
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMAL: A CONVERGENT META-ALGORITHM FOR
ALIGNING LLMS WITH GENERAL PREFERENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many alignment methods, including reinforcement learning from human feedback
(RLHF), rely on the Bradley-Terry reward assumption, which is insufficient to
capture the full range of general human preferences. To achieve robust alignment
with general preferences, we model the alignment problem as a two-player zero-
sum game, where the Nash equilibrium policy guarantees a 50% win rate against
any competing policy. However, previous algorithms for finding the Nash policy
either diverge or converge to a Nash policy in a modified game, even in a simple
synthetic setting, thereby failing to maintain the 50% win rate guarantee against
all other policies. We propose a meta-algorithm, Covergent Meta Alignment
Algorithm (COMAL), for language model alignment with general preferences,
inspired by convergent algorithms in game theory. Theoretically, we prove that
our meta-algorithm converges to an exact Nash policy. Additionally, our meta-
algorithm is simple and can be integrated with many existing methods designed for
RLHF and preference optimization with minimal changes. Experimental results
demonstrate the effectiveness of the proposed framework when combined with
existing preference policy optimization methods.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; OpenAI, 2023; Dubey et al., 2024) have
fundamentally transformed the fields of natural language processing and artificial intelligence. They
excel in tasks ranging from text generation and translation to complex question answering and
interactive dialogue systems. As these models become more integrated into daily life, a key challenge
is ensuring they achieve high levels of alignment with human values and preferences.

One of the most widely adopted approaches to addressing this challenge is Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). This framework
consists of two steps: first, learning a reward model from a dataset containing human preferences,
and second, optimizing the LLM using the proximal policy optimization (PPO) algorithm (Schulman
et al., 2017). Recently, Rafailov et al. (2024) observed that the first step can be bypassed, proposing
the direct preference optimization (DPO) algorithm, directly optimizing the LLM from the dataset.

However, the aforementioned approaches crucially rely on the assumption that human preferences
can be expressed using the Bradley-Terry (BT) model (Bradley and Terry, 1952). Unfortunately, the
BT model is too restrictive to capture the richness and complexity of human preferences. Specifically,
the BT model can only induce transitive preferences—i.e., if more people favor A over B, and B
over C, then more people must favor A over C. Such transitivity may not hold in the presence of
diverse populations and is also incompatible with evidence from human decision-making (May, 1954;
Tversky, 1969).

To overcome this limitation, recent research has begun to explore alignment under general preferences.
Munos et al. (2024) formulate this alignment problem as a symmetric two-player zero-sum game,
where both players’ strategies are LLMs, and their payoffs are determined by the win rate against the
opponent’s LLM according to the preference model. The objective is to identify a Nash equilibrium
policy that guarantees at least a 50% win rate against any other policy (Azar et al., 2024; Munos
et al., 2024; Calandriello et al., 2024), a property we refer to as robust alignment. However, all the
proposed algorithms either diverge or converge to the Nash policy of a modified game, thereby failing
to maintain the 50% win rate guarantee against all other policies.
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Our Contribution. We introduce a novel meta-algorithm, Covergent Meta Alignment Algorithm
(COMAL), inspired by the conceptual prox-method, a convergent algorithm for solving two-player
zero-sum games (Nemirovski, 2004). Our first observation is that many existing algorithms, including
PPO (Schulman et al., 2017), DPO (Rafailov et al., 2024), IPO (Azar et al., 2024), SPPO (Wu
et al., 2024), INPO (Zhang et al., 2024), etc., can be interpreted as implementations of the Prox
operator (Nemirovski, 2004). COMAL employs the Prox operator as its fundamental building block
and provably converges to the Nash equilibrium policy in the last iterate, assuming the Prox operator
can be computed exactly, thus achieving robust alignment. This approach allows us to leverage many
existing algorithms in a black-box manner. While several algorithms, e.g., IPO, SPPO, etc., in the
literature demonstrate average-iterate convergence to the Nash equilibrium policy, they all diverge in
the last iterate. Unfortunately, iterate averaging can be cumbersome, particularly when deep-learning
components are involved, as it may not be feasible to average the outputs of LLMs.1 Compared to
these algorithms, COMAL achieves the more desirable last-iterate convergence.

In addition to our theoretical analysis, we validate the effectiveness of COMAL through both synthetic
and LLM-based experiments.

Synthetic experiments. We construct a 3× 3 two-player zero-sum preference game, and compare
COMAL with a wide range of algorithms proposed in the literature. The result clearly shows that
COMAL is the only algorithm that converges to the Nash equilibrium of the game in the last iterate.

LLM-based experiments. Furthermore, we evaluate the performance of COMAL against existing
preference optimization algorithms under a real-world setting, where a pre-trained LLM, Qwen2-
1.5B (Yang et al., 2024), is fine-tuned using different algorithms on the UltraFeedback (Cui et al.,
2023) dataset, which is commonly used for alignment fine-tuning of LLMs. Our experimental results
demonstrate the advantages of COMAL: it achieves at least 55% win rate compared against baseline
algorithms including DPO (Rafailov et al., 2024) and iterative algorithms such as iterative IPO (Azar
et al., 2024) and INPO (Zhang et al., 2024).

2 BACKGROUND

We use ∆(Z) to denote a distribution over a set Z . We denote x ∈ X as an instruction where X is
the instruction set. We assume a fixed distribution ρ ∈ ∆(X ) over the instruction set. We denote Y as
the response set and y ∈ Y as one response. Given any instruction x ∈ X , an LLM policy π specifies
the output distribution π(· | x) ∈ ∆(Y). For distributions p, q ∈ ∆(Z), the Kullback-Leibler (KL)
divergence is defined as KL(p||q) :=

∑
z∈Z p(z) log p(z)

q(z) . The sigmoid function is σ(x) := ex

ex+1 .
We use supp(p) to denote the support of a distribution p.

Preference Models In this paper, we focus on general preference models.
Definition 1 (General Preference Model). A general preference model P : X × Y × Y → [0, 1]
satisfies P(y1 ≻ y2 | x) = 1− P(y2 ≻ y1 | x). When we query P with (x, y1, y2), it outputs 1 with
probability P(y1 ≻ y2 | x) meaning y1 is preferred over y2, and it outputs 0 otherwise.

We define P(π1 ≻ π2) := Ex∼ρ[Ey1∼π1,y2∼π2 [P(y1 ≻ y2 | x)]] as the win rate of π1 over π2 under
preference model P. A special case of the general preference model is the Bradley-Terry (BT) model,
which assumes a reward function parameterizes the preference.
Definition 2 (Bradley-Terry Model). A preference model P satisfies the Bradley-Terry (BT) assump-
tion if there exists a reward function r∗ : X × Y → R such that

P(y1 ≻ y2 | x) =
exp (r∗(x, y1))

exp (r∗(x, y1)) + exp (r∗(x, y2))
= σ(r∗(x, y1)− r∗(x, y2)).

2.1 ALIGNMENT UNDER THE BRADLEY-TERRY MODEL ASSUMPTION

RLHF The canonical formulation of Reinforcement Learning from Human Feedback (RLHF) is to
first learn a reward function r under the BT model and then find the optimal KL regularized policy

1Storing all LLMs produced during training could solve this, but it is highly space-inefficient and, to our
knowledge, has not been implemented.
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π∗ with respect to the learned reward function r:

π∗ := argmax
π

Ex∼ρ,y∼π(·|x)
[
r(x, y)− η−1 KL(π(· | x)||πref(· | x))

]
, (1)

where η−1 > 0 controls the regularization, and πref is the initial reference model, usually the policy
πsft obtained from pre-training and supervised fine-tuning.

DPO Rafailov et al. (2024) observe that the regularized optimization problem (1) has a closed-form
solution : for any x and y,

π∗(y | x) = πref(y | x) exp (ηr(x, y))
Zx

, (2)

where Zx = Ey∼πref (·|x)[exp(
1
η r(y, x))] is the normalization constant known as the partition function.

In (2), we see that π∗ implicitly parameterizes the reward function r. Rafailov et al. (2024) propose
direct preference optimization (DPO) to learn the optimal policy using the maximum likelihood
objective directly:

ℓDPO(π;πref) = −E(x,yw,yl)∼D

[
log σ

(
η−1 log

π(yw | x)
πref(yw | x)

− η−1 log
π(yl | x)
πref(yl | x)

)]
,

where D is a data set containing win-loss pair of responses {yw, yl} given prompt x.

2.2 ALIGNMENT WITH GENERAL PREFERENCE MODELS

The BT model assumption is insufficient to capture the full range of general human preferences
(Munos et al., 2024; Swamy et al., 2024). To achieve robust alignment with general preferences, we
model the policy optimization problem as a two-player zero-sum game with the objective function as
follows:2

J(π1, π2) := P(π1 ≻ π2)−
1

2
= Ex∼ρ[Ey1∼π1,y2∼π2

[P(y1 ≻ y2 | x)]]−
1

2
. (3)

In this game, the max-player controls π1 and tries to maximize J(π1, π2) while the min-player
controls π2 and tries to minimize J(π1, π2). We focus only on policies with Π := {π : supp(π) ⊆
supp(πsft)} in the support of the initial SFT policy. A Nash equilibrium policy (π⋆

1 , π
⋆
2) satisfies

π⋆
1 , π

⋆
2 ∈ argmax

π1∈Π
argmin
π2∈Π

J(π1, π2), J(π1, π
⋆
2) ≤ J(π⋆

1 , π
⋆
2) ≤ J(π⋆

1 , π2),∀π1, π2 ∈ Π.

Since J(π1, π2) is symmetric, the game has a symmetric Nash equilibrium (π⋆, π⋆). Moreover,
the Nash equilibrium policy π⋆ guarantees that for any other policy π, its win rate is at least
P(π⋆ ≻ π) ≥ P(π⋆ ≻ π⋆) = 50%. We call this property robust alignment. Our goal is to find a
policy with robust alignment.

Existing online iterative preference optimization methods designed for or applicable to the original
game including iterative IPO (Azar et al., 2024) and SPPO (Wu et al., 2024), are based on Multi-
plicative Weights Update, and thus diverge as we show in Section 4. There is also a line of works
including Nash-MD (Munos et al., 2024; Ye et al., 2024), Online IPO (Calandriello et al., 2024),
INPO (Zhang et al., 2024) aim to find the Nash equilibrium of a modified KL-regularized game:

Jτ (π1, π2, πref) := J(π1, π2)− τEx∼ρ[KL(π1(· | x)||πref(· | x))] + τEx∼ρ[KL(π2(· | x)||πref(· | x))].

The additional KL regularization terms in the objective are introduced for training stability. However,
the Nash equilibrium of the modified game no longer achieves robust alignment, i.e., it has a win rate
of at least 50% against any competing policy. We present comparison of these algorithms in Table 1.

Moreover, most existing theoretical convergence guarantees only hold for the average iterate, i.e., the
uniform mixture of training iterates, which is not used in practice. We focus on designing algorithms
with provable last-iterate convergence to Nash equilibrium, which aligns with practice and is more
space-efficient (Munos et al., 2024).

As we show in the next section, our meta-algorithm COMAL can also be implemented with black-box
access to algorithms that solve the regularized game Jτ (π1, π2, πref).

2We introduce the constant 1
2

only to ensure the game is zero-sum and it has no effect on its Nash equilibria.
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Table 1: Property comparison of different preference optimization algorithms. The algorithms are
compared based on whether they work for general preferences, whether they exhibit last-iterate
convergence in two-player zero-sum games, and whether the output policy achieves robust alignment,
i.e., a 50% win rate against other policies. ✓\ : convergence only in the modified KL-regularized
game Jτ (π1, π2, πref) but not in J(π1, π2).

Algorithm General Preference Last-Iterate Convergence Robust Alignment

DPO (Rafailov et al., 2024) ✗ ✗ ✗

IPO (Azar et al., 2024) ✓ ✗ ✗
SPPO (Wu et al., 2024) ✓ ✗ ✗

Nash-MD (Munos et al., 2024) ✓ ✓\ ✗
INPO (Zhang et al., 2024) ✓ ✓\ ✗

COMAL ✓ ✓ ✓

3 A CONVERGENT META-ALGORITHM FOR ALIGNMENT

We propose a simple meta-algorithm, Covergent Meta Alignment Algorithm (COMAL, Algorithm 1),
for robustly aligning LLMs with general preferences. In Section 3.1 and 3.2, we present the theoretical
foundations of COMAL and analyze its convergence properties. Section 3.3 describes its practical
implementation that integrates COMAL with existing preference learning methods.

3.1 COMAL

COMAL (Algorithm 1) is an online iterative algorithm inspired by the classic conceptual prox-
method (Nemirovski, 2004) first introduced in the optimization theory community. This method has
recently been applied to finding a Nash equilibrium in zero-sum games (Perolat et al., 2021; Abe
et al., 2024) and has had notable success in training advanced game AI models (Perolat et al., 2022).

Algorithm 1: Covergent Meta Alignment Algorithm (COMAL)
Input: Initial policy πsft, preference oracle P, regularization τ > 0, number of iterations T ≥ 1
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← argmaxπ1

minπ2
Jτ (π1, π2, πref) using Algorithm 2

πref ← πt+1

return πT

Algorithm 2: Regularized game solver for Jτ (π1, π2, πref) – argmaxπ1
minπ2

Jτ (π1, π2, πref)

Input: Reference policy πref , preference oracle P, regularization τ > 0, step size η > 0, number
of iterations K ≥ 1

Output: Regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
gkτ ← ∇µ(P(µ ≻ µk)− τ KL(µ||πref)) = P(· ≻ µk)− τ(log µk(·)

πref (·) + 1) // Gradient

µk+1 ← Prox(µk, ηg
k
τ )

return µK

Update Rule of COMAL In each iteration t, COMAL uses a regularized game solver (Algorithm 2)
to update the next-iteration policy πt+1 as the Nash equilibrium policy of a regularized game
Jτ (π1, π2, πref) using the current policy as reference πref = πt. The rationale behind COMAL is
simple: update the reference policy when no further progress can be made, which occurs when the
algorithm reaches the Nash equilibrium of the regularized game. Denote π⋆ a Nash equilibrium of

4
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the original game. We show that KL divergence to π⋆ is monotonically decreasing: KL(π⋆||πt+1) ≤
KL(π⋆||πt). Since πt+1 is closer to the Nash equilibrium than πt, COMAL updates the reference
policy from πt to πt+1 for further optimization. We also note that in COMAL, KL(π⋆||πt+1) ≤
KL(π⋆||πt) holds for any τ > 0, allowing us to choose the regularization parameter τt > 0 adaptively
during the training process, without requiring it to decrease over time.

Implementation of COMAL Each iteration of COMAL requires solving a zero-sum game with
additional KL regularization Jτ (π1, π2, πref). We will show momentarily that many existing policy
optimization methods for alignment can be applied to the KL regularized game and have exponen-
tially fast convergence. We also present one practical implementation of COMAL integrated with
INPO (Zhang et al., 2024) as the regularized game solver in Algorithm 4.

Last-Iterate Convergence We prove that the meta-algorithm COMAL achieves last-iterate conver-
gence to a Nash equilibrium, thereby ensuring robust alignment, which, to our knowledge, is the first
result of its kind in the context of LLM alignment. The proof is in Appendix C.

Theorem 1. We assume that there exists a Nash equilibrium π⋆ of J(π1, π2) (defined in (3)) such
that supp(π⋆) = supp(πsft). In every iteration t ≥ 1, it holds that KL(π⋆||πt+1) ≤ KL(π⋆||πt).
Moreover, COMAL has last-iterate convergence, i.e., limt→∞ πt exists and is a Nash equilibrium.

3.2 SOLVING A REGULARIZED GAME

We present Mirror Descent (MD) in Algorithm 2 to compute a Nash equilibrium of the regularized
game Jτ (π1, π2, πref). MD uses the prox operator as building blocks and we later show how to
implement the prox operator using existing policy optimization algorithms. For simplicity, we
consider policy π ∈ ∆(Y) and omit the dependence on the instruction x. All discussions can be
extended to the contextual setting in a straightforward way.

Mirror Descent and Multiplicative Weights Update Mirror Descent (MD) is a classical family of
optimization algorithms (Nemirovskij and Yudin, 1983). An important member of this family is the
Multiplicative Weights Update (MWU) algorithm (Arora et al., 2012), which is MD with negative
entropy regularization. For a maximization problem maxπ f(π), given an existing policy πt, MWU
computes the update πt+1 as follows:

πt+1 := argmax
π

〈
∇f(πt), π

〉
− η−1 ·KL(π||πt). (4)

Note that RLHF in (1) is equivalent to MWU if we interpret f(π) as the expected reward under π
Ey∼π[r(y)], and the gradient ∇f(πref) corresponds directly to r.

Prox operator. The update rule of MWU can be succinctly expressed using the prox operator
as shown in Algorithm 2.3 Fix a 1-strongly convex function φ : Z → R over a closed convex set
Z ⊂ Rn. The Bregman divergence induced by φ is

Dφ(·||·) : Z × Z → R≥0,

Dφ(z||z′) := φ(z)− φ(z′)− ⟨∇φ(z′), z − z′⟩.

Given a reference point z ∈ Z and a vector g ∈ Rn, the prox operator Prox(z, g) generalizes the
notion of a gradient ascent step from z in the direction of g.

Definition 3 (Prox Operator). For a strongly convex regularizer φ, the prox operator is defined as

Prox(z, g) := argmax
z′

⟨g, z′⟩ −Dφ(z
′||z) = argmax

z′
⟨g +∇φ(z), z′⟩ − φ(z′).

When φ(z) = 1
2∥z∥

2
2 is the ℓ2 regularizer, the prox operator Prox(z, g) = ΠZ [z + g] is the

exactly the projected gradient ascent step. In this paper, without additional notes, we choose
φ =

∑n
i=1 z[i] ln z[i] as the negative entropy regularizer and the corresponding Bregman divergence

Dφ is the KL divergence. The update rule of MWU in (4) is equivalent to πt+1 = Prox(πt, η∇f(πt))

3The prox operator is also called the prox-mapping (Nemirovski, 2004).
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Exponentially Fast Convergence Denote π⋆
τ the Nash equilibrium of the KL regularized game

Jτ (π1, π2, πref), which is τ -strongly monotone. We can apply existing results (Abe et al., 2024) to
show that MWU (Algorithm 2) achieves linear last-iterate convergence rate: the KL divergence to the
Nash equilibrium π⋆

τ decreases exponentially fast. The proof is in Appendix D.
Theorem 2. For appropriate step size η > 0, Algorithm 2 guarantees for every k ≥ 1,
KL(π⋆

τ ||µk+1) ≤ (1− ητ
2 )k KL(π⋆

τ ||πref).

3.3 PRACTICAL METHODS FOR COMPUTING THE PROX OPERATOR

We show how to implement COMAL in practical large-scale applications like LLM alignment by
computing the prox operator. Specifically, we observe that many existing algorithms designed for
RLHF and preference optimization with neural network parameters can be adapted to solve the prox
operator Prox(π, ηg) (η > 0 is the step size). These algorithms include RL algorithms like PPO and
loss-minimization algorithms like DPO, IPO, SPPO, DRO, INPO, each of which may be preferred in
certain settings. Due to space limit, we only present IPO and INPO here but defer discussion of other
methods to Appendix E. Our contribution here is not proposing new algorithms but unifying existing
diverse preference methods through the perspective of computing the prox operator. This perspective
opens the possibility of applying other algorithms from online learning and optimization to robust
LLM alignment and we include implementation for two other algorithms in Appendix F.

IPO for computing Prox for general preferences We assume a general preference model P over
Y (not necessarily the BT model). We consider the case where g is the win-rate against some policy
µ such that gµ(y) = P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]] (think of µ as the reference policy πref or other
online policy πt). We assume the dataset contains win-lose pairs sampled from µ: {yw, yl ∼ µ}. We
denote the preference distribution λP(y, y

′) as a binary distribution:

λP(y, y
′) =

{
(y, y′) with probability P[y ≻ y′]

(y′, y) with probability 1− P[y ≻ y′]
(5)

The (population) IPO loss (Azar et al., 2024) is defined as

ℓIPO(θ, µ) := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

π(y+)
− log

πθ(y
−)

π(y−)
− η

2

)2
]
.

Azar et al. (2024) have shown that the minimizer of the ℓIPO(θ, µ) satisfies
πθ(y) ∝ π(y) exp (−ηP[y ≻ µ])⇔ πθ = Prox(π, ηgµ).

Thus we can compute the prox operator Prox(π, ηgµ) where gµ = P(· ≻ µ) by minimizing the IPO
loss against policy µ.

INPO for computing Prox for regularized preferences A generalization of the IPO loss to
the regularized preference setting is the Iterative Nash Policy Optimization (INPO) loss (Zhang
et al., 2024). Here, we define gτµ the gradient ∇πJτ (π, µ, πref) = P(· ≻ µ) − τ log µ(·)

πref (·) of the
regularized objective. The INPO algorithm with the corresponding INPO loss is shown in Algorithm 3.
Similarly, it has been shown that the INPO loss minimizer corresponds to the prox operator’s solution
Prox(π, ηgτµ) (Zhang et al., 2024). Thus we can apply INPO in Algorithm 2 directly.

Practical Implementation of COMAL We present an implementation of COMAL in Algorithm 4
using the INPO (Zhang et al., 2024) as a subgame solver. We remark that COMAL can also be
implemented using PPO or many other preference learning algorithms, as we show in Section 3.3
and Appendix E. Given the implementation of these existing methods, our meta-algorithm requires
minimal change but archives last-iterate convergence to a Nash equilibrium.

4 SYNTHETIC EXPERIMENTS

We conduct experiments on a simple bandit problem with Y = {ya, yb, yc} and non-BT preference
model over Y . Specifically, we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. Observe
that the preference is intransitive and exhibits a preference cycle yc ≻ yb ≻ ya ≻ yc. The setup for
the synthetic experiment is included in Appendix G.
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Algorithm 3: INPO (Zhang et al., 2024) for solving Jτ (π1, π2, πref)

Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,
preference oracle P.

Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate response pairs {y(i)1 , y

(i)
2 }ni=1 where y

(i)
1 , y

(i)
2 ∼ µk

Query preference oracle P to get preference data Dk = {y(i)w , y
(i)
l }ni=1

Compute µk+1 = argminπ∈Π E(yw,yl)∼Dk
ℓINPO(π) where

ℓINPO(π) := E(y+,y−)∼λP(yw,yl)
(5)

[(
log

π(y+)

π(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µt(y+)

µt(y−)
− η

2

)2
]

return µK

Algorithm 4: Practical Implementation of COMAL integrated with INPO (Algorithm 3)
Input: Initial policy πsft, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← INPO(πref , τt, ηt,Kt,P) defined in Algorithm 3
πref ← πt+1

return πT
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Figure 1: Dyanmics on a simple 3-dimensional
preference game. The unique Nash equilibrium
is [4/11, 3/11, 4/11] represented as red star. We
initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

Experiments using noiseless gradient We
present numerical results of mirror-descent (MD)
algorithms (equivalent to MWU) and COMAL
(Algorithm 1) in Figure 1. We can see that the MD
algorithm diverges from the unique Nash equilib-
rium and suffers a large equilibrium gap, while
COMAL achieves fast last-iterate convergence to
the Nash equilibrium, aligned with our theoretical
results (Theorem 1).

Experiements using preference samples Since
the popular iterative DPO algorithm does not con-
tain a gradient step, we also conduct experiments
with only Oracle query access to the preference
model. We compare the performance of various
algorithms, including iterative DPO, iterative IPO,
SPPO, and INPO and present results in Figure 2.
The sample-only setting is also more aligned with
what happens in practice. We use a sufficient num-
ber of samples in each iteration for every algo-
rithm. As a result, the COMAL performs the same
as in the noiseless gradient setting, while the itera-
tive IPO algorithm becomes equivalent to the MD
algorithm. We note the following:

• Iterative DPO: We observe that iterative DPO diverges and cycles between extreme policies (e.g.,
outputting ya with probability close to 1). This is aligned with (Azar et al., 2024), where they
found DPO will converge to the deterministic policy regardless of the regularization parameter in
extreme preference settings. The cycling behavior of iterative DPO may be explained as follows:
in each iteration, DPO converges to a nearly deterministic policy output y; then the new preference
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Figure 2: Dyanmics on a simple 3-dimensional preference game. The unique Nash equilibrium
is [4/11, 3/11, 4/11] represented as red star. We initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

data shows that y′ ̸= y is more preferred; finally, iterative DPO cycles over Y since the preference
itself exhibits a cycle and there is no clear winner.

• Iterative IPO (Azar et al., 2024; Calandriello et al., 2024): The IPO loss is a variant of the DPO loss,
but it does not rely on the BT model assumption and works for a general preference model. However,
as we have discussed before, (exactly) minimizing the IPO loss is equivalent to performing one
MD step, and thus, iterative IPO is equivalent to MD up to sampling error. As a result, we observe
that iterative IPO also exhibits cycling behavior.

• SPPO (Wu et al., 2024): The SPPO algorithm (see Appendix E) is not exactly the same as MWU
since SPPO assumes the partition function is always Z = log η

2 which may not be the case.
We observe that SPPO exhibits very similar cycling behavior as MD. We conclude that SPPO
approximates MD very well in this instance and exhibits similar behavior.

• INPO (Zhang et al., 2024): The INPO algorithm is designed for finding the Nash equilibrium of
the KL regularized game Jτ (π1, π2, πref). As we proved in Theorem 2, INPO does not diverge
and exhibits last-iterate convergence. However, it converges to a point that differs from the Nash
equilibrium of the game J(π1, π2) and, as a result, lacks the robust alignment property.

5 REAL-WORLD EXPERIMENTS

Apart from the controlled synthetic experiments, we conduct experiments with a pre-trained LLM,
Qwen2-1.5B (Yang et al., 2024), on a commonly used dataset UltraFeedback (Cui et al., 2023) to
show the effectiveness of COMAL under the real-world preference optimization setting.

5.1 EXPERIMENTAL SETTINGS

Datasets We use the UltraFeedback dataset, specifically its binarized version for preference fine-
tuning.4 It contains 64K data examples consisting of a user instruction and a positive-negative output
pair annotated by GPT-4. The instructions in this dataset span a wide range of types, making it
well-suited for studying preference optimization in real-world settings. Since we focus on online
and iterative preference optimization, only the instructions are used because the output pairs will be
generated and annotated online. In addition, to reduce the computational cost, the instructions are
randomly split into 6 equal-size subsets. Each subset therefore contains around 10K instructions and
is used in one training iteration.

4https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized.

8

https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Preference Oracle The preference oracle we used is Llama-3-OffsetBias-8B (Park et al., 2024a),
which is a pairwise preference model that predicts which output is better given an instruction and
a pair of outputs. Fine-tuned from Meta-Llama-3-8B-Instruct (Dubey et al., 2024), it achieves
strong performance on various human preference alignment benchmarks in RewardBench (Lambert
et al., 2024). We selected it as the preference oracle for its balance of computational efficiency and
alignment with human preferences, making it suitable for iterative preference optimization.

Online Preference Data Generation To construct the preference data, i.e., output pairs with a
preference annotation specifying which one is better, we adopt the setting of Zhang et al. (2024)
by sampling 5 candidate outputs for each instruction with a temperature of 0.8 and applying the
preference oracle to compare all the output pairs constructed. The best and the worst candidate
outputs, derived from the pairwise comparison results, are then selected to form a data point.

Baselines We include the following baselines for comparisons with COMAL: (1) SFT, which fine-
tunes the pre-trained Qwen2-1.5B on the UltraChat dataset, with the resulting checkpoint serving as
the starting point and/or reference policy for the other training algorithms; (2) vanilla DPO (Rafailov
et al., 2024) and (3) vanilla IPO (Azar et al., 2024), where one training iteration is performed over
the entire instruction set of UltraFeedback with output pairs sampled from the SFT policy; (4)
INPO (Zhang et al., 2024), where each iteration of training is performed on a single data split; (5)
iterative IPO, which follows a training setting similar to INPO but without the KL regularization with
respect to the reference policy.

Evaluations We use the instructions in a widely used benchmark, AlpacaEval (Li et al., 2023), to
construct the test set, since these instructions are diverse and cover various task scenarios. However,
instead of using GPT-4, the default evaluator for the AlpacaEval benchmark, we chose to use the
same preference oracle used during data generation, Llama-3-OffsetBias-8B, as the evaluator. This
decision was made to maintain a controlled experimental setting, ensuring that the preference oracle
the model learns to fit is also the one used to evaluate its performance.

Training Details We follow the training recipe proposed in Tunstall et al. (2023) for the experiments.
Specifically, at each training iteration, the models are fine-tuned for 3 epochs with a batch size of 32
and maximum learning rate of 5 × 10−7, using a linear learning rate scheduler where 10% of the
steps are for warmup and the rest for linearly decreasing the rate. The checkpoints are selected based
on their validation loss on the UltraFeedback dataset. The training is performed on 8 NVIDIA A6000
Ada GPUs with 48GB memory, and one training iteration over the 10K instructions takes around
5 hours. Due to the relatively high computational requirements and the large number of training
iterations we tested (up to 18), we opted to use a moderately sized LLM and did not conduct an
exhaustive hyper-parameter search, instead referencing settings from previous work when appropriate.
To the best of our knowledge, multi-iteration training like ours has rarely been explored in previous
work. For example, INPO (Zhang et al., 2024) only performed optimization for up to 3 iterations,
which is equivalent to just one full round over UltraFeedback’s instructions.

Hyper-Parameters We conduct a grid search for the strength of the KL regularization, η−1, in both
vanilla DPO and IPO. We found that DPO achieves the best performance when η−1 is set to 0.01,
while IPO achieves the best performance when η−1 is set within the range of 0.002 - 0.01. We then
choose the value of η−1 to be 0.002 to encourage larger learning steps.5 This value of η is also used
for iterative IPO and INPO. INPO has another hyper-parameter τ which controls the strength of the
KL regularization from the reference policy. We determine its value following the setting of Zhang
et al. (2024), where ητ is set to a fixed ratio, 1/3. Regarding COMAL, which is implemented based
on INPO as outlined in Algorithm 4, the reference policy is updated when the first optimization step
begins to converge or overfit, and η−1 is increased to 0.01 to improve training stability.

5.2 RESULT ANALYSIS

Figure 3 presents the training dynamics of three iterative preference optimization algorithms we
compared: iterative IPO (Iter-IPO), INPO, and COMAL, which are demonstrated by their checkpoints’
win rates against the SFT checkpoint and the average length of their outputs. For INPO and COMAL,
the model is trained for up to 18 iterations, which are equivalent to 3 training rounds over the entire
instruction set since it has been split into 6 subsets. We note that:

5More details are in Appendix H.
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Figure 3: Comparisons of Iterative IPO (Iter-IPO), INPO, and COMAL. The win rate of the trained
checkpoints against the SFT checkpoint, and the average length of the outputs are compared. The red
vertical lines mark the end of one training round – a full pass over the 6 instruction splits.

Table 2: Performance comparison of different training algorithms. The row v.s. column win rate (%)
is reported. For INPO, we report its performance with 2-round (R2) and 3-round (R3) training.

Row/Col SFT DPO IPO Iter-IPO INPO-R2 INPO-R3 COMAL Avg

Iter-IPO 65.84 56.40 54.04 50.00 47.83 46.21 39.01 51.33
INPO-R2 72.55 60.25 58.39 52.17 50.00 49.32 41.37 54.86
INPO-R3 66.09 60.25 58.51 53.79 50.68 50.00 44.97 54.90
COMAL 73.91 66.71 66.21 60.99 58.63 55.03 50.00 61.64

(1) Iter-IPO shows a quicker improvement rate at the beginning of the training, but its performance
against the SFT checkpoint starts to degrade in the second training round, which indicates the inherent
instability of this training algorithm.

(2) INPO archives a relatively stable win rate against SFT at the end of the second training round.
However, its win rate starts to slightly degrade in the third training round. We suspect this suggests
that INPO has started to converge and/or overfit. Therefore, for COMAL, which shares the same
training trajectory as INPO for the first two training rounds, we update the reference policy at the
beginning of the third training round, following the optimization process described in Algorithm 4.

(3) COMAL is able to further improve the model performance with the updated reference policy.
Notably, it also results in the shortest outputs, suggesting that it is more robust to the length bias of
the preference models which preference optimization algorithms tend to exploit (Park et al., 2024b).

Table 2 provides pairwise comparisons between the final checkpoints of the iterative preference
optimization algorithms and a few baselines. It demonstrates the clear advantage of COMAL, which
is able to achieve an above 50% win rate against all the other checkpoints. In contrast, Iter-IPO can
only outperform the vanilla DPO and IPO settings. Regarding INPO, we found that the average win
rate of its checkpoint after the third training round (INPO-R3) is only slightly higher than that of
its intermediate checkpoint at the end of the second training round (INPO-R2) (54.90 vs. 54.86),
suggesting that its performance plateaued by the end of the second training round. Conversely, by
updating the reference policy, COMAL further improves the performance in the third training round.
In Appendix I, we provide additional evaluation results such as using GPT-4 as the preference oracle,
which further demonstrates the effectiveness of COMAL compared to other algorithms.

6 CONCLUSION

We have proposed COMAL, a meta-algorithm for preference optimization that provably converges
to the Nash equilibrium policy in the last iterate. We have provided a theoretical analysis of the
properties of COMAL and have empirically demonstrated its effectiveness under both synthetic
and real-world experimental settings. We believe COMAL has significant potential to enhance the
performance of LLMs in the alignment fine-tuning setting, due to its theoretical guarantees and
flexibility, as it can be integrated with existing learning algorithms while overcoming their limitations.
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A RELATED WORK

Alignment under Preference models Most existing approaches adopt the Bradley-Terry (BT)
preference model (Bradley and Terry, 1952; Christiano et al., 2017), which involves first learning a
preference model and then optimizing the objective function with a KL divergence penalty relative to
the original language model. For example, RLHF (Ouyang et al., 2022) aims to ensure that LLMs
follow instructions by initially learning a BT model and subsequently fine-tuning the model based on
the learned reward while regularizing it with the original LLM.
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Building on this framework, Rafailov et al. (2024) introduces Direct Preference Optimization (DPO)
that maintains the assumption of the BT model for preferences but eliminates the preference learning
step by reformulating the objective and optimizing it directly. Additionally, Ethayarajh et al. (2024)
diverges from the traditional BT-based methods by deriving algorithms that bypass the preference
modeling step altogether. Instead, they model user preferences based on Kahneman and Tversky’s
utility theory.

Alignment Solution Concepts under General Preferences Azar et al. (2024) are the first to
consider general preferences and propose a family of optimization objectives that optimize a function
of the preferences probabilities regularized by the KL divergence with respect to the original model.
They propose the IPO algorithm, an offline algorithm that directly optimizes the win rate of the
model penalized by the KL divergence with respect to the original model. Munos et al. (2024)
also consider general preferences and aim to find the von Neumann winner, which corresponds to
the Nash equilibrium of a game played between the two LLMs over the win rate. They propose a
variant of the Mirror Descent (MD) algorithm called Nash-MD and show last-iterate convergence
in the KL-regularized game. Concurrently, Swamy et al. (2024) study the same solution concept
focusing more on sequential games. Calandriello et al. (2024) proved that the objective of the the
IPO algorithm coincides with the Nash policy under a proper choice of the parameter that controls
the regularization.

Iterative Self-Play Algorithms Apart from the aforementioned works, a line of recent work also
propose practical implementation of the Mirror Dscent (MD) algorithms, which can be used to learn
the Nash equilibrium via self-play.Rosset et al. (2024) propose Direct Nash Optimization (DNO),
where at each iteration, the model regresses the predicted preferences against the actual preferences
using cross-entropy loss. Similarly, Wu et al. (2024) introduce the Self-Play Preference Optimization
(SPPO) method, Gao et al. (2024) introduce Reinforcement Learning via Regressing Relative Rewards
(REBEL), and Richemond et al. (2024) introduce the Direct Reward Optimization (DRO) which
regresses the loss using the L2 distance at each iteration. Since these algorithms simulate the MD
update, when applied in a (unregularized) zero-sum game, they only have average-iterate convergence
but all diverge in last iterate. Moreover, all these methods require the estimation of the win rate,
which can be computationally intensive and may introduce estimation errors.

Most closely related to our work is Iterative Nash Policy Optimization (INPO) by Zhang et al. (2024),
which continues to use L2 distance regression. However, by further reformulating and simplifying
the objective similar to IPO, INPO eliminates the need to estimate the expected win rate. The primary
distinction between our approach and INPO is that INPO is designed for the KL-regularized game
and is equivalent to MD; while our algorithm COMAL is inspired by the Conceptual Prox algorithm
and guarantees last-iterate convergence in the unregularized game. This fundamental difference
allows COMAL to achieve more favourable convergence properties with robust alignment (i.e., 50%
against any other policy) for large language models.

Last-Iterate Convergence on Games It is well-established that Mirror Descent fails to converge
in simple zero-sum games, often resulting in cycling behavior (Mertikopoulos et al., 2018). In
contrast, several prominent algorithms have been shown to achieve last-iterate convergence including
the Proximal Point (PP) method (Rockafellar, 1976), Extra-Gradient (EG) (Korpelevich, 1976),
Optimistic Online Mirror Dscent (OOMD) (Popov, 1980; Rakhlin and Sridharan, 2013), and the
Conceptual Prox/Mirror Prox methods (Nemirovski, 2004), in the more general setting of monotone
variational inequality that covers zero-sum games as special cases. The asymptotic convergence
properties of these algorithms have been extensively studied (Popov, 1980; Facchinei and Pang, 2003;
Iusem et al., 2003; Nemirovski, 2004; Daskalakis and Panageas, 2018). In particular, variants of the
Conceptual Prox algorithm (Nemirovski, 2004) instantiated with different regularizers have been
shown to have last-iterate convergence in zero-sum matrix games (Abe et al., 2024) and zero-sum
imperfect-information games (Perolat et al., 2021). Recently, there has been a growing focus on
establishing finite-time convergence guarantees for these methods, addressing the practical necessity
of understanding their performance within a limited number of iterations (see e.g. (Mokhtari et al.,
2020b;a; Golowich et al., 2020b;a; Bauschke et al., 2021; Wei et al., 2021; Cai et al., 2022; Gorbunov
et al., 2022) and references therein). Although last-iterate convergent algorithms have been extensively
studied in optimization and game theory, only the divergent MD algorithm has been implemented
for LLM alignment (see the "Iterative Self-Play Algorithms" paragraph above). Compared to the
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works mentioned above, our work is the first to (1) introduce last-iterate convergent methods to LLM
alignment; (2) provide the first practical implementation of these methods in the context of LLM
fine-tuning, including the Conceptual Prox method, the Mirror-Prox (MP) method, and the Optimistic
Multiplicative Weights Update (OMWU) algorithm (see Appendix F for details for MP and OMWU);
(3) conduct LLM-based experiments and demonstrate the empirical success of the conceptual prox
method in large-scale experiments. Our work demonstrates the value of applying theoretical insights
from optimization and game theory to LLM alignment in practice.

B PROPERTIES OF THE PROX OPERATOR

Recall that Prox(z, g) = argmaxz′∈Z ⟨g, z′⟩ −Dφ(z
′||z) = argmaxz′∈Z ⟨g +∇φ(z), z′⟩ −φ(z′).

The following properties of the prox operator are well-known in the literature(e.g., (Nemirovski,
2004))
Lemma 1. Prox(z, g) = z′ if and only if ⟨g +∇φ(z)−∇φ(z′), z′ − z∗⟩ ≥ 0 for all z∗ ∈ Z .
Corollary 1. Let Prox(z, g) = z′, then

⟨g, z∗ − z′⟩ ≤ Dφ(z
∗||z)−Dφ(z

∗||z′)−Dφ(z
′||z), ∀z∗ ∈ Z

C PROOF OF THEOREM 1

The proof of Theorem 1 is relatively standard in the literature (Facchinei and Pang, 2003; Nemirovski,
2004). We include a formal proof here for completeness. In the proof, we assume that each step of
COMAL, πt+1 ← argmaxπ1

minπ2
Jτ (π1, π2, πref) can be solved exactly. Our proof extends to the

case the optimization problem is solved approximately with sufficient accuracy.

In Theorem 1, we make the following assumption.
Assumption 1. We assume there exists a Nash equilibrium π⋆ such that supp(π⋆) = supp(πsft).

This assumption is mild and much weaker than the “Bounded Log Density" assumptions used in
previous works (Rosset et al., 2024; Zhang et al., 2024), which requires | log πt

πsft
| is bounded.

Recall that Π := {π : supp(π) ⊆ supp(πsft)}. Then KL(π||πsft) ≤ D :=
maxy:πsft(y)>0 log πsft(y) is bounded for any π ∈ Π. We first prove KL(π⋆||πt+1) ≤ KL(π⋆||πt)
for any t ≥ 1.
Lemma 2. Let π⋆ be an Nash equilibrium of J(π1, π2). Then for any τ > 0, if

(π, π) = argmax
π1∈Π

argmin
π2∈Π

Jτ (π1, π2, πref),

then
KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref)

Proof. By definition of the prox operator, we have

π = argmax
π1∈Π

Jτ (π1, π, πref)

= argmax
π1∈Π

P(π1 ≻ π)− τ KL(π1, πref)

= Prox(πref ,
1

τ
P(· ≻ π)). (6)

Using Corollary 1, we have for any π′ ∈ Π,

1

τ
(P(π′ ≻ π)− P(π ≻ π)) ≤ KL(π′||πref)−KL(π′||π)−KL(π||πref). (7)

Plugging π′ = π⋆ into the above inequality and noting that P(π ≻ π) = 1
2 , we get

1

τ

(
P(π⋆ ≻ π)− 1

2

)
≤ KL(π⋆||πref)−KL(π⋆||π)−KL(π||πref).
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Since π⋆ is a Nash equilibrium and thus P(π⋆ ≻ π) ≥ 1
2 , the lefthand side of the above inequality is

≥ 0. The we have

KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref).

Lemma 2 implies the following properties on the trajectory {πt}.
Corollary 2. In COMAL, we have

1. KL(π⋆||πt+1) ≤ KL(π⋆||πt) for all t ≥ 1.

2.
∑∞

t=1 KL(πt+1||πt) ≤ KL(π⋆||πsft) < +∞.

3. supp(πt) = supp(πsft) for all t ≥ 1.

Proof. The first item is direct from Lemma 2. The second item is also direct by applying Lemma 2
for t = 1, 2 . . .:

∞∑
t=1

KL(πt+1||πt) ≤
∞∑
t=1

KL(π⋆||πt)−KL(π⋆||πt+1) ≤ KL(π⋆||πsft) ≤ D <∞.

For the third item, let π⋆ be a Nash equilibrium such that supp(π⋆) = supp(πsft) as guaranteed
by Assumption 1. On one hand, since KL(πt||πt−1) < ∞ for all t ≥ 1, we have supp(πt) ⊆
supp(πt−1) ⊆ . . . ⊆ supp(πsft). On the other hand, KL(π⋆||πt) < ∞ implies supp(π⋆) ⊆
supp(πt). Since supp(πsft) = supp(π⋆), we have supp(πt) = supp(πsft) = supp(π⋆).

Since the sequence {πt} is bounded (all lies in the simplex), it has at least one limit point π̂. The
next lemma shows that a limit point must be a Nash equilibrium.
Lemma 3. If π̂ is a limit point of {πt}, then π̂ is a Nash equilibrium of J(π1, π2).

Proof. By item 2 in Corollary 2, we have limt→∞ KL(πt+1||πt) = 0. This implies
limt→∞ ∥πt+1 − πt∥ = 0. As π̂ is a limit point of {πt}, we let {πk : k ∈ κ} be the subsequence
that converges to π̂. Then by Equation (6), we have

lim
k∈κ,k→∞

πk+1 = lim
k∈κ,k→∞

Prox(πk,
1

τ
P(· ≻ πk+1))

⇒π̂ = Prox(π̂,
1

τ
P(· ≻ π̂)).

Thus π̂ is a fixed point of Prox(π, 1
τ P(· ≻ π). Moreover, by item 3 in Corollary 2, we have

supp(π̂) = supp(πsft). Now consider both the max and min player running MWU initialized with
π1 = π̂. Then we have πt = π̂ for all t ≥ 1. By Equation (7), we have for any π′ ∈ Π,

1

τ

∞∑
t=1

(
P(π′ ≻ π̂)− 1

2

)
≤ KL(π′||π̂) <∞,

where the inequality holds since supp(π′) ⊆ supp(π̂). As a result, we get

P(π′ ≻ π̂) ≤ 1

2
,∀π′ ∈ Π⇔ P(π̂ ≻ π′) ≥ 1

2
,∀π′ ∈ Π

Thus π̂ is a Nash equilibrium of J(π1, π2).

Proof of Theorem 1 Since π̂ is a Nash equilibrium, by Corollary 2, {KL(π̂||πt) ≥ 0} is a
decreasing sequence. Thus {KL(π̂||πt)} converges. Let {πk : k ∈ κ} be a subsequence that
converges to π̂. Then we have

lim
t→∞

KL(π̂||πt) = lim
k∈κ,k→∞

KL(π̂||πk) = KL(π̂||π̂) = 0.

Thus we have limt→∞ πt = π̂ is a Nash equilibrium. This completed the proof of Theorem 1.
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D PROOF OF THEOREM 2

We show that MWU has linear convergence to the unique Nash equilibrium of a KL-regularized
zero-sum game J(π1, π2, πref).

We denote µ⋆ = π⋆
τ the unique Nash equilibrium of the KL regularized game Jτ(π1, π2, πref). We

note that J(π1, π2) is 1-smooth. We then can adapt (Abe et al., 2024, Lemma F.1) to our setting.

Lemma 4 (Adapted from Lemma F.1 in Abe et al. (2024)). If we choose η ∈ (0, 2τ
3τ2+8 ], then we

have for every k ≥ 1

KL(µ⋆, µk+1) ≤ (1− ητ

2
)KL(µ⋆, µk).

Applying the lemma recursively implies KL(µ⋆||µk+1) ≤ (1− ητ
2 )k KL(µ⋆||πref) and completes

the proof.

E COMPUTING THE PROX OPERATOR USING PREFERENCE LEARNING
METHODS

We include additional examples showing how existing algorithms designed for RLHF and preference
optimization with neural network parameters can be adapted to solve the prox operator Prox(π, ηg)
(η > 0 is the step size). These algorithms include RL algorithms like PPO and loss-minimization
algorithms like DPO, IPO, SPPO, DRO, INPO, each of which may be preferred in certain settings.

Reinforcement Learning algorithms We can use the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017) to solve Prox(π, ηg). Observe that

Prox(π, ηg) = argmax
π′

{⟨ηg, π′⟩ −KL(π′||π)}

= argmax
π′

Ey∼π′
[
g[y]− η−1 ·KL(π′||π)

]
shares the same form as the objective in (1). Typically, we parameterize π′ = πθ with neural network
parameters θ and optimize over θ.

Loss minimization algorithms Let us denote π̂ the prox operator Prox(π, ηg), then we have

π̂[y] =
π(y) exp(ηg(y))

Z
⇔ log

π̂(y)

π(y)
− ηg(y) + logZ = 0,

where Z = Ey∼π[exp(ηg(y))] is the partition function. We can directly compute the partition
function Z and thus π̂ in small tabular cases. However, the partition function is hard to compute in
general large-scale applications. Several works have recently proposed to solve the above equality by
optimizing the corresponding L2 loss.

The Self-Play Preference Optimization (SPPO) loss (Wu et al., 2024) assumes logZ = η
2 and

optimizes

ℓSPPO(θ) =

(
log

πθ(y)

π(y)
− ηg(y)− η

2

)2

.

The Direct Reward Optimization (DRO) loss (Richemond et al., 2024) parameterizes both π̂ and
logZ with θ and Vϕ respectively and optimize6

ℓDRO(θ, ϕ) =

(
log

πθ(y)

π(y)
− ηg(y)− ηVϕ

)2

.

6we modified some constants in the original DRO loss to make it consistent with our presentation. The
modification has no other effects.
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The REBEL loss (Gao et al., 2024) uses differences in rewards to eliminate the partition function Z
and optimize the regression loss

ℓREBEL(θ) =

(
η−1

(
log

πθ(y)

π(y)
− log

πθ(y
′)

π(y′)

)
− (g(y)− g(y′))

)2

.

All the above approaches can be used to solve Prox(π, ηg). However, directly applying them
iteratively on J(π1, π2) is equivalent to running MWU, which provably diverges. In contrast, we can
apply them in Algorithm 2 and then apply our meta-algorithm COMAL to guarantee convergence to
a Nash equilibrium with robust alignment. We present practical implementations of COMAL using
the SPPO, DRO, and REBEL loss as subroutines in Appendix J.
Remark 1. The above approaches are versatile and work well for any g that can be evaluated
efficiently. In particular, we should consider using them when (1) g = r is a reward function and
we can efficiently query r; (2) g = P(· | µ) is the win rate against a reference policy µ, and we can
efficiently sample from µ and have oracle access to P. These two settings are popular and practical
in the LLM alignment setting.

Now we turn attention to the more specific setting where g corresponds to a preference model P
(could be a BT model or a general preference) and that we can collect a win-loss preference data set
D = {(yw, yl)}, which is standard for LLM alignment. Although the abovementioned algorithms
apply, they all require estimating g (the win rate) and may be inefficient in practice. In the following,
we present algorithms directly working on the sampled dataset D without further estimation.

Sampled loss based on the BT preference model Assume g = r is the reward of the Bradley-
Terry model, and the dataset {(yw, yl)} consists of win-lose pairs of responses. Then we can solve
Prox(π, ηg) by optimize the DPO loss (Rafailov et al., 2024) defined as

ℓDPO((yw, yl); θ) = − log σ

(
η−1 log

πθ(yw)

π(yw)
− η−1 log

πθ(yl)

π(yl)

)
.

Sampled loss for general preference The DPO loss inspires many other loss functions that work
under even weaker assumptions on the preference model. Now, we assume a general preference
model P over Y (not necessarily the BT model). We assume g is the win-rate against some policy
µ such that gµ(y) = P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]] (think of µ as the reference policy πref or other
online policy πt). We assume the dataset contains win-lose pairs sampled from µ: {yw, yl ∼ µ}. We
denote the preference distribution λP(y, y

′) as a binary distribution:

λP(y, y
′) =

{
(y, y′) with probability P[y ≻ y′]

(y′, y) with probability 1− P[y ≻ y′]

The (population) IPO loss (Tang et al., 2024; Calandriello et al., 2024) is defined as

ℓIPO(θ, µ) := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

π(y+)
− log

πθ(y
−)

π(y−)
− η

2

)2
]
.

It has been proved that the minimizer of the ℓIPO(θ, µ) satisfies

πθ(y) ∝ π(y) exp (−ηP[y ≻ µ])⇔ πθ = Prox(π, ηgµ).

Thus we can compute the prox operator Prox(π, ηgµ) where gµ = P(· ≻ µ) by minimizing the IPO
loss against policy µ.

A variant of the IPO loss applied to the regularized preference setting is the Iterative Nash Policy
Optimization (INPO) loss (Zhang et al., 2024). Here, we define gτµ the gradient ∇πJτ (π, µ, πref) =

P(· ≻ µ)− τ log µ(·)
πref (·) of the regularized objective. The corresponding INPO loss is

ℓINPO := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

πθ(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µ(y+)

µ(y−)
− η

2

)2
]
.

Similarly, it has been shown that the INPO loss minimizer corresponds to the prox operator’s solution
Prox(π, ηgτµ). Thus we can use the INPO in Algorithm 2 directly.
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F IMPLEMENTATION OF MIRROR-PROX AND OPTIMISTIC MULTIPLICATIVE
WEIGHTS UPDATE

We note that there are other algorithms that has provable last-iterate convergence to Nash equilibrium
in (unregularized) zero-sum games, including the Mirror-Prox algorithm (Nemirovski, 2004) and
Optimistic Multiplicative Weights Update (OMWU) algorithm (Rakhlin and Sridharan, 2013; Syrgka-
nis et al., 2015; Hsieh et al., 2021). We present practical implementations of these two algorithms
in the context of LLM alignment for solving J(π1, π2) (3), where we use preference optimization
algorithms to solve the prox operator as shown in Section 3.3 and Appendix E.

We denote the gradient g(π) := P(· ≻ π).

Mirror-Prox The Mirror-Prox algorithm (Nemirovski, 2004) initialized π1 = πsft and updates in
each iteration t ≥ 1:

πt+ 1
2 = Prox(πt, ηg(πt))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

We can implement Mirror-Prox using PPO/DPO/IPO/SPPO/DRO/REBEL to compute the prox
operator. Specifically, we could sample from πt and construct a preference dataset Dt and optimize
certain regression loss (IPO/DRO/REBEL) to compute πt+ 1

2 = Prox(πt, ηg(πt)). The procedure
applies to the second step in each iteration. Thus in such an implementation, we require two sampling
and two optimization procedures in each iteration.

Optimistic Multiplicative Weights Update (OMWU) The OMWU algorithm (Rakhlin and Srid-
haran, 2013) is an optimistic variant of the MWU algorithm. Although MWU diverges in zero-sum
games, it has been shown that OMWU has last-iterate convergence to Nash equilibrium (Wei et al.,
2021; Hsieh et al., 2021). Initialized with π1 = π

1
2 = πsft, OMWU updates in each iteration t ≥ 1:

πt+ 1
2 = Prox(πt, ηg(πt− 1

2 ))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

Similarly, we can implement OMWU to solve J(π1, π2) using preference methods to compute the
prox operator as shown in Section 3.3. Moreover, OMWU has an equivalent update rule: initialize
π1 = π0 = πsft

πt+1 = Prox(πt, 2ηg(πt)− ηg(πt−1)),

which requires computing only one prox operator in each iteration.

We leave testing the practical performance of Mirror-Prox and OMWU for large-scale applications,
including LLM alignment, as future works.

G SETUP FOR SYNTHETIC EXPERIMENTS

Recall that we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. This results in the
following zero-sum game: we have policies Π = ∆({ya, yb, yc}) and objective

J(π1, π2) = π⊤
1 Aπ2 − 0.5, where A =

[
0.5 0.1 0.8
0.9 0.5 0.1
0.2 0.9 0.5

]
.

The game has a unique Nash equilibrium [4/11, 3/11, 4/11]. We set the initial policy to be π1 =
[0.2, 0.5, 0.3] for all algorithms. We choose η = 0.3 for iterative DPO, iterative IPO, and SPPO. We
choose η = 0.3 and τ = 0.1 for INPO and COMAL. For COMAL (Algorithm 4), we set T = 200
and Kt = 25 so the total number of iterations is T ·Kt = 5000.
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Table 3: Results of the hyperparameter search for DPO and IPO regarding the strength of the KL
constraint η−1. The checkpoints’ win rates against the SFT policy are reported.

η−1 IPO DPO

0.02 64.34 67.32
0.01 69.06 69.44
0.005 68.44 65.71
0.002 68.94 61.49
0.001 58.01 53.29

H HYPERPARAMETER SEARCH FOR REAL-WORLD EXPERIMENTS

Here we outline the results of the hyperparameter search we conducted in §5.1 for identifying the
optimal value of η for DPO and IPO. Table 3 reports the win rates of different checkpoints trained
with different values of η against the SFT policy. It shows that DPO achieves the best performance
when η−1 is set to 0.01. On the other hand, IPO achieves a relatively stable and strong performance
when η−1 is set within the range of 0.002-0.01. However, when compared against the best DPO
checkpoint, we found that IPO trained with η−1 = 0.002 achieves the highest win rate (51.43%),
therefore we chose it as the default value for the rest of the experiments. As discussed in §5.1, the
value of the hyper-parameter τ is determined by setting ητ is set to a fixed ratio, 1/3, following the
setting of Zhang et al. (2024). Due to the high computational cost of the iterative algorithms, we
did not perform an extensive search for the optimal value of this ratio. However, our preliminary
experiments suggest that the algorithm performance stays relatively stable when the value of this
ratio is within the range of 0.1 to 0.5.

I ADDITIONAL EVALUATION RESULTS

I.1 MODEL PERFORMANCE ON STANDARD BENCHMARKS

Method BBH GSM8K HumanEval MMLU Avg
SFT 0.3833 0.4850 0.5730 0.5273 0.4921
Iter-IPO 0.4065 0.5350 0.6187 0.5249 0.5213
INPO-R3 0.4148 0.5250 0.6130 0.5231 0.5190
COMAL 0.4037 0.5500 0.6100 0.5244 0.5220

Table 4: Performance of various methods across different benchmarks.

Table 4 shows the performance of the checkpoints trained with different algorithms compared in
Section 5.2 on standard benchmarks. These include BigBench Hard (BBH) for reasoning (Suzgun
et al., 2023), GSM8K for math problem solving (Cobbe et al., 2021), HumanEval for coding (Chen
et al., 2021), and MMLU for multi-task language understanding (Hendrycks et al., 2021). The results
indicate that the model trained with COMAL achieves similar average performance as the other
preference optimization algorithms, while outperforming the baseline SFT model.

I.2 ADDITIONAL EVALUATION RESULTS WITH GPT-4 AS PREFERENCE ORACLE

As noted in Section 5.1, the preference oracle used for evaluations in Section 5.2, Llama-3-OffsetBias-
8B , is the same as the oracle used in model training to ensure the consistency over these two settings.
Here, we provide additional evaluation results using GPT-4 (gpt-4-1106-preview) as the preference
oracle (i.e., the evaluator), following the default setting of AlpacaEval2.7

Table 5 shows the Length-Controlled AlpacaEval Score (Dubois et al., 2024) computed against
gpt-4-1106-preview as the baseline systems. Apart from the preference optimization algorithms
compared in Section 5.2, two larger LLMs, Llama-2-7B-Chat (Touvron et al., 2023) and Alpaca

7https://tatsu-lab.github.io/alpaca_eval/
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Table 5: Evaluation results on AlpacaEval2 using gpt-4-1106-preview as the evaluator and the
baseline system.

Method/Method Length-Controlled Score

Llama-2-7B-Chat 5.4
Alpaca 7B 5.9

SFT 4.8
Iter-IPO 4.8
INPO-R3 5.6
COMAL 6.2

Table 6: Evaluation results on AlpacaEval2 using gpt-4-1106-preview as the evaluator. The row v.s.
column length-controlled AlpacaEval2 scores are reported.

Row/Col Iter-IPO INPO-R3 COMAL

Iter-IPO 50.00 - 43.55
INPO-R3 - 50.00 47.08
COMAL 56.45 52.92 50.00

7B (Taori et al., 2023) are also included for comparison. The results indicate that the checkpoint
trained with COMAL not only outperformed other iterative preference optimization algorithms but
also the two 7B LLMs. Table 6 presents the direct pairwise comparison results between COMAL and
the other iterative preference optimization methods using gpt-4-1106-preview as the evaluator, where
COMAL is able to achieve a strictly above 50% win rate. These results further further demonstrate
the effectiveness of COMAL over the other algorithms.

J MORE PRACTICAL IMPLEMENTATIONS OF COMAL

In this section, we provide more practical implementations of COMAL using the SPPO loss (Wu et al.,
2024), the DRO loss (Richemond et al., 2024), and the REBEL loss (Gao et al., 2024). Although
these losses are proposed in the unregularized preference setting, we have shown how to extend these
losses to compute the prox operator even for KL-regularized preferences in Appendix E. Thus, we
can integrate these losses for computing the prox operator in Algorithm 2 for solving the regularized
game Jτ (π1, π2, πref). As a result, we get the practical implementation of COMAL by using different
regularized game solvers.

We omit the instruction x ∼ ρ ∈ ∆(X ) for notation simplicity in the following implementations.
Generalization to the contextual setting is straightforward.

J.1 COMAL INTEGRATED WITH SPPO

We present Reg-SPPO (Algorithm 5) for solving a KL regularized game Jτ (π1, π2, πref), which is
the instantiation of Algorithm 2 using the SPPO loss. Then, we give a practical implementation of
COMAL integrated with the SPPO loss in Algorithm 6.

J.2 COMAL INTEGRATED WITH DRO

We present Reg-DRO (Algorithm 7) for solving a KL regularized game Jτ (π1, π2, πref), which is
the instantiation of Algorithm 2 using the DRO loss. Then, we give a practical implementation of
COMAL integrated with the DRO loss in Algorithm 8.
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Algorithm 5: Reg-SPPO: Extension of SPPO (Wu et al., 2024) for solving KL-regularized games
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate responses {y(i) ∼ µk}ni=1

Query preference oracle P to annotate the win-rate P[y(i) ≻ y(j)],∀i, j ∈ [n]

Form dataset Dt = {(y(i), P̂ [y(i) ≻ µk])}i∈[n]

Compute µk+1 = µθk+1 where

θk+1 = argmin
θ

ℓSPPO(θ) := E(y,P̂ [y≻µk])∼Dt

[(
log

µθ(y)

µk(y)
− η

(
P̂ [y ≻ µk]− τ log

µk(y)

πref(y)
− 1

2

))2
]

return µK

Algorithm 6: Practical Implementation of COMAL integrated with Reg-SPPO (Algorithm 5)
Input: Initial policy πsft, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← Reg-SPPO(πref , τt, ηt,Kt,P) defined in Algorithm 5
πref ← πt+1

return πT

Algorithm 7: Reg-DRO: Extension of DRO (Richemond et al., 2024) for solving KL-regularized
games
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate responses {y(i) ∼ µk}ni=1

Query preference oracle P to annotate the win-rate P[y(i) ≻ y(j)],∀i, j ∈ [n]

Form dataset Dt = {(y(i), P̂ [y(i) ≻ µk])}i∈[n]

Compute µk+1 = µθk+1 where

θk+1 = argmin
θ

min
ϕ

ℓDRO(θ) := E(y,P̂ [y≻µk])∼Dt

[(
log

µθ(y)

µk(y)
− η

(
P̂ [y ≻ µk]− τ log

µk(y)

πref(y)

)
− ηVϕ

)2
]

return µK

Algorithm 8: Practical Implementation of COMAL integrated with Reg-DRO (Algorithm 7)
Input: Initial policy πsft, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← Reg-DRO(πref , τt, ηt,Kt,P) defined in Algorithm 5
πref ← πt+1

return πT
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J.3 COMAL INTEGRATED WITH REBEL

We present Reg-REBEL (Algorithm 9) for solving a KL regularized game Jτ (π1, π2, πref), which is
the instantiation of Algorithm 2 using the REBEL loss. Then, we give a practical implementation of
COMAL (Algorithm 1) integrated with the REBEL loss in Algorithm 10.

Algorithm 9: Reg-REBEL: Extension of REBEL (Gao et al., 2024) for solving KL-regularized
games
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate responses {y(i) ∼ µk}ni=1

Query preference oracle P to annotate the win-rate P[y(i) ≻ y(j)],∀i, j ∈ [n]

Form dataset Dt = {(y(i), y(j), P̂ [y(i) ≻ µk], P̂ [y(j) ≻ µk])}i,j∈[n]

Compute µk+1 = µθk+1 where

θk+1 = argmin
θ

ℓREBEL(θ)

ℓREBEL(θ) := E(y,y′)∼Dt

[(
η−1

(
log

µθ(y)

µk(y)
− log

µθ(y
′)

µk(y′)

)
−

(
P̂ [y ≻ µk]− τ log

µk(y)

πref(y)
− P̂ [y′ ≻ µk] + τ log

µk(y′)

πref(y′)

))2
]

return µK

Algorithm 10: Practical Implementation of COMAL integrated with Reg-REBEL (Algorithm 9)
Input: Initial policy πsft, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← Reg-REBEL(πref , τt, ηt,Kt,P) defined in Algorithm 9
πref ← πt+1

return πT
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