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Summary
While internet-scale image and textual data have enabled strong generalization in Vision-

Language Models (VLMs), the absence of internet-scale control data has impeded the devel-
opment of similar generalization in standard reinforcement learning (RL) agents. Although
VLMs are fundamentally limited in their ability to solve control tasks due to their lack of
action-conditioned training data, their capacity for image understanding allows them to pro-
vide valuable feedback in RL tasks by recognizing successful outcomes. A key challenge
in Reinforcement Learning from AI Feedback (RLAIF) is determining how best to integrate
VLM-derived signals into the learning process. We explore this question in the context of
offline RL and introduce a class of methods called Sub-Trajectory Filtered Optimization
(SFO). We identify three key insights. First, trajectory length plays a crucial role in offline RL,
as full-trajectory preference learning exacerbates the stitching problem, necessitating the use
of sub-trajectories. Second, even in Markovian environments, a non-Markovian reward signal
from a sequence of images is required to assess trajectory improvement, as VLMs do not in-
terpret control actions and must rely on visual cues over time. Third, a simple yet effective
approach—filtered and weighted behavior cloning—consistently outperforms more complex
RLHF-based methods. We propose Sub-Trajectory Filtered Behavior Cloning (SFBC), a
method that leverages VLM feedback on sub-trajectories while incorporating a retrospective
filtering mechanism that removes sub-trajectories preceding failures to improve robustness.

Contribution(s)
1. We introduce Sub-Trajectory Filtered Behavior Cloning (SFBC), an offline RL algorithm

that filters and weights sub-trajectories based on success probabilities obtained directly by
querying a VLM. To support this method, we also introduce a retrospective filtering tech-
nique that removes sub-trajectories preceding failures.
Context: Prior work typically distills VLMs into smaller models, uses LLMs to define
reward functions in code, performs direct preference optimization, or applies contrastive
models to estimate goal completion heuristically.

2. We provide a preliminary evaluation of SFBC by comparing it to alternative VLM-based
methods and standard offline RL algorithms using ground-truth rewards in a continuous
control setting. We also conduct several ablations to validate each component.
Context: While limited to a single domain, our experiments demonstrate that there exists
a standard control task where SFBC significantly outperforms more complex baselines.

3. We identify that preference learning on full trajectories can be uninformative in offline RL,
whereas sub-trajectory supervision mitigates this issue and enables effective learning. We
corroborate this insight with empirical evidence, showing that full-trajectory preference
baselines degrade both success rate and return.
Context: To our knowledge, our work is the first to identify how RLAIF can exacerbate
the stitching problem in offline RL, and how sub-trajectory selection can resolve it.

4. We highlight the importance of non-Markovian feedback for RLAIF, even in Markovian
environments, since VLMs must rely on visual cues over time to reason about actions
they were not trained to interpret. We empirically demonstrate that prompting for non-
Markovian feedback improves performance.
Context: To our knowledge, ours is the first work to emphasize the utility of non-
Markovian feedback, even in Markovian environments, when querying VLMs directly.
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Abstract

While internet-scale image and textual data have enabled strong generalization in
Vision-Language Models (VLMs), the absence of internet-scale control data has im-
peded the development of similar generalization in standard reinforcement learning
(RL) agents. Although VLMs are fundamentally limited in their ability to solve con-
trol tasks due to their lack of action-conditioned training data, their capacity for image
understanding allows them to provide valuable feedback in RL tasks by recognizing
successful outcomes. A key challenge in Reinforcement Learning from AI Feedback
(RLAIF) is determining how best to integrate VLM-derived signals into the learning
process. We explore this question in the context of offline RL and introduce a class of
methods called Sub-Trajectory Filtered Optimization (SFO). We identify three key
insights. First, trajectory length plays a crucial role in offline RL, as full-trajectory
preference learning exacerbates the stitching problem, necessitating the use of sub-
trajectories. Second, even in Markovian environments, a non-Markovian reward signal
from a sequence of images is required to assess trajectory improvement, as VLMs do
not interpret control actions and must rely on visual cues over time. Third, a simple yet
effective approach—filtered and weighted behavior cloning—consistently outperforms
more complex RLHF-based methods. We propose Sub-Trajectory Filtered Behavior
Cloning (SFBC), a method that leverages VLM feedback on sub-trajectories while in-
corporating a retrospective filtering mechanism that removes sub-trajectories preceding
failures to improve robustness.

1 Introduction

A long-standing goal in reinforcement learning (RL) is to develop agents capable of solving a di-
verse set of tasks (i.e., broad generalization) while also learning efficiently from limited experience
(i.e., rapid adaptation). Despite substantial progress, RL remains highly sample-inefficient and slow
to adapt to new environments. Addressing these inefficiencies requires a foundation model for
RL—one that generalizes across tasks and improves learning efficiency. However, a major obstacle
to achieving this is the absence of large-scale, high-quality control datasets.

Reinforcement Learning from AI Feedback (RLAIF) presents a promising approach by leveraging
vision-language models (VLMs) as scalable sources of learning signals (Bai et al., 2022; Klissarov
et al., 2023; Ma et al., 2023; Faldor et al., 2024; Rocamonde et al., 2024; Baumli et al., 2023; Lee
et al., 2024; Wang et al., 2024). However, determining how best to integrate VLM-derived signals
into RL remains an open challenge. A key difficulty is that VLMs struggle to discriminate between
similar trajectories, making it difficult to provide precise, informative feedback. This challenge
is further complicated in online RL, where agents must learn from randomly initialized policies,
leading to highly ambiguous early-stage feedback.
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(a) Comparing full trajectories can
be uninformative, whereas evaluat-
ing sub-trajectories can resolve am-
biguities and better capture mean-
ingful distinctions.

(b) An example trajectory where
the agent successfully swings up
a pendulum, which should receive
positive feedback.

(c) A failure case where Marko-
vian feedback assigns the same re-
ward to a bad trajectory as a good
one, failing to differentiate between
them.

Figure 1: Illustration of the necessity of Non-Markov sub-trajectory feedback. (a) Full-trajectory
comparisons can be misleading, while sub-trajectories allow more informative distinctions. (b) A
successful trajectory of a pendulum swing-up task. (c) A failure case where Markovian feedback
cannot distinguish between successful and unsuccessful trajectories.

Offline RL, in contrast, provides access to pre-collected data, which can include trajectories that
are easier for VLMs to differentiate. For this reason, we focus on offline RL. However, integrating
VLMs into offline RL introduces additional challenges, particularly in handling trajectory credit
assignment and feedback propagation.

To address these issues, we introduce Sub-Trajectory Filtered Optimization (SFO), a class of
methods that effectively incorporate VLM-derived feedback to reach new heights in offline RL. Our
study identifies three key insights:

1. First, trajectory length is a crucial factor in offline RLAIF, since full-trajectory evaluation exac-
erbates the well-known stitching problem. This problem necessitates the use of sub-trajectories,
as depicted in Figure 1.

2. Second, even in Markovian environments, a non-Markovian reward model based on image se-
quences is required to assess trajectory improvement. Since VLMs are not trained on action-
conditioned data, they have no basis for reasoning about how actions influence state transitions
and must instead rely on visual cues over time. This is depicted in Figure 1. While discrete
actions can sometimes be represented textually, many control tasks involve continuous actions
(e.g., torques) that cannot be meaningfully encoded in a format suitable for VLMs. Further-
more, providing a reward at every time step by querying a VLM is computationally intractable
for many problems without additional distillation into a smaller model (Wang et al., 2024), and
sub-sampling states to estimate reward would already abandon the Markov property.

3. Third, despite the complexity of existing RLHF-based methods, we find that a simple yet effective
approach—filtered and weighted behavior cloning—performs best in practice.

To that end, we introduce Sub-Trajectory Filtered Behavior Cloning (SFBC), which leverages
VLM feedback on sub-trajectories while incorporating a retrospective filtering mechanism that re-
moves sub-trajectories preceding failures. We empirically evaluate SFBC in a toy control domain,
demonstrating its effectiveness compared to existing baselines, including naive behavior cloning and
preference-based methods such as Direct Preference Optimization (DPO) (Rafailov et al., 2023).
Notably, our method outperforms AWAC (Nair et al., 2020) and TD3+BC (Fujimoto & Gu, 2021),
even when those methods use ground-truth rewards, highlighting the effectiveness of VLM-driven
sub-trajectory feedback.

2 Related Work

One approach to improving RL efficiency is the manual collection of large-scale offline datasets
(Vuong et al., 2023). However, this is difficult to scale due to the expense of generating diverse and
high-quality trajectories on robotics in the real world. Similarly, human annotation of RL datasets is
costly and difficult to scale, given the need for expert-level feedback and the challenge of obtaining
consistent reward signals across tasks.
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VLMs offer a promising alternative to human annotation by providing AI-generated feedback. Prior
work has explored using VLMs for reward design and environment generation in code. Eureka and
OMNI-EPIC (Ma et al., 2023; Faldor et al., 2024) have proposed methods where VLMs write pro-
grams to specify rewards and structure environments for learning. However, just as machine learning
is needed to specify object categories (e.g., recognizing a dishwasher) rather than relying on hand-
crafted rules, RL also requires machine-learned reward models rather than fixed rules from a VLM
(e.g., to identify when a dishwasher has been unloaded). We firmly believe that hardcoded rules
from a VLM cannot specify sufficiently complex tasks to elicit sufficiently robust reinforcement
learning agents.

Recent work has also attempted to leverage AI-based reward detection to improve RLHF. Agent
Q (Putta et al., 2024) uses AI-driven reward and success detection to generate preference labels
for DPO. RL-VLM-F (Wang et al., 2024) distills a reward model from AI-generated labels but is an
online method, and operates on Markovian states, which we find to be suboptimal. Rocamonde et al.
(2024) and Baumli et al. (2023) use a CLIP model to provide Markovian feedback. Additionally,
RoboCLIP (Sontakke et al., 2023) encodes text and video representations using CLIP to provide
feedback. While RoboCLIP-style methods offer a useful way to encode feedback, we propose an
end-to-end approach using a VLM (GPT-4o in our case), which provides greater flexibility. Our
study focuses on how best to utilize this feedback and how to leverage feedback in an offline context.

Complementary approaches involve automatic environment generation and world modeling (Bruce
et al., 2024; Valevski et al., 2024). These efforts provide a scalable way to generate diverse train-
ing environments, but they still require specifying reward signals to learn effectively. Similarly,
automated task selection (Wang et al., 2023) and task ordering techniques such as Prioritized Level
Replay (PLR) contribute to efficient learning but do not replace the need for automated high-quality
feedback signals.

3 Methods

Our objective is to learn an optimal policy π∗ in an offline RL setting using vision-language model
(VLM) feedback. Given a dataset D = {(st, at, st+1, at+1, . . . )} of trajectories collected by un-
known behavior policies, we seek to leverage VLMs to extract meaningful rewards and preferences
over trajectory segments while mitigating the challenges of stitching with offline RL and Markovian
rewards with VLMs, depicted in Figure 1.

3.1 Sub-Trajectory Filtered Behavior Cloning (SFBC)

To incorporate VLM feedback effectively, we propose Sub-Trajectory Filtered Behavior Cloning
(SFBC), which refines behavior cloning by selectively weighting and filtering trajectory segments
based on VLM-derived success probabilities.

1. Sub-Trajectory Decomposition: Each trajectory τ = (s1, a1, s2, a2, . . . , sT ) is divided into n
equal-length sub-trajectories τi, where:

τi = (si·k, ai·k, si·k+1, ai·k+1, . . . , s(i+1)·k), (1)

with segment length k = ⌊T/n⌋. Additionally, we subsample observations within each segment to
reduce token usage when querying the VLM.

2. VLM-Based Filtering: A VLM is queried with both a Markov prompt and a non-Markov prompt.
For example, in the Pendulum-v1 environment, we use:

• Markov: “You are watching a video of a red stick. If the black dot is at the bottom of the stick,
answer ‘Y’. Otherwise, answer ‘N’.”

• Non-Markov: “You are watching a video of a red stick. If the stick has moved between sides of
the screen (left to right or right to left), answer ‘Y’. Otherwise, answer ’N’.”
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Each prompt is followed by a sequence of images representing the sub-trajectory. The probabilities
of responses (“y”) and (“yes”) (after lower-casing the response) are summed, as are the probabilities
of (“n”) and (“no”). We qualitatively find that the collective “no” probability is more reliable, and
both the Markov and non-Markov prompts contribute essential information. Thus, the final success
probability is computed as:

PMarkov(τi) = 1− P (“no”|Markov Prompt), (2)
PNon-Markov(τi) = 1− P (“no”|Non-Markov Prompt), (3)

PV LM (τi) = min (1, PMarkov(τi) + PNon-Markov(τi)) . (4)

A sub-trajectory is retained if PV LM (τi) ≥ α. To ensure robustness, we employ retrospective
filtering, where a sub-trajectory τi is only included if the next sub-trajectory τi+1 also meets the
threshold:

DSFBC = {(st, at, τi) | τi ∈ D, (st, at) ∈ τi, PV LM(τi) ≥ α, PV LM (τi+1) ≥ α} . (5)

This filtering mechanism assumes that a failed sub-trajectory likely resulted from preceding failures,
ensuring that faulty transitions are not reinforced.

3. Weighted Behavior Cloning: The learned policy, πθ, is then trained using the following behavior
cloning objective:

LSFBC = −E(st,at,τi)∼DSFBC
[PV LM (τi) log πθ(at|st)] . (6)

3.2 Comparison to Alternative SFO Methods

We contrast SFBC with alternative methods leveraging sub-trajectories, including:

• VLM+TD3+BC: Interprets PV LM (τ) as a reward and applies TD3+BC (Fujimoto & Gu, 2021),
a competitive offline RL algorithm.

• S-DPO: Applies Direct Preference Optimization (DPO) (Rafailov et al., 2023) to sub-trajectories
using VLM-derived rankings.

4 Experiments

To evaluate the effectiveness of SFBC, we conduct experiments in the Pendulum-v1 environment, a
standard continuous control benchmark. Our evaluation focuses on assessing SFBC’s ability to cor-
rectly identify and stitch together the most optimal segments from sub-optimal demonstrations while
outperforming conventional offline RL baselines. While the VLM (ChatGPT-4o) processes image-
based observations to provide feedback, the learned policy itself conditions on lower-dimensional
vector representations of the state, following standard RL formulations.

We compare SFBC against both standard offline RL algorithms and alternative VLM-assisted meth-
ods. To ensure robustness and statistical significance, we report success rate, mean return, and stan-
dard error across 15 seeds. Our analysis covers both overall performance comparisons and detailed
ablation studies to isolate the contributions of each design choice in SFBC.

4.1 Dataset Construction

To evaluate the effectiveness of our proposed method in offline reinforcement learning, we construct
a dataset for the Pendulum-v1 environment designed to explicitly test the ability to stitch optimal
sub-trajectories together. Our dataset consists of 500 trajectories, each with a length of 600 time
steps. These trajectories are generated from two distinct policies:

• Expert Policy: A custom proportional-derivative (PD) controller designed to stabilize the pendu-
lum in an upright position. The controller balances the pendulum when near vertical and applies
a predefined acceleration-based heuristic otherwise.
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Method Success Rate (%) Std. Error (%) Mean Return Std. Error

BC Naive 33 12 -4716 790
TD3+BC (GT) 27 11 -5131 814
VLM BC (Full-Trajectory) 13 9 -5234 578
AWAC (GT) 0 0 -7840 308

SF-BC (Ours) 73 11 -1585 518
VLM+TD3+BC 27 11 -5013 649
S-DPO 0 0 -6859 181

Table 1: Performance comparison of SFBC against standard offline RL and VLM-assisted baselines
in the Pendulum-v1 environment. SFBC achieves the highest success rate and mean return, demon-
strating its effectiveness in leveraging VLM feedback for sub-trajectory optimization.

• Failure Policy: A manually constructed failure policy that consistently directs the pendulum
downward, ensuring suboptimal performance.

To create a dataset that challenges the ability to stitch the best segments of given trajectories, each
trajectory consists of one expert policy demonstration of length 300 and one failure policy demon-
stration of length 300, in a random order.

4.2 Baseline Comparisons

We compare our proposed method, SFBC, against a set of competitive baselines, including both
standard offline RL algorithms and behavior cloning methods. Specifically, we evaluate:

• BC Naive: A standard behavior cloning baseline trained on the entire dataset, including both
expert and failure trajectories, without any filtering or weighting mechanisms.

• VLM BC (Full-Trajectory): A VLM-assisted behavior cloning approach that applies success
filtering at the full-trajectory level rather than sub-trajectories. Since our dataset contains a mix of
expert and failure trajectories in random order, filtering at the full-trajectory level does not provide
meaningful differentiation. We include this baseline primarily for didactic purposes.

• TD3+BC (GT): A strong offline RL baseline using TD3+BC (Fujimoto & Gu, 2021), trained with
access to ground-truth rewards.

• AWAC (GT): Another standard offline RL algorithm, AWAC (Nair et al., 2020), trained on the
dataset with ground-truth rewards.

The results, presented in Table 1, demonstrate that SFBC outperforms all baselines in both mean
return and success rate. Notably, SFBC achieves better performance than TD3+BC trained on
ground-truth rewards, underscoring the effectiveness of leveraging VLM-derived trajectory filter-
ing and weighting. This suggests that VLM-derived feedback captures non-myopic task success,
effectively bypassing the need for explicit reward propagation, a known challenge in offline RL
due to overestimation biases. Additionally, SFBC surpasses S-DPO. We hypothesize that S-DPO
fails due to inherent limitations in existing vision-language models, particularly their difficulty in
reasoning over multiple sequences of visual data, which is essential for accurate trajectory ranking.

Furthermore, SFBC outperforms VLM+TD3+BC, justifying our choice to treat PV LM as a weight
rather than a reward. Conceptually, the weighting scheme can be interpreted as a value function Qπθ ,
such that the weighted loss, LSFBC , implicitly optimizes a policy gradient. However, LSFBC lacks
an importance sampling correction, and PV LM is computed from offline data rather than the current
policy, making it a better model of Qπbehavior (or Qπexpert after filtering). SFBC also resembles AWAC
(Nair et al., 2020), except that the weighting PV LM should likewise be interpreted as approximating
eA

πexpert , rather than the advantage of the learned policy eA
πθ . While SFBC does not fully correspond
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Ablation Success Rate (%) Std. Error (%) Mean Return Std. Error

SF-BC (Ours) 73 11 -1585 518

No Filtering 40 13 -4164 883
Markov Prompt Only 40 13 -4229 869
No Weighting 33 12 -3459 604
No Retrospective Filtering 13 9 -5562 525

Table 2: Ablation study on SFBC, evaluating the impact of key design choices. Removing filtering,
non-Markovian feedback, weighting, or retrospective filtering significantly degrades performance,
demonstrating the necessity of each component.

to a policy gradient, our results show that avoiding a direct reward interpretation—and the instability
it introduces in reward propagation—is beneficial in practice.

4.3 Ablation Studies

We conduct ablation studies to assess the necessity of each component in SFBC. The results, pre-
sented in Table 2, confirm that each design choice contributes significantly to performance:

• No Filtering: Removing the filtering mechanism results in significantly worse performance,
demonstrating the necessity of discarding low-confidence sub-trajectories.

• Markov Prompt Only: Using only the Markov prompt leads to degraded performance, con-
firming the importance of a non-Markovian understanding of trajectory improvement, even in
Markovian environments, due to the inability of VLMs to process control data.

• No Weighting: Without weighting, the method lacks prioritization of high-quality sub-
trajectories, leading to reduced performance.

• No Retrospective Filtering: This ablation resulted in the largest performance degradation. With-
out retrospective filtering, failure states remain in the dataset, potentially reinforcing poor deci-
sions and leading to compounding errors in deployed policies. This highlights the importance of
discarding preceding sub-trajectories that contribute to unsuccessful outcomes.

The ablations validate our hypothesis that all proposed modifications are necessary, further reinforc-
ing the importance of VLM-informed filtering and weighting in offline RL.

5 Conclusion

In this work, we introduced Sub-Trajectory Filtered Behavior Cloning (SFBC), a method that lever-
ages vision-language model (VLM) feedback for offline reinforcement learning by selectively filter-
ing and weighting sub-trajectories. Our results demonstrate that SFBC outperforms standard offline
RL methods such as TD3+BC and AWAC, as well as VLM-assisted baselines, validating the effec-
tiveness of leveraging VLM-derived success probabilities for policy learning.

Our study provides key insights into the integration of VLM feedback with offline RL. First, sub-
trajectory selection is critical, as full-trajectory preference learning exacerbates the stitching prob-
lem, making effective credit assignment impossible. Using sub-trajectories allows for improved
learning stability and the ability to extract high-quality behaviors from mixed datasets. Second,
non-Markovian feedback is essential, even in Markovian environments, since VLMs lack an un-
derstanding of control dynamics. Instead, they require vision-based trajectory analysis to correctly
assess improvement over time. Our results confirm that non-Markovian prompts lead to significantly
better performance. Finally, SFBC consistently outperforms competitive baselines, demonstrating
that treating VLM-derived success probabilities as weights rather than rewards leads to superior
offline policy learning. Our retrospective filtering mechanism further enhances performance by re-
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moving failure-propagating sub-trajectories. Our findings suggest that VLM feedback provides non-
myopic guidance, mitigating the need for explicit reward propagation and addressing key challenges
in scaling offline RL.

Most immediately, this work could be applied, at scale, to automate feedback across a sufficiently
diverse set of tasks to support training a general RL foundation model from offline data. Training
the RL agent to be adaptive would inherently fall under the category of offline meta-RL (Beck et al.,
2023; 2025). Moreover, implementing the agent with a general-purpose sequence model, such as a
transformer (Vaswani et al., 2017), would also place it within the domain of in-context RL (Moeini
et al., 2025), while also obviating the need for complex meta-gradient computation (Vuorio et al.,
2021). Putting feedback and guidance systems on autopilot may finally provide the runway needed
to arrive at a truly generalist agent for RL.

Another avenue for future research is exploring how offline feedback methods like SFBC can be
extended to online RL. Since offline algorithms can be iteratively applied in an online setting, they
provide a natural foundation for developing online reinforcement learning frameworks. Finally,
while we leverage a vision-language model (VLM) trained primarily for static images, future work
could explore the use of models specifically trained for video understanding, which may provide
more accurate and temporally consistent trajectory assessments. As open-source and state-of-the-
art VLMs continue to improve in video understanding, their ability to assess trajectory quality will
become increasingly crucial for reinforcement learning applications to take off.
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A Additional Experiments and Hyperparameters

A.1 Additional VLM+TD3+BC Experiments

We tested a variation where filtering was applied before TD3+BC, but it did not significantly improve
performance. We also tested VLM+TD3+BC with the “Markov prompt only” to ensure rewards for
TD3 were Markovian, as well as with a discount factor of γ = 0.5 to encourage myopic behavior.
Neither approach led to improved performance. The results are summarized in Table 3.

Method Return Mean Std Err Success Rate (%)

VLM+TD3+BC (Standard) -5013 649 27
VLM+TD3+BC (Filtered Before TD3+BC) -4576 660 27
VLM+TD3+BC (Markov Prompt Only) -4727 705 27
VLM+TD3+BC (γ = 0.5) -5048 523 20

Table 3: Performance comparison of VLM+TD3+BC variants. Filtering before TD3+BC, using a
Markov-only prompt, or reducing γ did not significantly improve performance.

A.2 Prompting Details

For DPO, we used the following prompt:

“You are watching two videos of a red stick. The goal is to swing the stick up to gain
height. It is bad to let it fall and lose momentum. Respond ’1’ if Video 1 is better, ’2’ if
Video 2 is better.”

Followed by:

“Video 1:” <sub-trajectory>
“Video 2:” <sub-trajectory>

A.3 Hyperparameters

We used the default hyperparameters from D3RLpy for all baselines. Additionally, we tested a
learning rate of 1e−3 for AWAC and TD3+BC, as this is the default for BC, but it did not improve
results. We found α = 0.1 to be the most effective threshold for filtering.

For sub-trajectory processing, we used:

• Sub-trajectory length: 100

• Subsampling factor: 20

Success rates, mean returns, and standard errors are reported across 15 seeds to ensure statistical
robustness.


