses r = ‖x‖2 as feature and outputs the logit for probability,

s.t. the probability after sigmoid function is pf (y|x) =

{
1

1+es if y = +
1

1+e−s if y = −
where s = r + 2σ
The negative log-likelihood

NLL = −E(x,y)∼p(x,y)[log(pf (y|x))]

= −p(y = +)

∫
p(x|y = +)log(pf (y = +|x))dx

− p(y = −)

∫
p(x|y = −)log(pf (y = −|x))dx

= −0.5(
1

3πσ2

∫ r=2σ

r=σ

1

1 + es
2πrdr +

1

5πσ2

∫ r=3σ

r=2σ

1

1 + e−s
2πrdr)

= −0.5(
1

3πσ2

∫ s=0

s=−σ

1

1 + es
2π(s+ 2σ)ds+

1

5πσ2

∫ s=σ

s=0

1

1 + e−s
2π(s+ 2σ)ds)

Notice the integral includes polylogarithm term thus the indefinite integral is not elementary
function and it is unnecessary to attack the final integral. Instead, we apply adversarial directly
to the above equation for (x, y) distribution. Calculate the adversarial gradient: for s ∈ [0, σ],
dNLL(s)

ds = − 1
6πσ2

es

1+e−s 2π(s + 2σ), let ∆−(s) = d2NLL(s)
ds2 = − 1

3σ2

1+e−s+e−s(s+2σ)
(1+e−s)2 . For

s ∈ [−σ, 0], dNLL(s)ds = − 1
6πσ2

e−s

1+e−s 2π(s+ 2σ), let ∆+(s) = d2NLL(s)
ds2 = − 1

3σ2

1+es−es(s+2σ)
(1+es)2 .

∆+(s) and ∆−(s) denotes the attack gradient towards negative log-likelihood function on example
(x, y) with s = ‖x‖2 + 2σ. Notice ∆+(s) > 0 and ∆−(s) < 0 because adversarial perturbs the
correctly classified examples towards the decision boundary. Assume the attack step α = σ, there
exist a mapping of attack m : R2×R→ R2×R. Because this is a 1 step attack on a 2D plane with
gradient towards radial direction without projection, the mapping also corresponds to a verifiable
worst case adversarial with εmax = σ under `2 norm. Rewrite (x, y) in the polar coordinate(r, θ, y),

(r′, θ′, y′) = m(r, θ, y) =

{
(r + σ, θ, y) if y = +

(r − σ, θ, y) if y = −

13

Under review as a conference paper at ICLR 2022

After the attack, the importance ratio P ′(x′|y)
P (x|y) = r

r′ is inversely proportional to the radius change.

The expected importance ratio could be written as :

E(x,y)∼P [
P ′(x′|y)

P (x|y)
] = P (y = −)

∫
P (x|y = −)

P ′(x′|y = −)

P (x|y = −)
dx

+ P (y = +)

∫
P (x|y = +)

P ′(x′|y = +)

P (x|y = +)
dx

= 0.5[

∫ r=3σ

r=2σ

1

5πσ2

r

r − σ
2πrdr +

∫ r=2σ

r=σ

1

3πσ2

r

r + σ
2πrdr]

= 0.5[

∫ t=3σ−σ

t=2σ−σ

1

5πσ2

σ + t

t
2π(σ + t)dt

+

∫ t=2σ+σ

t=σ+σ

1

3πσ2

−σ + t

t
2π(−σ + t)dt]

= π[
1

5πσ2
(σ2log(t) + 2σt+ t2/2)

∣∣∣∣t=3σ−σ

t=2σ−σ

+
1

3πσ2
(σ2log(t)− 2σt+ t2/2)

∣∣∣∣t=2σ+σ

t=σ+σ

=
1

5σ2
(σ2log(2) + 3.5σ2) +

1

3σ2
(σ2log(1.5) + 0.5σ2)

≈ 1.14 > 1

14

Under review as a conference paper at ICLR 2022

C MORE EXPERIMENTS

Table 6: Robustness improvement summary with IBP
Dataset architecture εeval εtrain re-weight auto-eps Clean err.(%) Verified err.(%)

MNIST DM-small 0.3 0.4 baseline 3.27± 0.24 12.00± 0.35

0.4 X 3.25± 0.10 11.73± 0.57
0.4 X 2.75± 0.11 11.36± 0.24
0.4 X X 2.87± 0.10 11.09± 0.33

CIFAR-10 DM-small 8/255 8.8/255 baseline 51.86± 0.18 73.92± 0.17
14/255 baseline 58.08± 0.33 71.07± 0.23

14/255 X 57.56± 0.76 70.33± 0.29
14/255 X 58.36± 1.05 70.62± 0.46
14/255 X X 57.29± 0.17 70.02± 0.18

MNIST DM-large 0.1 0.2 baseline 1.06± 0.07 3.08± 0.15

0.2 X 1.03± 0.01 3.06± 0.02
0.2 X 1.14± 0.07 2.86± 0.09
0.2 X X 1.03± 0.04 2.92± 0.07

CIFAR-10 DM-large 2/255 2.2/255 baseline 33.89± 0.42 58.80± 0.84
6/255 baseline 44.32± 0.27 52.93± 0.42

6/255 X 44.01 +±0.46 52.38± 0.10
6/255 X 43.60± 0.18 52.57± 0.30
6/255 X X 42.94± 0.64 52.17± 0.17

15

	Introduction
	Our contributions

	Background
	Adversarial Attacks and Training
	Certified Training
	Attack-based re-weighting
	Customized Adversarial Training

	Our proposed methods
	Bound-based Weighted loss
	Auto-tuning

	Experiments
	Datasets and Implementation
	Results
	Effects of Re-weighting
	Effects of Auto-tuning
	Coupling of two methods
	Results on CROWN-IBP

	Conclusions
	Proof of Theorem 1
	A concrete example on importance weight expectation
	More experiments

