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Abstract
We propose a differentiable model of robot-terrain
interactions that delivers the expected robot trajec-
tory given an onboard camera image and the robot
control. The model is trained on a real dataset that
covers various terrains ranging from vegetation to
man-made obstacles. Since robot-endangering in-
teractions are naturally absent in real-world train-
ing data, the consequent learning of the model suf-
fers from training/testing distribution mismatch,
and the quality of the result strongly depends on
generalization of the model. Consequently, we
propose a grey-box, explainable, physics-aware,
and end-to-end differentiable model that achieves
better generalization through strong geometrical
and physical priors. Our model, which functions
as an image-conditioned differentiable simulation,
can generate millions of trajectories per second
and provides interpretable intermediate outputs
that enable efficient self-supervision. Our exper-
imental evaluation demonstrates that the model
outperforms state-of-the-art methods.

1. Introduction
Reliable navigation in a wild, unstructured environment re-
mains the key challenge in deploying autonomous robotic
platforms during real-world missions. The main difficulty
stems from the inability to train an accurate model that
predicts the outcome of robot-terrain interactions in robot-
endangering situations. The reason is that the training in-
herently suffers from a severe training/testing distribution
mismatch since robot-endangering and robot-devastating
situations are naturally absent in real-world training data.
Consequently, the generalization on these dangerous out-
of-training-distribution situations is imperative for any real-
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Figure 1. Model overview: The proposed model can be seen as an
image-conditioned differentiable simulation that delivers a million
simulated trajectories per second on the terrain depicted in the
onboard camera image. The explainable structure also delivers
many intermediate interpretable outputs that can serve for efficient
self-supervision.

world deployment.

In order to achieve generalization, roboticists proposed a
wide variety of white-box [1]–[3] and black-box models [4]–
[8]. While white-box models suffer from oversimplifications
and inability to adapt to a new domain without massive
hand tuning, black-box models suffer from poor generaliza-
tion, weak explainability, and the need to gather expensive
training data when re-trained. In contrast, we introduce a
grey-box, explainable, physics-aware, and end-to-end differ-
entiable model that enables self-supervised learning.

We focus on the problem of predicting the robot’s trajec-
tory given a single image captured by an onboard camera.
In contrast to common black-box models, the proposed
architecture comprises strong geometrical and physical pri-
ors that yield superior generalization. The resulting model
thus feels like learnable physics engine conditioned by a
real image that delivers one million trajectories per second;
see Figure 1 for details. In addition to that, the model is
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end-to-end-differentiable; therefore, gradients can be back-
propagated towards its (i) convolutional filters, (ii) camera
and robot parameters, and (iii) control. The differentiabil-
ity, in conjunction with the rapid simulation speed, draws
the model suitable for a myriad of tasks, including model
predictive control [9], trajectory shooting [10], supervised
and reinforcement learning [11], online robot-model rei-
dentification or camera recalibration [12]. The explainable
structure of the proposed architecture also delivers a variety
of intermediate outputs, such as terrain shape and its physi-
cal properties, robot-terrain reaction forces or contact points,
which can all serve as efficient sources of self-supervision
if measured during the training set creation.

In particular, we employ self-supervision from the robot’s
trajectories estimated by a common SLAM procedure, ge-
ometrical heightmaps estimated from lidar scans [5] and
material types estimated through Microsoft’s image founda-
tion model [13]. While lidar scans serve as an upper bound
on the shape of predicted heightmaps, the image foundation
model delivers prior explicit knowledge about the rigidity
of some objects that cannot be traversed.

We propose several differentiable physics engines that con-
vert the predicted terrain and control into trajectory. The
first implementation is based on a simple kinematic model
which assumes that the robot always lies at the minimum of
its potential energy. Since this model contains a non-convex
constrained optimization problem in the feedforward pass,
we backpropagate it through its KKT conditions. [14]. The
remaining three implementations explicitly model physics
interaction between the robot body and non-rigid terrain.
[15]. Backpropagation is based on auto-differentiation [16],
Neural ODE [17] and Nvidia’s WARP [18]. Our main
contributions are as follows.

Image-conditioned simulation: The end-to-end differen-
tiable image-conditioned simulation that predicts a million
trajectories per second is suitable for a myriad of underlying
tasks such as model predictive control, trajectory shooting,
supervised and reinforcement learning, online robot-model
reidentification or camera recalibration.

Self-supervised learning: Explainability of the proposed
grey-box model provides several well-interpretable inter-
mediate outputs that serve as a natural source of self-
supervision.

Experimental evaluation on non-rigid terrains: The pro-
posed model outperforms other state-of-the-art methods on
non-rigid terrains, such as grass or soft undergrowth that
deforms when traversed by the robot.

2. THEORY
A detailed overview of the proposed architecture that con-
verts images and control commands into trajectories is de-
picted in Figure 2. The model consists of several learnable
modules that deeply interact with each other. The geome-
try module carefully transforms visual features from input
image into the heightmap space using known camera geom-
etry. The terrain encoder further refines visual features into
interpretable physical quantities that capture properties of
the terrain such as its shape, friction, stiffness and damp-
ing. Next, the force encoder combines the terrain properties
with the robot model, robot state and control commands and
delivers reaction forces at points of robot-terrain contacts.
Finally, the physics engine solves the equations of motion
dynamics by integrating these forces and delivers the trajec-
tory of the robot. Since the complete computational graph of
the feedforward pass is retained, the backpropagation from
an arbitrary loss, constructed on top of delivered trajectories,
or any other intermediate outputs, is at hand.

2.1. Model architecture

Given an input image z, the proposed architecture succes-
sively estimates geometric heightmap Hg , terrain heightmap
Ht, robot-terrain forces fi and trajectories τ . The geometri-
cal map Hg is a multichannel 2D array whose first channel
contains heights of the environment observed in the camera,
and the remaining channels contain visual features. Simi-
larly, the terrain map Ht is a multichannel 2D array whose
first channel contains the heights at which terrain is assumed
to start generating forces against the robot, and the remain-
ing channels again contain visual features. The intuition
is that Ht models a partially flexible layer of terrain (e.g.
mud) that is hidden under fully flexible vegetation. It is
estimated by subtracting the estimated heightmap decrease
Hd from the geometrical heightmap Hg . Both maps are aug-
mented with visual features that are successively converted
into terrain properties. The part of the architecture that pre-
dicts terrain properties is called terrain encoder. Given the
predicted terrain properties, state of the robot and control
commands (e.g. track speed or flipper position), the forces
fi acting on the robot are computed. Finally, the physics
engine solves the robot motion equation and estimates the
trajectory corresponding to the delivered forces.

2.2. Self-supervised learning

Self-supervised learning of the proposed architecture mini-
mizes three different losses:

Trajectory loss Lτ = ∥τ − τ⋆∥2 that minimizes the differ-
ence between SLAM-reconstructed trajectory τ⋆ and pre-
dicted trajectory τ .

Geometrical loss Lg = ∥Wg◦(Hg−H⋆
g)∥2 that minimizes
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Figure 2. Detailed architecture overview: Neural network estimates depth predictions and rich visual features for each pixel ray.
Depth-weighted visual features are vertically projected on 2.5D representation, and a geometrical heightmap Hg is estimated. This
heightmap is further refined through Terrain encoder. It delivers terrain properties such as the heights of the rigid layer of terrain hidden
under the vegetation, Ht = Hg −Hd, or stiffness and dampening. Given state, control and terrain properties, forces at robot-terrain
contacts are estimated. Finally, ∇Physics engine integrates these forces to estimate the resulting robot trajectory. Learning employs three
losses: Trajectory loss, which measures the distance between the predicted and real trajectory; Geometrical loss, which measures the
distance between the predicted geometrical heightmap and lidar-estimated heightmap; Terrain loss, which enforces rigid terrain on rigid
semantic classes revealed through image foundation model.

the difference between ground truth lidar-reconstructed
heightmap H⋆

g and predicted geometrical heightmap Hg.
Wg denotes an array selecting the heightmap channel corre-
sponding to the terrain shape.

Terrain loss Lt = ∥Wt ◦ (Ht − H⋆
t )∥2 that minimizes

the difference between ground truth H⋆
t and predicted Ht

terrain heightmaps for rigid objects detected through Mi-
crosoft’s image segmentation model SEEM [19], that is
derived from Segment Anything foundation model [13].
Wt denotes the array selecting heightmap cells that are cov-
ered by rigid materials (e.g. stones, walls, trunks), and ◦ is
element-wise multiplication.

2.3. Implementation of differentiable physics engine

We implemented four physics engines that convert the
terrain and control into trajectories. The first implementa-
tion is based on a simple kinematic model assuming that
the robot always lies in the minimum of its potential en-
ergy [14]. The remaining three implementations explicitly
model physical interactions between the robot body and
non-rigid terrain [15].

Simple kinematic model assumes that the robot always
lies in the minimum of its potential energy. Consequently,
the feedforward pass contains a non-convex, constrained
optimization problem. Backpropagation from ground truth
trajectories is performed by constructing its KKT conditions.
In particular, for each pose in the ground truth trajectory, we
construct necessary conditions that make it an optimal solu-

tion to the optimization problem and then train the network
to predict the terrain that satisfies these conditions. The
resulting loss is called KKT-loss and it is detailed in [14].
All three following implementations explicitly model forces
that appear during interaction between the robot and non-
rigid terrain. These forces are then double-integrated into
the final trajectory.

Auto-differentiation implementation uses Euler integra-
tor in the feedforward pass and estimates gradient through
the auto-differentiation [16], i.e. it builds and retains the
full computational graph of the feedforward integration.
The resulting implementation achieves only real-time speed;
therefore, it is unsuitable for fast learning. In order to over-
come this difficulty, we backpropagate from trajectories to
terrain heightmaps before the training procedure and merge
the resulting heightmaps with the ground truth terrain labels
H⋆

t . This simplification may fail in cases where multiple dif-
ferent terrains are consistent with a ground truth trajectory.
We observed that the terrain ambiguity could be prevented
by using sufficiently large heighmap bins.

Neural ODE implementation uses Runge-Kutta ODE
solver in the feedforward pass and estimates the gradient
through implicit function theorem as suggested in Neural
ODE framework [17]. The resulting implementation is more
accurate, especially when simulating almost non-penetrating
contacts requiring huge forces. On the other hand, it runs
about 0.2×real-time, making it intractable for large-scale
learning.
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(a) Moving up the ramp (b) Crashing into the wall (c) Overcoming a stone (d) Crashing into a tree (e) Traversing high grass

Figure 3. Robot-terrain interaction predictions in a diverse set of environments. The predicted heightmap Ht, predicted robot’s trajectories
and interaction forces at contact points are being projected into RGB image plane. The heightmap color denotes its height (blue - low, red
- high). Note: images (a) and (b) contain part of a robot’s payload captured on the left side.

Nvidia’s WARP implementation defines the physics en-
gine kernel in Nvidia’s WARP [18]. Since WARP allows
parallel processing of multiple trajectories, the resulting
implementation allows to generate 103 trajectories (10sec-
long) in 0.3sec on GTX 1660 Ti GPU. Such speed is suffi-
cient for large-scale learning which directly backpropagates
from trajectories into the network kernels. Note that we
found most of WARP’s advertised non-core functionality,
such as implemented physics of common geometric shapes,
unusable due to many missing features, such as collision de-
tection for cylinders. Consequently, we used only WARP’s
kernel compiler and implemented the physics from scratch.

3. EXPERIMENTS AND RESULTS
To evaluate the robot-terrain interaction models, we col-
lected a dataset called RobInGas. It contains examples of
robots moving in different weather conditions over hills,
obstacles, and traversing high grass. It is recorded with
the tracked (Figure 1) and wheeled (Figure 2.3) robotic
platforms. The dataset contains point cloud scans from
Ouster OS0-128, OS0-32 lidars and corresponding RGB
images from Basler and IDS cameras installed on the robots.
For each lidar-images data sample, we additionally record
robot’s poses. The localization was performed using SLAM
methods [20], [21].

Figure 2.3 demonstrates qualitative results achieved on dif-
ferent types of terrains. All trajectories are predicted only
from a single camera image and expected robot control. Ob-
serve that the resulting model reliably predicts robot-terrain
interaction in dangerous scenarios that have not been cov-
ered by the training data. Examples in Figure 2.3 (a) and (b)
demonstrate robot’s motion on a rigid terrain. The red ar-
rows represent normal components of the interaction forces
that affect the robot’s contact points. Note that the force
values are much higher for the collision cases (b) and (d).
Figure 2.3 (c) and (e) contain examples of a terrain with
both rigid (tree trunks, stones) and traversable (grass) ob-
jects. The terrain encoder is able to differentiate between the
two terrain types correctly for the most part of the images.

The strong generalization stems from the internal physics
engine. Table 1 provides quantitative comparison on real
trajectories with respect to state-of-the-art competitors. The
vast majority of existing models estimate terrain properties
and then use a simple kinematic model to infer the robot-
terrain interaction. The resulting interaction is often limited
to a binary decision about the terrain traversability or ex-
pected static pose of the robot on the terrain. To achieve
a fair comparison, we employ our physics engine to con-
vert predicted terrain properties on the trajectories for all
competing models. Note that the dataset does not contain
robot-endangering trajectories, on which the model outper-
forms the competitors the most due to its generalization.
The codes and data are publicly available1.

Table 1. Trajectory estimation accuracy on RobInGas data. ∇phys
(Sec. 2.3) is used to predict trajectories τ (horizon T = 10 sec).

input terrain encoder ∆x [m] ∆R [◦]
lidar Hg interp. [22] 0.29 4.56
lidar Hg pred. [14] 0.14 4.47

camera Hg , LSS [23] 0.11 5.53
camera Ht, our 0.08 2.72

4. CONCLUSIONS
We have proposed a physics-aware end-to-end differentiable
model of robot-terrain interaction that predicts robot tra-
jectory given the controls and onboard camera image de-
picting terrain in front of the robot. We studied four im-
plementations of underlying physics engines: backpropaga-
tion through KKT stability conditions, Neural ODE, auto-
differentiation, and Nvidia WARP. The resulting model may
serve the robotics community as its rapid speed and differen-
tiability make it suitable for large-scale learning and online
planning and control.

1https://github.com/ctu-vras/monoforce
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