
API Agents vs. GUI Agents: Divergence and Convergence

Chaoyun Zhang 1 Shilin He 1 Liqun Li 1 Si Qin 1 Yu Kang 1 Qingwei Lin 1 Saravan Rajmohan 1

Dongmei Zhang 1

Abstract
Large language models (LLMs) have evolved be-
yond simple text generation to power software
agents that directly translate natural language
commands into tangible actions. While API-
based LLM agents initially rose to prominence for
their robust automation capabilities and seamless
integration with programmatic endpoints, recent
progress in multimodal LLM research has enabled
GUI-based LLM agents that interact with graph-
ical user interfaces in a human-like manner. Al-
though these two paradigms share the goal of en-
abling LLM-driven task automation, they diverge
significantly in architectural complexity, develop-
ment workflows, and user interaction models.

This paper presents the first comprehensive com-
parative study of API-based and GUI-based LLM
agents, systematically analyzing their divergence
and potential convergence. We examine key di-
mensions and highlight scenarios in which hy-
brid approaches can harness their complementary
strengths. By proposing clear decision criteria and
illustrating practical use cases, we aim to guide
practitioners and researchers in selecting, com-
bining, or transitioning between these paradigms.
Ultimately, we indicate that continuing innova-
tions in LLM-based automation are poised to blur
the lines between API- and GUI-driven agents,
paving the way for more flexible, adaptive solu-
tions in a wide range of real-world applications.

1. Introduction
The advent of large language models (LLMs) (Zhao et al.,
2023) has ushered in a new era of artificial intelligence,
enabling advanced natural language understanding and gen-
eration across a wide range of domains. While LLMs have
long been recognized for their ability to produce coherent

1Microsoft. Correspondence to: Chaoyun Zhang
<chaoyun.zhang@microsoft.com>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

text, recent developments have led to LLM-based agents
capable of mapping language inputs to real actions in digital
environments (Wang et al., 2024a). By grounding LLMs in
tangible operations, these agents can interact with various
software systems, execute commands, and have a practical
impact on the software ecosystems they inhabit.

Initially, software LLM agents were predominantly Applica-
tion Programming Interface (API)-centric, interacting with
external tools, functions, or services through well-defined
programmatic interfaces (Du et al., 2024). This approach
allowed agents to orchestrate microservices, query search
engines, or even control third-party applications via docu-
mented APIs, with a automated and efficient manner. Prod-
ucts such as Microsoft’s Copilot exemplify how API-based
LLM agents have become mainstream (Stratton, 2024),
rapidly transitioning from research prototypes to widely
adopted industrial solutions. The traction of these agents,
both in academia and industry, underscores their capacity
to streamline tasks through automation while maintaining
robust scalability and interoperability.

Concurrently, with multimodal capabilities gaining promi-
nence in LLM research, a new class of agents has emerged:
Graphical User interfaces (GUIs)-based LLM agents (Zhang
et al., 2024a). These agents interact not only through APIs
but also by “observing” and manipulating graphical user
interfaces of software, be they on desktop, mobile, or web
applications. Projects such as UFO (Zhang et al., 2024b),
CogAgent (Hong et al., 2024), and OpenAI Operator (Ope-
nAI, 2025) illustrate how GUI-based agents can bring richer
user experiences, improved accessibility, and provide more
general automated control of software. By integrating vision
or screen-based understanding with text-based reasoning,
these agents push the boundaries of human-computer in-
teraction, showcasing how AI can seamlessly blend with
intuitive, visual workflows.

Despite the promise of both paradigms, API-based and GUI-
based LLM agents exhibit significant differences in their
architectures, development methodologies, and user inter-
action models (Zhang et al., 2024a). For example, as illus-
trated in Figure 1, an API-based agent scheduling a Google
Calendar meeting could make a single call provided the
proper endpoint and authentication, to instantly create the

1

SetGoogleCalendarEvent(

Date=2025-03-08,

StartTime=16:00,

EndTime=17:00,

Title="Meeting on LLM Agent"

)

UserUser

GUI Agent

API Agent

Schedule a 1-hour
meeting on Google
Calendar for LLM Agent
at 4:00 PM on March 8.

ClickClick ClickClick

ClickClick

Write

Success

Figure 1. The difference between an API agent and a GUI agent in completing the task “Schedule a 1-hour meeting on Google Calendar
for LLM Agent at 4:00 PM on March 8”.

event. In contrast, a GUI-based agent would open the web
interface, navigate through the calendar visually, fill in rele-
vant fields, and click buttons to finalize the meeting details.
While the API-based approach tends to be faster and more
resource-efficient, it depends on well-defined endpoints and
reliable infrastructure. Conversely, GUI-based agents can
interface with application’s front end but typically require
multiple user-like steps, which can be slower and more
error-prone (Song et al., 2024).

These trade-offs underscore the fundamental divergence
between API- and GUI-based agents and have sparked vig-
orous discussions regarding their relative merits, overlap,
and even necessity. Although they may appear to compete,
many believe that a thorough examination of both differ-
ences and shared attributes is crucial. Indeed, no unified
framework or comparative analysis has yet offered clear
guidelines on when one approach might outperform the
other—or if a hybrid strategy could combine their strengths.

To address this gap, this paper systematically examines both
the divergence and potential convergence of API-based and
GUI-based LLM agents in software automation. We begin
by clarifying the conceptual foundations of each paradigm,
followed by an in-depth comparative analysis across key
dimensions. We then explore how ongoing innovations in
LLM-based interactions are increasingly blurring the lines
between API and GUI agents, and discuss a hybrid approach
that leverages their respective strengths while mitigating
their shortcomings. By outlining clear decision criteria,
we aim to guide practitioners and researchers in selecting
the most suitable agent type based on project requirements,
resource constraints, and user experience objectives. Ulti-
mately, this work serves as a comprehensive resource for
academics and industry professionals, offering insights into
how these agent types differ, where they converge, and how
they may evolve to address emerging challenges.

API_1
- Description: ...
- Args: ...

- Return: …
- Examples: ...

API_2
- Description: ...
- Args: ...

- Return: …
- Examples: ...

API_N
- Description: ...
- Args: ...

- Return: …
- Examples: ...

User QueryUser Query

GUI AgentGUI Agent

API AgentAPI Agent

API Information

GUI
Observation

API_2(
 arg1=...,
 arg2=...,
 ...
)

Action

Action

CLICK(X=…, Y=...)

Figure 2. The difference between an API agent and a GUI agent.

2. Background
LLM agents are designed to accept natural language re-
quests from users and execute tasks in real or virtual envi-
ronments. While they share the common goal of translating
language into actionable commands, two distinct paradigms
have emerged based on how these agents interact with their
underlying systems: API-first and GUI-first LLM agents.
Below, we provide an overview of each paradigm, highlight-
ing their core principles and operational differences.

2.1. API-Based LLM Agents

An API-first LLM agent can be defined as

Intelligent agents that leverage LLMs as their cog-
nitive engine to invoke one or more predefined
APIs to fulfill user requests automatically.

In this paradigm, the agent’s capabilities are bounded

2

by a predefined set of tools, plugins, or function
calls—collectively referred to as “APIs” (Shen, 2024), as
shown in Figure 2. This constrained set of functions not
only ensures reliability and safety but also simplifies the
agent’s decision space. Rather than generating full program
code, the agent identifies which API to call for each step
and populates the required parameters based on user intent.

Relevant API information, such as function names, descrip-
tions, parameters, and schemas, is included in the LLMs
prompt. When a user issues a natural language request, the
LLM agent interprets the intent and chooses the most suit-
able API to perform the task. This approach has been widely
adopted in many state-of-the-art models and frameworks,
including function-call modes in GPT-4 (Hurst et al., 2024)
and the plugin-only mode in TaskWeaver (Qiao et al., 2023).

2.2. GUI-Based LLM Agents

In contrast to the API-first paradigm, GUI-based LLM
agents operate by interacting directly with GUIs rather than
invoking predefined functions. As defined in (Zhang et al.,
2024a), these agents can be described as:

Intelligent agents that operate within GUI envi-
ronments, leveraging LLMs as their core infer-
ence and cognitive engine to generate, plan, and
execute actions in a flexible and adaptive manner.

GUI-based agents primarily rely on visual or multimodal
inputs, such as application screenshots and textual repre-
sentations (e.g., accessibility trees or metadata). Instead of
calling API endpoints, these agents navigate and manipulate
on-screen elements using actions akin to human interac-
tions, such as mouse clicks and keyboard inputs (Wang
et al., 2024b), as shown in Figure 2. This “human-like”
operational flow means that the agent must interpret visual
layouts, locate relevant controls, and execute sequences of
clicks, drags, or keypresses to accomplish tasks.

The rapid evolution of multimodal LLM (Hong et al., 2024;
Zheng et al., 2025) capabilities has sparked considerable in-
terest in GUI-based agents, leading to a range of prototypes,
frameworks, and commercial products. Use cases include
automated software testing, workflow automation, and ac-
cessibility enhancements. Ongoing research aims to address
the inherent challenges of screen parsing, error handling,
and robust action planning, areas where GUI-based LLM
agents continue to evolve.

Together with API-first LLM agents, this GUI-based
paradigm forms a complementary, but often contrasting
approach to building intelligent systems that bridge natu-
ral language understanding and real-world task execution.
As subsequent sections will illustrate, understanding both
paradigms is crucial for selecting or designing an agent

architecture suited to specific project goals and constraints.

3. Divergence Between API and GUI Agents
Although both API-based and GUI-based agents aim to auto-
mate tasks using natural language instructions, they diverge
significantly in various perspectives. This section presents a
comparative analysis across several key dimensions: Modal-
ity, Reliability, Efficiency, Availability, Flexibility, Security,
Transparency, Human-Like Interaction, and Maintainability.
By examining these factors, we can better understand the
foundational distinctions between the two paradigms and
their impact on real-world applications.

3.1. Modality

The most evident difference lies in the way each agent per-
ceives and interacts with software. API agents rely on tex-
tual specifications for each available endpoint. They inter-
pret the user’s request, map it to the relevant function, and
provide the necessary parameters for execution. By contrast,
GUI agents process visual or multimodal inputs, such as
screenshots or accessibility trees, and then navigate and ma-
nipulate user interface elements. Since GUI agents operate
on actual interface controls, accurate visual grounding and
interpretation become essential (Lu et al., 2024). While
accessibility trees can offer some structured information,
image-based comprehension remains central to the agent’s
interaction in a GUI environment.

3.2. Efficiency

Efficiency covers both the time and computational resources
required to complete a task. API agents can generally han-
dle complex tasks in a single function call, minimizing
latency and reducing the inference costs. In contrast, GUI
agents frequently must perform a series of user-like ac-
tions—opening menus, typing text, clicking buttons—to
accomplish the same goal. Even routine operations, such as
navigating through application panes, can require multiple
steps. This user-level approach, while intuitive, can slow
task execution and increase operational overhead compared
to a well-designed API (Zhang et al., 2024a). If completing
a task takes significantly longer than it would for a human,
it can limit GUI agents’ practical applicability.

3.3. Reliability

Reliability often stems from the complexity of the underly-
ing interaction model. API agents typically exhibit robust
performance when they can access stable, well-defined end-
points. Such endpoints are easily maintained, versioned, and
tested, leading to predictable outcomes. GUI agents, how-
ever, encounter challenges whenever application layouts or
screen elements change unexpectedly. This is because GUIs

3

Table 1. Comparison of API vs. GUI agents across key dimensions.

Dimension API Agents GUI Agents
Modality Rely on text-based API calls Depend on screenshots or accessibility

trees
Reliability Generally higher with well-defined end-

points
Lower due to visual parsing and layout
changes

Efficiency Achieve complex tasks in a single call Require multiple user-like actions
Availability Limited to published or pre-defined

APIs
Can operate on any visible UI element

Flexibility Constrained by existing APIs Highly adaptable to new or unexposed
features

Security Manageable via granular endpoint con-
trols

Riskier due to broad access to UI ele-
ments

Maintainability Stable if APIs remain versioned Prone to breakage on UI redesigns
Transparency Often hidden, back-end driven Step-by-step, visually traceable
Human-Like Inter-
action

Purely programmatic Simulates user actions on a screen

are primarily designed for human interaction, often con-
taining redundant elements and potential distractions that
can disrupt automated workflows (McKay, 2013). These
changes introduce uncertainties in the agent’s visual parsing
and planning, making GUI-based approaches more prone to
errors. In addition, the multi-step decision-making process
of GUI agents can compound errors at each step, ultimately
reducing overall accuracy. As a result, GUI agents often
require ongoing refinements and are still not as production-
ready as their API-based counterparts in many scenarios.

3.4. Availability

Availability depends on how readily an agent can access
the functionality necessary to fulfill a user’s request. API
agents are constrained by the endpoints or functions that
developers have defined and exposed. If a desired feature
is omitted, the agent cannot invoke it directly. This is par-
ticularly common in mobile applications, where developers
often restrict external API access to maintain control over
their private ecosystems.

Conversely, GUI agents can interact with virtually any ap-
plication that presents a GUI, without requiring explicit API
definitions. The universality of GUI-based interaction can
be an advantage in environments where no formal APIs ex-
posed, but it also demands more sophisticated interpretation
and error handling to manage diverse or evolving UIs.

3.5. Flexibility

In addition to availability, flexibility denotes how easily
the agent can adapt to new or modified use cases. API
agents can call only the APIs that have been developed,
documented, and integrated in advance. Expanding their

functionality depends on creating and deploying additional
endpoints. GUI agents, on the other hand, can theoretically
operate on any visible element within an interface, thereby
offering a higher degree of freedom. This freedom, how-
ever, requires advanced multimodal reasoning capabilities
to locate and interact with UI objects consistently.

3.6. Security

Security plays a crucial role in deciding which paradigm to
adopt. API agents typically offer more granular protection,
as each endpoint can be individually secured with authenti-
cation, access control, or rate limiting. GUI agents may inad-
vertently access parts of the interface that perform privileged
or destructive operations, raising the risk of unintended con-
sequences. Since graphical interfaces are designed primarily
for human users, enforcing comprehensive security policies
on automated, mouse-and-keyboard-like interactions can
be challenging. As a result, GUI-based agents may require
additional safeguards to avoid unauthorized operations or
misuse (Zhang et al., 2024b).

3.7. Maintainability

An other dimension relates to how easily the agent’s func-
tionality can be maintained and updated over time. API
agents benefit from versioned, standardized interfaces. As
long as the underlying endpoints remain stable, the agent
logic remains mostly intact. New APIs can be seamlessly
integrated into the agent by simply adding their descriptions
to the prompt, ensuring easy maintenance.

By contrast, GUI agents are highly susceptible to interface
redesigns, pop-up windows, layout shifts, and element re-
naming or relocation (Zhang et al., 2024c), all of which can

4

break the automation if the GUI agent is unfamiliar with
the change. This fragility can substantially increase the cost
and frequency of maintenance.

3.8. Transparency

From a user’s perspective, transparency refers to the clarity
of observing how the agent fulfills a task. API agents of-
ten execute behind the scenes, providing limited visibility
into the step-by-step process. Users typically see the final
outcome without knowing which endpoints were invoked.

In contrast, GUI agents replicate user-level interactions,
making each click and text entry visible as it unfolds. Rather
than operating invisibly in the background like API calls,
GUI agents offer a visible and interactive execution process,
allowing users to observe, intervene, or adjust the workflow
as needed. This design can be particularly beneficial in
scenarios requiring step-by-step verification, training sim-
ulations, or automation of tasks where visual confirmation
is necessary. This improves the interpretability of the work-
flow, allowing human observers to track and validate the
agent’s progress more intuitively.

3.9. Human-Like Interaction

Closely linked to transparency is the notion of simulating
human behavior. API agents employ a purely programmatic
approach, executing function calls directly without mim-
icking user interactions. They are optimized for efficiency,
reliability, and scalability, but they lack any visual or in-
teractive representation of the task execution. In contrast,
GUI agents replicate the exact steps a human user would
take—navigating through menus, filling in forms, and in-
teracting with interface elements in a natural, sequential
manner. This human-like execution enhances interpretabil-
ity, making it easier for users to follow and understand
the agent’s actions, thereby fostering trust and a more in-
tuitive user experience. This introduces a novel paradigm
for human-computer interaction by bridging AI automation
with user-centric workflows (Lin et al., 2025).

3.10. Summary

In summary, these dimensions illustrate the fundamental
ways in which API-based and GUI-based agents diverge
in practice. API agents provide efficiency, security, and re-
liability when backed by robust endpoints, but they are
bounded by the limited set of exposed functions. GUI
agents offer broad applicability and user-like workflows,
yet they must overcome challenges in visual parsing, inter-
face changes, and slower task execution. As the complexity
of software ecosystems grows, understanding these diver-
gent properties is essential for selecting the most suitable
approach—or for designing hybrid solutions that combine

GenerateReport(

 startDate,

 endDate

)

CLICK(Button(“Report”))

SCROLL(MenuItem(“Report Type”))

CLICK(Button(“Financial Report”))

CLICK(Button(startDate))

CLICK(Button(endDate))

CLICK(Button(“Run Report”))

API Wrapper

GUI Workflow

Figure 3. An example of a API wapper over a GUI workflow.

the best attributes of both paradigms.

4. Convergence and the “Hybrid” Approach
Although API-based and GUI-based agents have tradition-
ally been studied as separate paradigms, their conceptual
foundations are not mutually exclusive. In practice, there
are numerous scenarios where these approaches intersect or
complement one another, leading to an emerging “hybrid”
model. By drawing on the strengths of both API and GUI
paradigms, this hybrid approach can achieve broader cover-
age of use cases, higher efficiency, and a more human-like
interaction style. While still in its early stages, the potential
for these convergent solutions to reshape how agents operate
is becoming increasingly evident.

4.1. API Wrappers Over GUI Workflow

Some vendors transform GUI-based applications into quasi-
API services by introducing a “headless mode” or a script-
ing interface that accepts function calls. This approach
effectively abstracts GUI interactions into structured com-
mands, allowing applications originally designed for hu-
man navigation to be automated in a more programmatic
and scalable manner. For example, a specialized account-
ing application may traditionally require users to navigate
through multiple dialog boxes and menus to generate a
financial report. However, in a headless or scripted ver-
sion, the same application could expose a function such as
GenerateReport(startDate, endDate), enabling direct
execution without requiring manual UI navigation. This is
conceptually similar to Robotic Process Automation (RPA)
bots (Wornow et al., 2024), which mimic user actions but
can also be optimized for backend workflows.

Although these wrappers still rely on GUI workflows under
the hood, they present an API-like interface to developers,
simplifying integration into broader automation pipelines.
This transformation represents a subtle yet impactful form
of convergence: an application originally designed for di-
rect GUI interactions is reinterpreted as an API service,
reducing the need for a dedicated GUI agent while retain-
ing compatibility with existing software ecosystems. By
bridging GUI automation with structured API-like inter-
faces, this approach enhances efficiency, scalability, and

5

Table 2. Examples of convergence paths in hybrid agent systems.

Approach Key Benefit Primary Challenge
API Wrappers Over GUI Tools Provides a quasi-API experience for

GUI-only software
Still relies on underlying GUI ele-
ments that may change

Unified Orchestration Tools Hides agent-type details from the user Complex logic to choose between
API and GUI in real time

Low-Code / No-Code Solutions Simplifies design of advanced work-
flows

May introduce hidden dependencies
and abstractions

getLoanApplications(applicationID)

creditCheck(customerID)

getLoanStatus(customerID, threshold)

CLICK(Button(“New Email”))

Write(Email_Title)

Write(Email_Body)

CLICK(Button(Send))

Write(Receipant_Address)

Action
Orchestrator

Hybid Agent

Figure 4. An example orchestrator to manage API and GUI actions.

ease of integration, particularly in enterprise environments
where legacy applications must be incorporated into modern
automation frameworks.

4.2. Unified Orchestration Tools

Enterprise-grade automation frameworks and process or-
chestration tools increasingly offer a single, unified envi-
ronment where developers or operators can build high-level
workflows without delving into the underlying agent mech-
anisms. Consider, for example, a large financial institution
automating its loan approval process. Within an orches-
tration tool, a user could design a flowchart that checks
a customer’s credit score (using a secure API endpoint),
then updates a Customer relationship management (CRM)
system if the credit score meets a certain threshold. If no
relevant API exists for updating the CRM, the platform
can seamlessly switch to a GUI-based agent that navigates
through the CRM’s web interface in a user-like fashion.
Thus, the tool automatically determines whether an API
call or GUI interaction is most suitable for each task. We
show such an example in Figure 4. By shielding users from
these low-level decisions, orchestration platforms reduce
complexity and streamline the automation pipelines.

Prototyping Experiments. We extend the UFO frame-
work (Zhang et al., 2024b) to prototype a hybrid GUI and
API approach that prioritizes API usage whenever available,
using GPT-4o and o1 as the foundation model. To eval-
uate its effectiveness, we focus on 27 office-related tasks

Table 3. Comparison of Success Rate (SR) and Average Comple-
tion Steps (ACS) between GUI-only and GUI with API actions.

Model SR ACS

GUI-only (GPT-4o) 16.3% 13.8
GUI + API (GPT-4o) 22.4% 12.9

GUI-only (o1) 16.3% 16.0
GUI + API (o1) 24.5% 6.6

in OSWorld (Xie et al., 2024) and manually implement 12
APIs for Word, Excel, and PowerPoint. These applications
expose COM interfaces that support the creation of custom
functions, making them ideal candidates for deeper inte-
gration with the operating system and application layers.
Table 5 summarizes the developed APIs in the Appendix A.

Table 3 compares two configurations—GUI only and GUI
with API—on two key metrics: (i) overall Success Rate
(SR) and (ii) Average Completion Steps (ACS). To ensure
fairness, ACS is computed only on the subset of tasks that
both configurations complete successfully.

The results show that incorporating APIs improves SR for
both GPT-4o (an increase of 6.1%) and o1 (an increase of
8.2%), demonstrating the benefit of combining GUI and
API actions. GPT-4o benefits primarily by avoiding control
detection failures, which often arise from unannotated in-
terface elements. In contrast, o1 more frequently addresses
planning errors by using direct API calls as shortcuts, re-
flecting its stronger reasoning capabilities and preference
for concise execution plans.

In addition, the hybrid configuration reduces the effort re-
quired for task completion. Compared to GUI-only execu-
tion, the GUI with API setup achieves a 6.5% reduction
in steps for GPT-4o and a substantial 58.5% reduction for
o1. This improvement for o1 is due to its ability to strategi-
cally use APIs to bypass multiple GUI interactions. Overall,
these confirm that combining GUI automation with API
calls enhances both robustness and efficiency.

4.3. Low-Code / No-Code Solutions

Low-code and no-code platforms abstract many technical
details behind visual interfaces, enabling non-experts (often

6

Order Received
Payment
Gateway

Shipping
Service

GUI
Verification

Completion

Constructs and
sends calls to the
payment endpoint

API Agent GUI Agent

GUI

Figure 5. One example of a no-code platform to create workflows
integrating both API calls and GUI agents.

referred to as “citizen developers”) to construct applications
or automations through drag-and-drop components (Tang
et al., 2025). As illustrated in Figure 5, each block in this
order-processing workflow represents a distinct task: the
user drags a “Payment Gateway” block into the designer
to handle transactions, configures it visually,while behind
the scenes an API agent automatically constructs and sends
calls to the payment endpoint. It then connects to a “Ship-
ping Service” block for fulfillment. Behind the scenes, the
platform typically issues API calls to the payment and ship-
ping services, allowing the user to focus on the workflow’s
logical sequence rather than on lower-level protocols. Con-
versely, if a given step calls for GUI-based verification—for
instance, checking a specific user interface element on a
legacy system—the platform can seamlessly insert a GUI
agent, simulating human interactions with the software. This
combination of API-based and GUI-driven actions makes it
straightforward to build end-to-end automations, blending
the speed and scalability of APIs with the accessible, visual
nature of GUI-centric operations.

4.4. Summary

These strategies illustrate how the once-distinct boundaries
between API-based and GUI-based agents are gradually
merging. The hybrid approach harnesses the flexibility and
universality of GUI-driven interfaces alongside the reliabil-
ity and performance of direct API calls. This convergence
allows for more comprehensive automation, catering to di-
verse scenarios that range from rapid data processing to
intricate user-interface validation, meeting varied require-
ments, whether efficiency, user-centric validation, or rapid
development. Although further research and refinement are
needed, these converging paradigms foreshadow a future
in which agent-based automation is both wide-ranging and
intelligent, adapting seamlessly to the evolving complexities
of modern software ecosystems.

5. API vs. GUI Agents: Strategic
Considerations

While the preceding sections have contrasted API- and
GUI-based LLM agents in terms of architecture, reliabil-
ity, efficiency, and potential convergence, many practical
deployments hinge on a more fundamental question: which
paradigm should be employed under various real-world
conditions? This section provides guidance on selecting the

most suitable strategy.

5.1. When to Favor API Agents

API-based agents tend to be the most compelling choice
when well-defined programmatic interfaces exist. Official,
stable APIs typically come with rigorous documentation
and versioning, enabling strong error handling and consis-
tent performance. In such an environment, developers can
harness the inherent speed and reliability of API calls to
execute tasks efficiently, thereby minimizing system over-
head and latency. This approach is especially advisable
when applications are designed for backend integrations, or
when enterprise-level reliability is paramount for mission-
critical workflows. By leveraging stable endpoints, API-
based agents can also reduce long-term maintenance bur-
dens, as changes in the system often entail versioned updates
rather than complete interface overhauls.

In addition, API agents provide controlled access to applica-
tions, restricting functionality to a predefined and manage-
able scope. This is a crucial consideration in agent-based
systems, where safety and security are paramount. In such
cases, API agents are ideal, as their actions are confined
to a constrained set of operations, ensuring predictable and
secure interactions.

5.2. When to Favor GUI Agents

GUI-based agents become particularly relevant in scenarios
where no direct API exists, or the available APIs provide
only partial coverage of the required automation tasks. This
is especially evident in mobile applications, where each app
operates as an isolated environment, restricting external API
access. Furthermore, system-level operations on mobile de-
vices often require root access, further limiting API usability
and necessitating GUI-based automation as an alternative.

Another key advantage of GUI agents is their ability to
perform visual validation, which is essential in workflows
that require confirming on-screen text, UI element position-
ing, or interface consistency before taking action. In such
cases, a GUI agent, which interacts with software much
like a human user, offers clear benefits over an API-based
approach. Similarly, legacy or proprietary systems that lack
extensible backend services can leverage GUI-driven au-
tomation, allowing agents to navigate existing interfaces
without requiring modifications to the underlying codebase
or the development of new APIs. This makes GUI agents
particularly valuable in enterprise environments where im-
plementing and maintaining new API integrations would be
impractical or cost-prohibitive.

Moreover, GUI agents are inherently well-suited for appli-
cations that rely on interactive or graphical manipulation.
Tasks such as creating animations, drawing in Photoshop,

7

Table 4. Strategic criteria for selecting agent paradigms.

Scenario Recommended Approach Rationale
Stable, well-documented APIs API Agents Exploit robust endpoints for speed and reliability
Performance-critical operations API Agents Reduce latency and overhead via direct function

calls
Controlled access to applications API Agents Ensure safety and security
Legacy or proprietary software GUI Agents Automate tasks without requiring new backend

integration
Visual validation or UI testing GUI Agents Verify on-screen text or elements directly
Interactive or graphical manipu-
lation

GUI Agents Seamlessly replicate human-like interactions with
visual elements

Partial API coverage Hybrid Combine UI-based steps where APIs are unavail-
able with direct calls for data-heavy tasks

Future-proofing Hybrid Facilitate switching from GUI to API as end-
points evolve

or interacting with complex design tools are best executed
through direct visual interactions rather than API commands.
In these cases, GUI-based automation closely mirrors the
natural way humans interact with such applications, making
it the preferred choice over an API-driven approach.

5.3. When to Consider a Hybrid Approach

A hybrid strategy combines the strengths of both paradigms,
providing a unified workflow that can accommodate a wide
range of requirements. This approach is particularly ad-
vantageous when some aspects of the task map neatly onto
existing APIs, while other components remain exclusively
accessible through a graphical interface. In such cases,
using an API-based agent for data-intensive or programmat-
ically streamlined operations preserves performance, while
a GUI agent handles specialized front-end interactions or
visual validations. Moreover, adopting a hybrid solution
offers flexibility for future system evolution; as new APIs
become available, tasks initially managed via the GUI can
be seamlessly transitioned to API calls.

5.4. Summary

In summary, the strategic considerations for deploying API-
based versus GUI-based agents depend on the nature of
the target software, the level of integration or validation
required, and long-term sustainability concerns. API agents
excel when stable, documented endpoints exist, offering a
reliable and performant mode of automation. GUI agents
are advantageous in contexts where interfaces are the only
means of access or where visual confirmation is essential.
Finally, hybrid approaches strike a balance between these
strengths, allowing organizations to adapt as their software
ecosystems evolve. By taking these factors into account,
decision-makers can ensure they select the agent paradigm
that best aligns with their specific requirements.

6. Conclusion & Looking Forward
The advent of LLM-based agents represents a significant
leap forward in automation. These agents embody two core
paradigms: one centered on well-defined programmatic
interfaces (API agents) and one rooted in human-like inter-
actions with graphical interfaces (GUI agents). By design,
these paradigms differ in their operational principles, lead-
ing to a divergence in architectural choices, performance
profiles, and real-world applicability. However, they also ex-
hibit complementary strengths—API agents excel at speed,
security, and reliability, while GUI agents offer flexibility,
broad applicability, and transparency—making them poised
for a future of hybridization and convergence.

Looking Ahead. The ongoing maturation of LLM technolo-
gies will likely reinforce both strands of agent development.
On one hand, increasingly capable coding assistants promise
to simplify the creation and maintenance of APIs, thereby
enhancing the scalability of API agents. On the other hand,
the rise of powerful multimodal models will expand the
scope of GUI-based agents, enabling more robust visual un-
derstanding and sophisticated manipulation of GUIs. These
point to an evolving ecosystem in which API-centric and
GUI-centric approaches become increasingly interwoven.

Looking forward, the seamless integration of these agent
types may give rise to entirely new forms of software—tools
that automatically generate or refine APIs for efficient
back-end operations and also dynamically orchestrate user-
interface elements for transparent front-end interactions.
This confluence of paradigms has the potential to transform
human-computer interaction, blurring the boundaries be-
tween what is generated by code and what is experienced
through a visual interface. In the long term, it could reshape
how we conceive of software development, user experience,
and the broader workflows that underlie digital ecosystems.

8

References
Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-

reflective, hierarchical agents for large-scale api calls.
arXiv preprint arXiv:2402.04253, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu,
Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao
Dong, Ming Ding, et al. Cogagent: A visual language
model for gui agents. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14281–14290, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perel-
man, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o
system card. arXiv preprint arXiv:2410.21276, 2024.

Ziyue Lin, Siqi Shen, Zichen Cheng, Cheok Lam Lai, and
Siming Chen. Carbon and silicon, coexist or compete? a
survey on human-ai interactions in agent-based modeling
and simulation. arXiv preprint arXiv:2502.18145, 2025.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed
Awadallah. Omniparser for pure vision based gui agent.
arXiv preprint arXiv:2408.00203, 2024.

Everett N McKay. UI is communication: How to design
intuitive, user centered interfaces by focusing on effective
communication. Newnes, 2013.

OpenAI. Operator system card, January 2025. Released on
January 23, 2025.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun
Zhang, Fangkai Yang, Hang Dong, Jue Zhang, Lu Wang,
et al. Taskweaver: A code-first agent framework. arXiv
preprint arXiv:2311.17541, 2023.

Zhuocheng Shen. Llm with tools: A survey. arXiv preprint
arXiv:2409.18807, 2024.

Yueqi Song, Frank F Xu, Shuyan Zhou, and Graham Neubig.
Beyond browsing: Api-based web agents. 2024.

Jess Stratton. An introduction to microsoft copilot. In Copi-
lot for Microsoft 365: Harness the Power of Generative
AI in the Microsoft Apps You Use Every Day, pages 19–35.
Springer, 2024.

Jiabin Tang, Tianyu Fan, and Chao Huang. Metachain: A
fully-automated and zero-code framework for llm agents.
arXiv preprint arXiv:2502.05957, 2025.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang,
Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen,
Yankai Lin, et al. A survey on large language model based
autonomous agents. Frontiers of Computer Science, 18
(6):186345, 2024a.

Lu Wang, Fangkai Yang, Chaoyun Zhang, Junting Lu, Jiaxu
Qian, Shilin He, Pu Zhao, Bo Qiao, Ray Huang, Si Qin,
et al. Large action models: From inception to implemen-
tation. arXiv preprint arXiv:2412.10047, 2024b.

Michael Wornow, Avanika Narayan, Krista Opsahl-Ong,
Quinn McIntyre, Nigam Shah, and Christopher Re. Au-
tomating the enterprise with foundation models. Pro-
ceedings of the VLDB Endowment, 17(11):2805–2812,
2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Jing Hua Toh, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld:
Benchmarking multimodal agents for open-ended tasks
in real computer environments. Advances in Neural In-
formation Processing Systems, 37:52040–52094, 2024.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li,
Si Qin, Yu Kang, Minghua Ma, Qingwei Lin, Saravan Ra-
jmohan, et al. Large language model-brained gui agents:
A survey. arXiv preprint arXiv:2411.18279, 2024a.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao,
Si Qin, Minghua Ma, Yu Kang, Qingwei Lin, Saravan
Rajmohan, et al. Ufo: A ui-focused agent for windows
os interaction. arXiv preprint arXiv:2402.07939, 2024b.

Yanzhe Zhang, Tao Yu, and Diyi Yang. Attacking vision-
language computer agents via pop-ups. arXiv preprint
arXiv:2411.02391, 2024c.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei
Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Jun-
jie Zhang, Zican Dong, et al. A survey of large language
models. arXiv preprint arXiv:2303.18223, 1(2), 2023.

Jiani Zheng, Lu Wang, Fangkai Yang, Chaoyun Zhang, Lin-
grui Mei, Wenjie Yin, Qingwei Lin, Dongmei Zhang, Sar-
avan Rajmohan, and Qi Zhang. Vem: Environment-free
exploration for training gui agent with value environment
model. arXiv preprint arXiv:2502.18906, 2025.

A. APIs for Office Applications
To demonstrate the practicality of integrating API-level con-
trol into desktop automation, we developed a set of 12
task-specific APIs across three popular Microsoft Office
applications: Word, Excel, and PowerPoint. These APIs are
designed to complement GUI-based interaction by enabling
direct access to underlying application functions through
COM interfaces.

For Word, the supported APIs include text and paragraph
selection, font formatting, and file export. For Excel, the
APIs provide capabilities such as table insertion, range selec-
tion, column reordering, and sheet export. For PowerPoint,

9

Table 5. APIs supported across Office applications.

API Application Description

select_text Word Select matched text in the document.
select_paragraph Word Select a paragraph in the document.
set_font Word Set the font size and style of selected text.
save_as Word Save the current document to a desired format.
insert_excel_table Excel Insert a table at the desired position.
select_table_range Excel Select a range within a table.
reorder_column Excel Reorder columns of a table.
save_as Excel Save the current sheet to a desired format.
set_background_color PowerPoint Set the background color of slide(s).
save_as PowerPoint Save the current presentation to a desired format.

we implement functions to change slide background colors
and save presentations. Notably, a common save_as API is
reused across all three applications, illustrating the potential
for cross-application generalization.

Table 5 summarizes the available APIs and their functionali-
ties. These APIs serve as examples of how direct function
invocation can improve reliability and reduce the number of
GUI actions needed, particularly for tasks involving com-
plex formatting or structured content manipulation.

10

	Introduction
	Background
	API-Based LLM Agents
	GUI-Based LLM Agents

	Divergence Between API and GUI Agents
	Modality
	Efficiency
	Reliability
	Availability
	Flexibility
	Security
	Maintainability
	Transparency
	Human-Like Interaction
	Summary

	Convergence and the ``Hybrid'' Approach
	API Wrappers Over GUI Workflow
	Unified Orchestration Tools
	Low-Code / No-Code Solutions
	Summary

	API vs. GUI Agents: Strategic Considerations
	When to Favor API Agents
	When to Favor GUI Agents
	When to Consider a Hybrid Approach
	Summary

	Conclusion & Looking Forward
	APIs for Office Applications

