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Abstract

Large Language Models (LLMs) are typically trained in two phases: pre-training
on large internet-scale datasets, and fine-tuning for downstream tasks. Given the
higher computational demand of pre-training, it is intuitive to assume that fine-
tuning adds less new information to the model, and is thus more compressible. We
explore this assumption by decomposing the weights of fine-tuned models into
their pre-trained components and an additional delta. We introduce a simple post-
fine-tuning method, BitDelta, which successfully quantizes this delta down to 1 bit
without compromising performance. This interesting finding not only highlights
the potential redundancy of information added during fine-tuning, but also has
significant implications for the multi-tenant serving and multi-tenant storage of
fine-tuned models. By enabling the use of a single high-precision base model
accompanied by multiple 1-bit deltas, BitDelta dramatically reduces GPU memory
requirements by more than 10×, thus reducing per-user generation latency by more
than 10× in multi-tenant settings. We validate BitDelta through experiments across
Llama-2, Mistral and MPT model families, and on models up to 70B parameters,
showcasing minimal performance degradation in all tested settings.

1 Introduction

After large-scale pretraining, foundation models are typically fine-tuned for specific downstream tasks
[16, 43, 44]. This pretrain-finetune paradigm has revolutionized machine learning; LLMs have not
only proven effective for critical tasks such as instruction following and alignment [39], but are also
performant on a wide array of niche yet highly impactful applications [61, 42]. Through fine-tuning,
LLMs are adeptly equipped to align with distinct user preferences or specialized task requirements,
showcasing an unprecedented level of adaptability. Thus, the prospect of serving millions of uniquely
fine-tuned models, each tailored to individual tasks and user needs, presents a promising vision for
the future of machine learning.

Realizing this vision is challenging due to two key reasons: 1) Expensive Storage. Each new
fine-tuned model is large, even if we have relatively few base models, making them expensive to store
and challenging to manage on disk. 2) Expensive Serving. Distinct fine-tuned models each demand
significant GPU memory, making it difficult and expensive to concurrently serve such models without
noticeable downtime. To tackle these issues, we decompose the fine-tuned model weights into the
weights of the base pre-trained model and a delta induced by the fine-tuning process. By compressing
this delta while maintaining model performance, we aim to sidestep the prohibitive costs associated
with storage and GPU memory demands.
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From the delta decomposition point of view, parameter-efficient fine-tuning (PEFT) methods like
LoRA [25, 24, 46, 15, 9] effectively enforce a highly structured and compressed form of delta during
fine-tuning, a powerful insight for model serving of PEFT-based fine-tunes. Sheng et al. [49] and
Chen et al. [7] explore multi-tenant serving of LoRA-based fine-tunes.

Figure 1: Overview of BitDelta. BitDelta applies 1-bit quantization to the weight delta between
fine-tuned and base models. For each weight matrix, we quantize its delta as its sign bits and a
trainable high-precision scale factor. The scale factor is initialized to achieve the best approximation
error in L2 norm and further refined with a few distillation steps. BitDelta shows minimal degradation
in model performance and reduces memory consumption in multi-tenancy serving by representing
multiple fine-tuned models with a single high-precision base model and multiple 1-bit deltas.

Nevertheless, recent work has shown that PEFT methods may not yet match the model quality of full
parameter fine-tuning, especially on high resource tasks [6], and are fairly sensitive to hyperparameter
choice and prompting methods [38]. Biderman et al. [2] show that LoRA’s reduced expressivity,
although providing desirable regularization, leads to significantly worse performance compared to
full fine-tuning in math and programming tasks. As a result, we notice that among the 2307 LLMs
(as of time of writing) on the Open LLM Leaderboard [1] with a valid README file, only < 20%
indicate that they exclusively use LoRA. Most models are full parameter fine-tunes, model merges
[64, 28, 59] of full parameter fine-tunes, or model merges of LoRA based fine-tunes (which are
effectively high-rank).

Figure 2: Cumulative Explained Variance (CEV)
plot of a 4096× 4096 weight delta between Llama
2-7B and Vicuna-7B v1.5. Deltas from full pa-
rameter fine-tuning are fairly high rank, making
low-rank approximations difficult.

It is also attractive to approximate general deltas
with low-rank matrices post-training (in partic-
ular, post-fine-tuning). However, experimental
results show that this is challenging (Table 1),
as deltas from full parameter fine-tunes tend to
be fairly high-rank (Figure 2).

We instead draw from the insight that motivates
PEFT methods in general: Given the higher com-
putational demand of pre-training, it is intuitive
to assume that fine-tuning adds less new infor-
mation to the model, and is thus much more com-
pressible. In fact, we find that we can efficiently
quantize the delta to merely 1 bit with almost
no performance drop. We propose BitDelta, an
efficient post-training quantization (PTQ) solu-
tion that acts on the weight delta between a fine-
tuned model and its underlying base model.

BitDelta consists of two stages: 1) We quantize the delta between a fine-tuned model’s weight matrix
and base model’s weight matrix into a scaling factor multiplied by a binary matrix. Specifically, we
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Table 1: Comparison between BitDelta and a SVD based method, with Llama 2-7B and Llama
2-7B Chat as the base and fine-tuned models. BitDelta is performant across the board, whereas the
SVD-based method fails to sufficiently capture the fine-tuned information.

Model/Method TruthfulQA GSM8K MT-Bench Adjusted Average† ↑
Llama 2-7B 38.96 13.57 – 60.53

Llama 2-7B Chat 45.32 22.74 6.56 59.81

BitDelta-Initial 41.10 18.27 6.31 60.70
BitDelta 44.95 20.24 6.47 59.88

SVD-Initial (r = 16) 42.57 7.13 4.73 60.58
SVD (r = 16) 42.42 5.05 4.99 60.71

SVD-Initial (r = 128) 43.90 17.82 5.68 60.21
SVD (r = 128) 43.32 11.83 5.85 60.58

take the sign of the weight delta to form the binary matrix and initialize the scaling factor as the
average of the absolute values of the delta, minimizing L2 quantization error. 2) We further calibrate
the scaling factors through model distillation over a small calibration dataset while keeping the binary
matrices frozen. Despite the small number of trainable parameters and calibration steps, we find that
this distillation process is effective in further recovering model quality. Our experiments over 17
popular fine-tuned models affirm that BitDelta can be applied across various model types and model
sizes with minimal impact on performance.

BitDelta creates opportunities to efficiently serve multiple fine-tuned models with shared servers:
By only storing a single full-precision base model, and (dynamically) loading and performing
batched inference over multiple 1-bit deltas, we can efficiently represent multiple fine-tuned models.
Compared to naively using full precision fine-tuned models, deltas compressed by BitDelta are
more than 10× smaller, and can therefore be loaded faster. This addresses the storage challenge.
Moreover, since LLM inference is memory-bound [32, 5, 3], the latency of each decoding step is
proportional to the GPU memory consumption of the model weights. With an efficient CUDA kernel
implementation, we can translate this memory reduction into a latency reduction, similar to other
quantization methods [19, 33]. Using the WINT1AFP16 kernel from BitBLAS [58], we improve the
multi-tenant serving latency of full-parameter fine-tuned models by more than 10×.

Finally, we study a few extensions of BitDelta, where we quantize the base model and where we
iteratively apply BitDelta. Experimental results show that our method is quite general and can be
applied to various use cases.

2 Related Work

2.1 Full Model Compression

Quantization. Quantization techniques are widely used to reduce memory consumption and im-
prove LLMs’ generation latency. Xiao et al. [60] implement a technique that rescales between
activations and parameters, effectively mitigating outlier activations to facilitate smoother quanti-
zation. Dettmers et al. [14] develop an approach that decomposes matrix multiplications into 8-bit
computations, with an additional 16-bit process for handling outliers. Exploring further, Frantar et al.
[19] introduce a method that iteratively rounds weight columns to 3-4 bits of precision. Similarly, Lin
et al. [33] propose an activation-aware quantization scheme that selectively preserves crucial weights
while compressing the majority to 3-4 bits. Kim et al. [29] devise a sparse, low-precision pattern
focusing on a small yet significant set of weights. Chee et al. [4] utilize incoherence processing to
quantize model weights to as low as 2 bits with minimal impact on performance.

Pruning. Pruning also aims to reduce the memory consumption of neural networks. It accomplishes
this by pushing certain parameter values to zero, inducing sparsity in the model [31, 21, 22, 67].
However, these methods may fail to take advantage of modern hardware like GPUs unless using

†Adjusted Average is over ARC, BBH, HellaSwag, WinoGrande, and excludes TruthfulQA, GSM8K,
MT-Bench.
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certain structured sparsity patterns like 2:4 (50%) sparsity [36]. Frantar and Alistarh [18] demonstrate
a pruning method on LLMs that successfully utilizes the 2:4 sparsity pattern and achieves a 50%
sparsity ratio. It is challenging to obtain higher sparsity while being hardware-friendly.

Early work on post-training delta compression. Most related to our work, a few studies explore
the idea of post-training delta compression by adopting existing compression techniques like GPTQ,
unstructured pruning [22], or even classic lossless compression algorithms. Isik et al. [26] focus
on reducing the delta size to save storage. Yu et al. [64] utilize pruning to improve model merging
applications. Yadav et al. [62] reduces the size of PEFT modules to save storage. Ryu et al. [47]
combines quantization with a low-rank approximation to reduce the delta size. The concurrent and
independent work by Yao and Klimovic [63] also explores using delta compression to improve multi-
tenant serving, but focuses more on reducing the model loading time from disk to GPU. Compared to
existing work, we offer a much simpler and faster method, BitDelta, achieving a compression ratio of
more than 10× while also being friendly to modern accelerators.

3 BitDelta

3.1 Method

BitDelta consists of two stages: 1) We quantize each weight matrix into a scalar multiplied by a
binary matrix†. 2) We further calibrate the scalar factors using model distillation. We describe each
stage in this section:

1-bit quantization. Let Wbase,Wfine ∈ Rn×m be weight matrices from the base model and fine-
tuned model respectively. We define the weight delta as ∆ = Wfine − Wbase, representing the
modification in weights post-fine-tuning. For efficient representation of this weight delta, we aim to
obtain a binarized estimator by encoding its sign bits, denoted as ∆̂:

∆̂ = α⊙ Sign(∆), (1)

where

Sign(Wij) =

{
+1, if Wij > 0,

−1, if Wij ≤ 0,
(2)

and α is a high-precision scaling factor for the entire matrix. To minimize the quantization error of ∆
in L2 norm:

∥∥∥∆− ∆̂
∥∥∥2
2
=

∑
ij

(|Wij | − α)2, (3)

we initialize α as follows:
α =

1

nm

∑
ij

|∆ij |. (4)

Surprisingly, we find that the above quantization approach already does quite well and retains most
of the fine-tuned models’ performance.

Scale distillation. The scaling factor α intuitively plays a more significant role in the low-bit
regime. Additionally, per-matrix L2 weight error is not a perfect measure of degradation in overall
model quality. We further optimize these scales by performing model distillation to align the output
logits of the quantized model to that of the original fine-tuned model. More concretely, we freeze the
model weights and optimize for the following objective:

α∗ = argmin
α

Ex∼X

[
∥Zfine(x)− Zbin(x;α)∥2

]
(5)

†In our experiments, we only quantize the linear layers in the Transformer blocks as they contribute the
majority of the parameters and computation.
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Table 2: BitDelta works on Llama-2 and Mistral families and on a wide range of model sizes ranging
from 7B to 70B parameters. BitDelta works for many types of fine-tuned information, including
SFT-based methods, RLHF-based methods, and context extension methods (RoPE scaling). Scale
distillation is effective, raising TruthfulQA/GSM8K scores to within 1-2 points of the baseline
fine-tune, and MT-Bench scores to within 0.1-0.2 points.

Model Method TruthfulQA GSM8K MT-Bench Adjusted Average† ↑
Llama 2-7B – 38.96 13.57 – 60.53

Llama 2-7B Chat
Baseline 45.32 22.74 6.56 59.81
BitDelta-Initial 41.10 18.27 6.31 60.7
BitDelta 44.95 20.24 6.47 59.88

Vicuna-7B v1.5 16k
Baseline 50.38 14.18 6.06 57.50
BitDelta-Initial 45.58 13.95 5.69 58.51
BitDelta 48.75 14.48 6.24 57.64

Llama 2-13B – 36.90 22.74 – 64.68

Llama 2-13B Chat
Baseline 43.95 33.13 6.98 63.99
BitDelta-Initial 41.70 33.36 7.06 64.25
BitDelta 43.47 31.92 6.95 63.96

Vicuna-13B v1.5 16k
Baseline 50.38 29.72 6.90 57.5
BitDelta-Initial 41.7 26.76 6.60 64.25
BitDelta 48.75 28.73 6.88 57.64

WizardLM-13B v1.2
Baseline 47.17 42.38 6.95 61.61
BitDelta-Initial 44.89 42.08 6.73 61.91
BitDelta 46.67 41.62 6.93 61.86

where X is a calibration dataset, and Z(·) are the logits of the respective models. Scale distillation is
fairly robust to choice X, as 1) the process is extremely parameter efficient, and 2) the crucial aspect
of the process is to logit match with the fine-tuned model, regardless of the actual text content.

For our experiments, we distill on the C4 dataset [45], consisting of generic internet data, using 800
samples of length 128. We use the same subset of C4 over all models to control for seed-based
variations. We use the Adam optimizer [30] with lr = 10−4, β = (0.9, 0.999), ϵ = 10−8. 1x80 GB
A100 GPU is used to distill 7B and 13B models, and 6x80GB A100 GPUs are used to distill 70B
models (2x for finetune, 4x for binarized). Scale distillation is fast; we can compress 70B models in
roughly 10 minutes.

3.2 Methodology Cost

Compared to full parameter and parameter efficient fine-tuning methods, BitDelta is extremely
cheap. While fine-tuning methods require training thousands to millions of parameters, BitDelta only
necessitates training a single parameter per weight matrix. Moreover, BitDelta operates efficiently
with input sequences of length 128, unlike fine-tuning methods that demand longer sequences to
saturate the context window (4k, 8k, etc.). Crucially, BitDelta requires only 200 training steps
(assuming a batch size of 4), which is significantly less compared to the 10000-1000000 steps at
higher batch sizes needed by fine-tuning methods. Thus, in terms of methodology cost, we liken
BitDelta more to post-training quantization (PTQ) schemes like GPTQ [19] and AWQ [33], rather
than full parameter or parameter efficient fine-tuning, while being faster than most PTQ schemes.

3.3 Implication

The ability to compress the delta to merely 1-bit opens up multiple opportunities for improving
efficiency, enabling more effective model storage [26] – where a single base model can be maintained
alongside multiple compressed deltas – and facilitating model hot-swapping [7, 49]. With hot-
swapping, the base model remains in GPU memory, and compressed deltas are dynamically loaded
in accordance to incoming requests. In both cases, the compression ratio can be directly translated
into reductions in storage needs and loading times.

Moreover, BitDelta enables the possibility of a multi-tenant serving system like Punica [7] or S-
LoRA [49] but for general fine-tuned models instead of just LoRA models. Concretely, we consider
the scenario where multiple models fine-tuned from the same base model are served with the same
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Table 3: Continuation of Table 2.
Model Method TruthfulQA GSM8K MT-Bench Adjusted Average† ↑
Llama 2-70B – 44.82 52.69 – 71.81

Llama 2-70B Chat
Baseline 52.77 47.61 7.12 68.82
BitDelta-Initial 41.63 42.38 6.85 66.01
BitDelta 51.37 48.82 7.06 69.14

Solar-0-70B
Baseline 62.03 56.18 7.07 73.77
BitDelta-Initial 59.08 56.79 6.79 73.14
BitDelta 62.03 56.63 6.82 73.57

Mistral-7B v0.1 – 42.60 37.76 – 65.98

Mistral-7B v0.1 Instruct
Baseline 55.93 32.75 6.86 60.36
BitDelta-Initial 51.27 38.82 6.54 63.83
BitDelta 55.23 31.54 6.43 61.10

Zephyr-7B-β
Baseline 55.12 34.34 7.18 65.22
BitDelta-Initial 54.53 40.26 6.70 66.12
BitDelta 58.39 31.92 7.00 66.20

Dolphin 2.2.1
Baseline 54.02 54.28 7.36 67.31
BitDelta-Initial 48.14 50.27 7.10 67.58
BitDelta 54.91 52.84 7.20 66.97

MPT-7B – 33.37 6.22 – 57.95

MPT 7B-Chat
Baseline 40.22 7.96 5.00 56.5
BitDelta-Initial 38.96 10.01 4.39 57.11
BitDelta 39.87 8.11 4.94 56.52

server. This setting greatly exploits the GPU resource and saves each fine-tuned model’s inference
cost when their traffic is low or unbalanced. With BitDelta, we can keep one high-precision base
model with multiple compressed deltas in the GPU memory. Compared to directly serving multiple
fine-tuned models, this approach greatly saves memory consumption.

Since LLM inference follows the memory-bound computation pattern where the generation latency is
proportional to the GPU memory used by the model weights, the lower memory consumption also
suggests the opportunity to improve the serving latency. For example, Punica and S-LoRA exploit
LoRA’s structure and memory saving by computing the activation product between the shared base
weight, and low-rank fine-tuned delta weights separately. Similarly, we decompose the forward pass
of each linear layer as follows:

X ′
i = Wfine,iXi ≈ WbaseXi + ∆̂iXi︸ ︷︷ ︸

Kernel

(6)

where Xi and X ′
i represent input and output features to the i-th fine-tuned model, and the base model

weight and the 1-bit delta are computed separately. For a batch of requests, WbaseXi can be computed
with the classic batched GEMM kernel. We utilize the BitBLAS [58] WINT1AFP16 kernel that
allows us to calculate ∆̂iX in a batched setting while keeping the 1-bit deltas quantized until they
are transferred to the GPU cache. This kernel fuses the dequantization operation with the GEMM
calculation, reducing the data moving overhead by a large factor.

4 Experiments

4.1 Setup

Baselines. Our primary baselines are the original fine-tuned models without compression. We
also compare with 8-bit RTN, 4-bit GPTQ [19], and 2-bit QuIP# [54] on evaluations where we run
BitDelta on quantized base models.

Models and datasets. We benchmark fine-tuned models based on the Llama-2 [53], Mistral [27],
and MPT [51] model families: Vicuna, Xwin-LM, Solar-70B, Zephyr, OpenChat 3.5, Dolphin 2.2.1,
and OpenOrca [10, 52, 56, 55, 57, 23, 37]. We evaluate on eight tasks: MT-Bench, 25-shot ARC
Challenge, 5-shot BBH, 10-shot HellaSwag, zero-shot TruthfulQA, zero-shot LAMBADA, zero-shot

6



Table 4: Comparison of model responses from Zephyr-7B-β for Question 9 in MT-Bench, a concise
advertisement task. BitDelta-Initial is unable to follow the instructions, producing an advertisement
that is overly formal and makes no attempt to adhere to the word limit. With the addition of scale
distillation, BitDelta successfully produces a concise, catchy advertisement slightly over the word
limit. *Prompt slightly modified for clarity.

Prompt
Please create a slogan about bioenergy that satisfies the following: 1.
Make the tone sound casual 2. Embed an advertisement for a company
called "FlexPower" 3. Fewer than 10 words.

BitDelta

"FlexPower’s groundbreaking bioenergy solution: Produce fuel
without compromising food production!" (10 words)

This headline is catchy, casual, and highlights the unique sell-
ing point of the...
GPT-4 Score: 8

BitDelta-Initial
"FlexPower’s groundbreaking technology unlocks the key to harnessing
the power of renewable bioenergy while minimizing ethical concerns"
GPT-4 Score: 4

Winogrande, and 5-shot GSM8K [66, 12, 50, 65, 34, 40, 48, 13]. We use FastChat [66] to evaluate
on MT-Bench, and use lm-evaluation-harness [20] to evaluate on the other tasks. We denote
our methodology before scale distillation is applied as BitDelta-Initial.

We primarily focus on high-margin metrics where fine-tuning is significantly impactful and aggregate
the other metrics. See Tables 7 to 10 in the Appendix for full results. BitDelta performs quite well on
the aggregated metrics, even outperforming the baseline in many cases. However, it’s important to
contextualize these results with regard to the base model itself, which is also performant on these
metrics. It’s difficult to attribute performance to our methodology or to the underlying base model in
such cases. Because of this, we highlight TruthfulQA, GSM8K, and MT-Bench, which base models
tend to struggle on, to show that BitDelta accurately preserves fine-tune information.

4.2 Accurate Quantization

Table 5: BitDelta achieves over 10× compression.
We can further compress the embedding and LM
head layers, but leave this to future work due to
inconsistencies in tokenizer vocabularies.

Base Model Size ∆ Size Comp. Factor

Llama 2-7B 13.48 GB 1.24 GB 10.87
Llama 2-13B 26.03 GB 2.09 GB 12.45
Llama 2-70B 137.95 GB 8.95 GB 15.41
Mistral-7B v0.1 14.48 GB 1.30 GB 11.14

SVD comparison. We compare BitDelta to a
low rank approx. of the weight delta on Vicuna-
7B v1.5. For the low rank approx., we decom-
pose ∆ = UΣV and approximate ∆̂ = AB

where A = U
√
Σ̂, B =

√
Σ̂V . During distilla-

tion, we treat all entries of the low rank matrices
as trainable parameters. We compare against
two settings: r = 16 (most commonly used)
and r = 128 (memory equivalence with Bit-
Delta). We find that the low rank approx. fails
to fully capture the fine tune information, and
underperforms across the board (Table 1). In particular, the low rank approx. heavily underperforms
on MT-Bench [10], a difficult multi-turn instruction following dataset fairly indicative of real world
performance. Interestingly, distillation is not as effective for the low rank approx. compared to
BitDelta.

Main Results. BitDelta is performant across various model families, across a wide range of
model sizes, and across many fine-tuning techniques. We benchmark on Llama-2, Mistral, and MPT,
families, and on models ranging from 7B to 70B parameters. Shown in Table 2, we find that BitDelta
is very general and can recover all types of finetune information, including SFT-based methods [43]
on Mistral-7B v0.1 Instruct, RLHF-based methods [11] on Llama 2 Chat, and context extension
methods (RoPE scaling) [8, 41] on Vicuna-7B v1.5 16k.

We note that GSM8K for BitDelta-Initial on Mistral-7B v0.1 Instruct and Zephyr-7B-β is abnormally
high; we attribute this to how performant the base model Mistral-7B v0.1 is on this task in comparison.
Scale distillation is effective, raising TruthfulQA and GSM8K scores to within 1-2 points of the
baseline fine-tune, and generally raising MT-Bench scores to within 0.1-0.2 points.
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Table 6: We apply BitDelta to Llama 2-7B Chat (with corresponding base model Llama 2-7B), and
find it holds up when the underlying base model is quantized at various levels.

Base Model Method TruthfulQA GSM8K MT-Bench Adjusted Average† ↑

Baseline
FP16 45.32 22.74 6.56 59.81
INT8 RTN 45.02 22.29 6.28 59.63
GPTQ 44.92 19.48 5.90 58.67
QuIP# 43.69 10.77 5.37 55.82

Llama 2-7B
FP16 + ∆ 44.95 20.24 6.47 59.88
INT8 RTN + ∆ 44.71 19.86 6.16 59.85
GPTQ + ∆ 42.52 19.94 6.02 59.22
QuIP# + ∆ 42.00 9.72 4.96 57.44

Case Study. We present a sample response from Zephyr-7B-β in Table 4, highlighting the efficacy
of scale distillation. BitDelta-Initial does not have a casual tone, and makes no attempt to adhere
to the word limit. With the introduction of scale distillation, BitDelta exhibits greater instruction
following capabilities, producing a catchy response that slightly exceeds the word limit.

Quantized base models. Because 8-bit RTN, GPTQ, and QuIP# work with 16-bit activations,
we can keep the fine-tune weights Wfine and scaling factors α in high precision in the compression
process, only quantizing the base weights Wbase. As shown in Table 6, we find that BitDelta is still
performant when applied to quantized base models.

Figure 3: As the fidelity of ∆ increases, the Truth-
fulQA scores of Llama 2-7B + ∆ approaches that
of Vicuna-7B v1.5.

Ablation over fidelity of ∆. By succes-
sively applying BitDelta, treating the com-
pressed model from the previous iteration as our
base model, we can vary the granularity over the
delta, associating it with multiple 1-bit masks.
One advantage of doing this is the ability to as-
sign arbitrary scale factors to each 1-bit mask.
In contrast, when increasing the bit size, scale
factors are implicitly fixed with respect to each
other. Figure 3 shows how the TruthfulQA of
Llama 2-7B plus an increasingly granular delta
approaches that of Vicuna-7B v1.5. Full results
are in Table 9.

4.3 Latency Improvement

For simplicity, we consider the setting where each model receives one distinct request simultaneously.
It would be insightful to develop more sophisticated serving systems, which we leave to future work.
Following the decomposition in Eq. (6), the WINT1AFP16 kernel is used to compute the batched
matrix multiplication between B binary matrices (N ×M ) and B high-precision activations (L×N )
where N,M are intermediate dimensions and L is the sequence length. We focus on decoding latency
which dominates runtime, as opposed to prefill latency. Tokens are generated one by one when
decoding, meaning L is always 1. For all latency experiments we use a single A100 80GB with
power limit set to 500W.

Kernel latency. We benchmark the decoding latency of our kernel, a batched linear operation
over multiple 1-bit deltas, corresponding to the delta component of Eq. (6). We compare this to the
S-LoRA kernel, a batched linear operation over multiple low-rank deltas, and also compare this to
the base weight backbone shared over all deltas. We set r = 128 for S-LoRA, to maintain memory
equivalence with BitDelta at N = M = 4096.

We profile the latency of the backbone (WbaseX) and deltas (∆X) separately. Although X’s memory
footprint scales with batch size, it is negligible compared to Wbase, which remains constant. For
typical low to medium batch settings, which is typical for B × N ≪ N × M . In such settings,
the overall memory footprint of the backbone is effectively independent of batch size, as shown in
Figure 4 (left). This is in contrast with that of the deltas, which scales with the batch size, as each
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Figure 4: Decoding latency of a linear layer, as in Eqn. 6. Black: Shared base weight backbone
WbaseX . Blue: Batched activation-product with B 1-bit deltas, as in BitDelta. Red: Batched
activation-product with B low-rank deltas, as in S-LoRA. Left: Ablation over hidden size, assuming
N = M and B = 1. Right: Ablation over batch size, assuming N = M = 4096.

additional client in the batch adds an additional delta. At batch size 1 (Figure 4, right), backbone
latency dominates over delta latency (BitDelta and S-LoRA) due to Wbase’s 16× larger memory
footprint compared to a single delta. As the batch size increases (Figure 4, left), the combined
memory footprint of multiple deltas exceeds Wbase around B = 6 to B = 8.

BitDelta underperforms slightly compared to S-LoRA in large-batch settings as the LoRA kernel is
highly optimized for GPU. We emphasize that closing or even surpassing the gap is tractable. For
example, Ma et al. [35] point out that WINT1AFP16 requires no multiplication operations and that
new hardware can be co-designed with this in mind to drastically reduce energy/latency costs.

Figure 5: Memory usage of Llama 2-7B, assum-
ing each sequence in the batch has a length of
128. Blue: Memory usage of the naive method,
separately storing B distinct fine-tuned models.
Orange: Projected values for the naive method.
Green: Memory usage of BitDelta. The naive
forward pass succumbs to GPU memory issues
at higher batch sizes.

Figure 6: End-to-end decoding latency of Llama
2-7B. Blue: Naive forward pass with B distinct
fine-tuned models. Orange: Projected values for
the naive forward pass. Green: Batched forward
pass with BitDelta. Gray: Batched forward pass
with S-LoRA. The naive forward pass succumbs
to GPU memory issues at higher batch sizes.

End-to-end latency. We benchmark the end-to-end decoding latency on Llama 2-7B variants with
an input length of 128 (we find the decoding latency is less sensitive to the input length), ablated across
batch size. For BitDelta and S-LoRA, the forward pass consists of the addition of two components: a
single backbone pass (batch independent) and a delta pass (scales with batch size).

We compare BitDelta and S-LoRA with a naive method that computes each WiXi separately in the
forward pass. This naive approach scales poorly with batch size as it effectively maintains a separate
backbone (Wi) for each client in the batch. Given the substantial memory footprint of the backbone,
this leads to significant memory usage as batch size increases. In contrast, BitDelta and S-LoRA
share a single backbone across all clients in the batch, with only the 16× smaller deltas scaling with
batch size. This allows for more efficient memory utilization and better performance at larger batch
sizes.
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We find that BitDelta and S-LoRA introduce overhead when the batch size is low. However, BitDelta
and S-LoRA scale better and successfully translate the saved GPU memory to improved decoding
latency, starting at B = 2. This is exacerbated at larger batch sizes, where the naive approach
succumbs to out-of-memory issues and BitDelta and S-LoRA are still performant. In the B ≥ 16
regime, used in modern serving solutions, BitDelta has a >10× lower per-user decoding latency than
the naive method.

5 Conclusion

We propose BitDelta, a simple but effective approach to efficiently quantifyings the weight delta
arising from the fine-tuning of LLMs down to 1 bit. BitDelta encodes the sign bits of the weight
delta and a per-weight matrix scaling factor, which is calibrated further through distillation. This
allows for representing multiple full-parameter fine-tuned models with one base model and multiple
1-bit deltas, enhancing applications in multi-tenancy serving by reducing GPU memory requirements
and improving generation latency. BitDelta is fast and accurate, showcasing minimal performance
degradation, and opens new avenues for efficient model deployment and resource utilization in
machine learning.
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A Appendix

A.1 Societal Impact

Democratization of Fine-tuned Models. By dramatically reducing the hardware requirements for
serving fine-tuned models, BitDelta enables smaller entities to deploy state-of-the-art models more
feasibly. This can accelerate innovation and application development across various industries and
academic fields, making fine-tuned models accessible to a wider audience.

Dealignment Mitigation. BitDelta is a lossy compression method on the fine-tune information in
LLMs. As such, crucial alignment information may be lost in the process of compression. We believe
this is an important consequence to highlight, as BitDelta democratizes multi-tenant applications
which may exacerbate this dealignment concern. We encourage further work on evaluation techniques
to detect alignment loss in BitDelta, which can lead to the creation of robust methods for its mitigation.

A.2 Additional Experiments

Table 7: We train a r = 16 LoRA finetune of Llama 2-7B on 1 epoch of UltraChat [17] and apply
BitDelta with minimal performance degradation. This further shows the generality of BitDelta, which
works on parameter-efficient fine-tunes in addition to full-parameter fine-tunes.

Model/Method ARC BBH HellaSwag TruthfulQA LAMBADA WinoGrande GSM8K Average ↑ MT-Bench

Llama 2-7B 52.56 33.76 78.96 38.96 68.39 68.98 13.57 50.74 –
Llama 2-7B UltraChat 54.52 34.14 78.99 46.84 70.83 69.53 14.71 52.79 4.93
BitDelta 54.61 34.28 79.10 46.60 70.58 69.30 15.16 52.80 4.87

Table 8: Full results of the application of BitDelta to quantized base models, corresponding to Table
6.

Base Model Method ARC BBH HellaSwag TruthfulQA LAMBADA WinoGrande GSM8K Average ↑ MT-Bench

Baseline
FP16 53.58 33.84 78.58 45.32 66.58 66.46 22.74 52.44 6.56
LLM.int8() 53.24 33.71 78.62 45.02 66.5 66.06 22.29 52.21 6.28
GPTQ 51.88 33.54 77.17 44.92 65.32 65.43 19.48 51.11 5.90

Llama 2-7B
FP16 + ∆ 54.44 33.85 78.31 44.95 66.66 66.14 20.24 52.08 6.47
LLM.int8() + ∆ 53.67 33.48 78.57 44.71 66.7 66.85 19.86 51.98 6.16
GPTQ + ∆ 51.45 33.90 78.06 42.52 66.85 65.82 19.94 51.22 6.02

Llama 2-7B Chat GPTQ + ∆ 52.56 33.65 77.54 44.63 65.81 66.30 22.14 51.80 6.11

Table 9: Full results of the ablation over the fidelity of ∆, corresponding to Figure 3.

# bits in ∆ ARC BBH HellaSwag TruthfulQA LAMBADA WinoGrande GSM8K Average ↑
Llama 2-7b 52.56 33.76 78.96 38.96 68.39 68.98 13.57 50.74

1 bit 54.27 36.57 77.90 49.97 65.20 69.46 20.17 53.36
2 bits 54.44 36.78 77.71 49.69 65.26 69.22 20.62 53.39
3 bits 54.27 36.94 77.58 49.90 65.11 70.09 19.48 53.34
4 bits 54.18 36.94 77.54 49.80 64.95 69.53 19.18 53.16
5 bits 53.67 36.78 77.63 50.15 65.22 69.69 18.57 53.10
6 bits 53.67 36.85 77.64 50.20 65.07 69.69 18.80 53.13
7 bits 53.74 37.01 77.56 50.29 65.15 69.38 18.50 53.09
8 bits 53.84 36.94 77.51 50.15 64.95 70.17 18.80 53.19

Vicuna-7b v1.5 53.92 37.14 77.45 50.36 64.41 69.61 19.03 53.13
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Table 10: Full results of BitDelta applied to fine-tuned models in the Llama-2 and Mistral families,
corresponding to Table 2.

Model Method ARC BBH HellaSwag TruthfulQA LAMBADA WinoGrande GSM8K Average ↑ MT-Bench ↑

Llama 2-7B – 52.56 33.76 78.96 38.96 68.39 68.98 13.57 50.74 –

Llama 2-7B Chat
Baseline 53.58 33.84 78.58 45.32 66.58 66.46 22.74 52.44 6.56
BitDelta-Initial 55.46 35.56 76.32 41.10 68.14 68.03 18.27 51.84 6.31
BitDelta 54.44 33.85 78.31 44.95 66.66 66.14 20.24 52.08 6.47

Vicuna-7B v1.5
Baseline 53.92 37.14 77.45 50.36 64.41 69.61 19.03 53.13 6.04
BitDelta-Initial 54.69 36.74 78.47 47.63 66.31 68.75 19.56 53.16 5.67
BitDelta 54.27 36.57 77.9 49.97 65.2 69.46 20.17 53.36 5.99

Vicuna-7B v1.5 16k
Baseline 54.86 35.63 77.06 50.38 52.32 67.64 14.18 50.30 6.06
BitDelta-Initial 55.55 33.24 77.99 45.58 56.8 68.98 13.95 50.30 5.69
BitDelta 54.61 34.68 77.14 48.75 53.89 67.88 14.48 50.20 6.24

Xwin LM-7B v0.1
Baseline 57.59 34.05 79.15 48.06 68.02 69.22 10.77 52.41 6.24
BitDelta-Initial 56.40 33.90 80.26 44.56 69.86 69.14 16.68 52.97 5.79
BitDelta 57.94 34.19 79.36 47.62 68.29 69.53 9.02 52.28 6.50

Llama 2-13B – 59.47 39.03 82.23 36.90 70.44 72.22 22.74 54.72 –

Llama 2-13B Chat
Baseline 60.32 37.89 82.15 43.95 68.62 70.96 33.13 56.72 6.98
BitDelta-Initial 59.90 38.04 82.13 41.70 69.82 71.35 33.36 56.61 7.06
BitDelta 59.98 38.03 81.92 43.47 68.46 71.43 31.92 56.46 6.95

Vicuna-13B v1.5
Baseline 57.34 39.47 81.14 50.86 68.48 71.67 29.72 56.95 6.48
BitDelta-Initial 54.69 36.74 78.47 47.63 66.31 68.75 31.84 54.92 6.51
BitDelta 57.42 39.20 81.33 50.39 68.81 71.51 30.48 57.02 6.81

Vicuna-13B v1.5 16k
Baseline 54.86 35.63 77.06 50.38 52.32 67.64 29.72 52.52 6.90
BitDelta-Initial 59.90 38.04 82.13 41.70 69.82 71.35 26.76 55.67 6.60
BitDelta 54.61 34.68 77.14 48.75 53.89 67.88 28.73 52.24 6.88

WizardLM-13B v1.2
Baseline 60.15 40.82 82.58 47.17 69.26 71.90 42.38 59.18 6.95
BitDelta-Initial 60.41 40.27 83.26 44.89 70.23 71.74 42.08 58.98 6.73
BitDelta 60.92 41.30 82.55 46.67 68.97 71.51 41.62 59.08 6.93

Xwin LM-13B v0.1
Baseline 63.14 40.12 82.92 45.54 70.62 73.09 21.15 56.65 6.78
BitDelta-Initial 63.4 40.33 83.71 43.6 71.26 73.09 26.76 57.45 6.70
BitDelta 62.80 39.81 83.01 48.19 70.74 72.30 21.76 56.94 6.83

Llama 2-70B – 67.58 51.67 87.00 44.82 74.81 77.98 52.69 65.22 –

Llama 2-70B Chat
Baseline 65.44 43.93 85.91 52.77 73.90 74.90 47.61 63.49 7.12
BitDelta-Initial 63.4 38.67 81.36 41.63 72.66 73.95 42.38 59.15 6.85
BitDelta 65.87 44.97 85.65 51.37 74.29 74.90 48.82 63.70 7.06

Solar-0-70B
Baseline 71.16 55.54 87.78 62.03 75.04 79.32 56.18 69.58 7.07
BitDelta-Initial 69.54 54.52 87.57 59.08 75.37 78.69 56.79 68.79 6.79
BitDelta 70.82 55.06 87.35 62.03 75.86 78.77 56.63 69.50 6.82

Xwin LM-70B v0.1
Baseline 70.65 52.40 87.15 60.06 75.04 78.06 40.33 66.24 7.45
BitDelta-Initial 69.97 52.93 87.36 60.77 75.51 78.14 50.64 67.90 7.70
BitDelta 70.22 52.22 86.97 58.57 75.49 77.58 40.18 65.89 7.34

Mistral-7B v0.1 – 61.35 41.18 83.46 42.60 70.10 73.80 37.76 58.61 –

Mistral-7B v0.1 Instruct
Baseline 55.03 38.66 75.52 55.93 63.28 69.30 32.75 55.78 6.86
BitDelta-Initial 59.22 40.25 79.91 51.27 67.63 72.14 38.82 58.46 6.54
BitDelta 55.38 37.95 75.62 55.23 66.06 70.48 31.54 56.04 6.43

Zephyr-7B-β
Baseline 63.82 39.04 84.33 55.12 66.23 72.69 34.34 59.37 7.18
BitDelta-Initial 63.57 41.87 83.85 54.53 67.73 73.56 40.26 60.77 6.70
BitDelta 65.02 41.64 84.05 58.39 66.33 73.95 31.92 60.19 7.00

OpenChat 3.5
Baseline 64.51 45.28 84.39 47.34 65.19 72.61 68.84 64.02 7.74
BitDelta-Initial 64.16 45.23 84.13 43.34 68.62 77.43 57.77 62.95 5.71
BitDelta 64.93 44.57 84.44 46.24 65.88 76.40 57.70 62.88 7.38

Dolphin 2.2.1
Baseline 64.16 44.49 83.30 54.02 69.36 75.22 54.28 63.55 7.36
BitDelta-Initial 64.16 44.43 84.01 48.14 69.98 75.30 50.27 62.33 7.10
BitDelta 64.59 43.08 83.44 54.91 68.39 75.37 52.84 63.23 7.20

OpenOrca-7B
Baseline 62.80 44.45 83.58 52.30 66.10 73.24 50.11 61.80 6.70
BitDelta-Initial 63.74 44.46 84.15 49.66 69.05 74.03 49.96 62.15 7.12
BitDelta 63.65 43.46 83.49 51.67 66.12 74.27 49.58 61.75 7.05
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The effectiveness of BitDelta is supported by accuracy experiments, perfor-
mance benchmarks on the kernel and model level, and through ablations like quantizing the
base model and repeatedly applying BitDelta.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: One discussed limitation is how Section 4.3 assumes a toy scenario where
all B models simultaneously receive a different request, which is indicative of the worst
case scenario of a multi-tenant serving system, but is not necessarily the most representative
scenario.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discusses the BitDelta methodology on an algorithmic level,
and how to replicate the experiments in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides the source code to reproduce the main results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides training details in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars / statistical significant tests as of now.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The authors describe the compute resources they used to apply BitDelta to
models of varying sizes in Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that there
are no major ethical concerns with BitDelta.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The authors describe both positive and negative societal impacts of BitDelta in
Section A.1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the creators/original owners of assets the paper uses/references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code associated with the paper is well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing/research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing/research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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