
MOSEL: Inference Serving Using Dynamic Modality Selection

Anonymous ACL submission

Abstract001

Rapid advancements over the years have helped002
machine learning models reach previously hard-003
to-achieve goals, sometimes even exceeding hu-004
man capabilities. However, achieving desired005
accuracy comes at the cost of larger model sizes006
and increased computational demands. Thus,007
serving predictions from these models to meet008
any latency and cost requirements of applica-009
tions remains a key challenge, despite recent010
work in building inference serving systems as011
well as algorithmic approaches that dynami-012
cally adapt models based on inputs. Our paper013
introduces a new form of dynamism, modality014
selection, where we adaptively choose modali-015
ties from inference inputs while maintaining016
the model quality. We introduce MOSEL, an017
automated inference serving system for multi-018
modal ML models that carefully picks input019
modalities per request based on resource avail-020
ability, as we as user-defined service level021
objectives (SLOs). MOSEL exploits modality022
configurations extensively, improving system023
throughput by 3.6×with an accuracy guarantee024
and shortening job completion times by 11×025
compared to modality-agnostic approaches.026

1 Introduction027

Recent advancements in Deep Learning has en-028

abled Deep Neural Networks (DNNs), especially029

Transformers, to far exceed human capabilities in030

various Computer Vision and Natural Language031

Processing tasks (He et al., 2015; Wolf et al., 2019).032

However, the computational requirement of the033

largest machine learning (ML) models has doubled034

every few months, resulting in a 1,000,000× in-035

crease from 2012 to 2020 (Sevilla et al., 2021). The036

increasing size of the models presents fundamen-037

tal challenges in terms of latency and cost when038

they are commissioned for inference (Romero et al.,039

2021a; Gunasekaran et al., 2022; Gujarati et al.,040

2020).041

These challenges has driven the development of042

inference serving systems. These systems, hosted 043

by cloud providers, deploy ML models to deliver 044

fast and accurate responses to queries. Providers 045

guarantee service level objectives (SLOs) for la- 046

tency or accuracy while aiming to optimize hard- 047

ware utilization and maximize throughput. 048

One approach to mitigate inference overheads 049

and improve throughout is through accuracy scal- 050

ing, which adapts model accuracy to varying query 051

demands. An inference task involves three com- 052

ponents: system, model, and input. Prior work 053

focuses on optimizing the system and model as- 054

pects. System optimizations employ techniques 055

such as batching (Ahmad et al., 2024; Choi et al., 056

2021; Crankshaw et al., 2017a; Shen et al., 2019a), 057

sharing (LeMay et al., 2020; Romero et al., 2021a), 058

and scheduling (Romero et al., 2021a; Ahmad et al., 059

2024; Crankshaw et al., 2017a). However, these 060

techniques often require additional computational 061

resources or powerful accelerators to handle higher 062

query demands, which may not always be feasi- 063

ble due to the limited availability and flexibility of 064

hardware resources. On the other hand, model opti- 065

mizations often replace a large model with a more 066

cost-effective variant, typically obtained using ML 067

compression techniques, such as distillation (Sanh 068

et al., 2019; Mullapudi et al., 2019), pruning (Lin 069

et al., 2017; Gordon et al., 2020) and quantiza- 070

tion (Polino et al., 2018). However, this approach 071

necessitates multiple model replicas, wasting stor- 072

age space and introducing overhead for switching 073

between replicas and execution backends (Romero 074

et al., 2021a; Ahmad et al., 2024). 075

In this paper, we propose an orthogonal and com- 076

plementary perspective on accuracy scaling. In 077

particular, we propose modulating the input, specif- 078

ically via selectively using parts of it. We demon- 079

strate its usefulness in the context of multi-modal 080

learning (Ngiam et al., 2011; Baltrušaitis et al., 081

2018), an emerging and important class of ML 082

techniques that combine data from different modal- 083

1

ities to provide prediction cooperatively, enhancing084

prediction accuracy.085

As we describe in Section 3, we empirically find086

that some modalities (e.g., the audio modality in087

the Textless Vision-Language Transformer (TVLT)088

model (Tang et al., 2022)) contribute significantly089

to prediction accuracy without major resource use090

(e.g., memory) and processing time. In contrast,091

other modalities (e.g., the video modality in TVLT)092

consume significant resources and incur latency093

while only marginally improving accuracy.094

We leverage the above insight in inference set-095

tings and propose that modalities be selectively096

enabled or disabled based on application require-097

ments and workload patterns, creating novel oppor-098

tunities to exploit the trade-off between speed and099

accuracy that multi-modality presents. We refer to100

it as modality selection, which complements exist-101

ing accuracy scaling techniques and can be directly102

applied to the original model.103

We assume that queries generally favor higher104

accuracy whenever resource permits, but can tol-105

erate reduced accuracy for timely responses un-106

der resource constraints, provided that SLOs are107

not violated. This assumption is particularly rel-108

evant to applications like recommendation sys-109

tems (Fang et al., 2018) or real-time applications,110

where response time outweighs the need for accu-111

racy (Huang et al., 2015).112

We build MOSEL, an automated inference serving113

system for multi-modal models that selects input114

modalities per request based on user-defined la-115

tency and accuracy SLO and system load. Our ap-116

proach ensures scaling and performance during in-117

ference by dividing it into offline and online compo-118

nents. The offline component is designed to quickly119

generate a rich repository of modality selection120

strategies, enabling the online component to make121

informed decisions. For the online component, we122

ensure that, at inference time, late-enqueued jobs123

meet their latency requirements. We facilitate jobs124

ahead in the inference queue by dynamically re-125

selecting modalities to ease the queueing load; this126

allows later-enqueued jobs to run at the required127

accuracy without missing their latency targets.128

We evaluate MOSEL on a set of representative129

multi-modal models that utilize commonly-seen130

architectures (Transformer (Vaswani et al., 2017),131

BERT (Devlin et al., 2019), CNN (LeCun et al.,132

2015)). We show that MOSEL outperforms modality-133

agnostic approaches in resource utilization and134

query spike tolerance, reducing job completion135

times by up to 11× and handling up to 3.6× 136

more requests with accuracy guarantees. More- 137

over, MOSEL achieves up to 4.6× throughput when 138

combined with quantization techniques. 139

2 Background 140

Multi-modal Learning: Multi-modal learning 141

techniques are shown to surpass unimodal tech- 142

niques by exploiting the complementary nature of 143

different modalities, such as text, image, audio, 144

and video (Ngiam et al., 2011; Baltrušaitis et al., 145

2018). The existing techniques can be broadly clas- 146

sified into two categories: early fusion (Snoek et al., 147

2005; Atrey et al., 2010; Katsaggelos et al., 2015) 148

and late fusion (Snoek et al., 2005; Liu and Yuan, 149

2018; Abavisani et al., 2019). Early fusion com- 150

bines modalities at an early stage, blending features 151

before further processing, as seen in TVLT (Tang 152

et al., 2022). Late fusion processes each modality 153

separately and merges outcomes later, exemplified 154

by the Temporal Binding Network (TBN) (Kazakos 155

et al., 2019). Some methods attempt to combine 156

properties from both early and late fusion (Nagrani 157

et al., 2021; Joze et al., 2020; Perez-Rua et al., 158

2019; Vielzeuf et al., 2018; Xue and Marculescu, 159

2023; Nagrani et al., 2021). We demonstrate in 160

Figure 1 that multi-modalities present complexities 161

due to varied resource requirements and perfor- 162

mance traits. 163

Inference and its challenges: Increased accuracy 164

of DNNs has led to their wide adoption in real- 165

world applications resulting in increased produc- 166

tion costs (Hazelwood et al., 2018; Gupta et al., 167

2020; Romero et al., 2021b; aws). Inference serv- 168

ing systems use pre-trained ML models for predic- 169

tions and manage resources to meet diverse user 170

requests and application requirements (Crankshaw 171

et al., 2017b; Reddi et al., 2020; Hsieh et al., 2018; 172

Gog et al., 2022). Additionally, inference serving 173

systems must manage dynamic workloads for cost 174

and resource efficiency (Yadwadkar et al., 2019; 175

Crankshaw et al., 2020, 2017b; Zhang et al., 2023a). 176

The complexity increases when diverse services, 177

each with unique Service Level Objectives (SLOs), 178

contend for shared model resources. Comparing 179

to serving systems that handle uni-modal mod- 180

els, serving multi-modal models with resource and 181

latency-awareness has not been fully explored. 182

3 Opportunities & Challenges 183

Accuracy Across Modalities: In multi-modal 184

DNNs, the importance of each modality can vary 185

2

TVLT TBN HuBERTViLT MMSA
0.0

0.5

1.0
No

rm
al

ize
d

La
te

nc
y

TVLT TBN HuBERTViLT MMSA
0.0

0.5

1.0

No
rm

al
ize

d
M

em
or

y

TVLT TBN HuBERTViLT MMSA
0.0

0.5

1.0

Ac
cu

ra
cy

all audio video image video+audio image+video image+audio text audio+text video+text

0.73 0.74

500

1000

La
te

nc
y

(m
s)

(a) TVLT

0.35 0.40 0.45 0.50

200

400

(b) ViLT

0.5 0.6 0.7
Accuracy

250

500

750

1000

(c) TBN

0.6 0.8

400

600

800
(d) HuBERT

0.6 0.7 0.8
22.5

25.0

27.5

30.0

(e) MMSA

Figure 1: Performance comparison of different modalities for models discussed in Table 1: (Upper Left) Normalized
latency for modalities, obtained by dividing each modality’s latency by the modality-agnostic baseline. (Upper
Middle) The normalized memory footprint of different modalities. (Upper Right) Accuracy comparison using
different modalities. (Bottom) Minimum latency required to achieve different levels of accuracy across various
models using combinations of modalities.

based on task, data, and model architecture (Ma186

et al., 2021, 2022; Tang et al., 2022; Nagrani et al.,187

2021). Figure 1(left) illustrates that some models,188

like TVLT, can achieve high accuracy without us-189

ing all modalities. This shows data of different190

modalities contribute differently to the model accu-191

racy.192

System Implications: Different modalities193

uniquely impact latency and memory consumption194

due to their distinct data representations and pro-195

cessing methods. For example, in TVLT, the audio196

modality is more efficient than video in memory197

usage and latency, with minimal accuracy trade-198

offs, shown by Figure 1 (left, middle). Memory199

consumption scales with sequence length in atten-200

tion mechanisms (Vaswani et al., 2017), selectively201

using subset of input modalities means shorter se-202

quences and reduced memory usage. Many re-203

cent works (Tang et al., 2022; Shi et al., 2021;204

Nagrani et al., 2021; Harwath et al., 2016; Lu et al.,205

2019; Sun et al., 2019) adopt similar attention-206

based multi-modal models, which can also benefit207

from using fewer modalities to reduce latency and208

memory consumption.209

Opportunities: Applications provide inference210

systems with varying SLOs for accuracy and la-211

tency. These varying requirements offer opportu-212

nities for adaptive multi-modal selection, which213

previous systems haven’t explored. Modalities can214

be enabled or disabled based on application needs215

(e.g., serving latency) and resource availability. For216

instance, under high load, prioritizing ultra-low la-217

tency to prevent resource contention is crucial. In218

such scenarios, employing only the audio modality219

in TVLT helps reduce latency by 11×with minimal220

accuracy loss, as shown in Figure 1. Conversely,221

under low load, using both video and audio ensured 222

highest accuracy due to resource availability. We 223

refer to this method as accuracy scaling (Ahmad 224

et al., 2024), which adapts the inference accuracy 225

to meet varying query demands. Fully achieving 226

accuracy scaling raises the following challenges. 227

s1 s2 s3 s4 s5 s6
Available
Policies

Acc: 0.7
Latency: 30

Acc: 0.67
Latency: 20

Acc: 0.8
Latency: 60

20 40 60 80 100

Job 2
(S1)

Job 3
(?)

Job 3
(S4)

Job 2
(S3)

Job 2
(S6)

Job 3

Acc: 0.685 < 0.71

Acc: 0.735 > 0.71

120 140 160

Waiting time

Execution Timeline

Arrival
Time Deadline Accuracy

Target

Job 2 10 140 0.71

Job 3 20 150 0.67

Job 2
(S3)

Acc: 0.67 = 0.67

Acc: 0.735 > 0.71

Acc: 0.685 > 0.67

Job 1

Plan 4Job 3
(S6)

Plan 1

Plan 2

Plan 3

Figure 2: : Job 1 runs from timestamp 0 to 20. Job 2
arrives at timestamp 10 and starts at 20 after existing
Job 1 finishes. One of Job 2’s strategies, s6, has an ac-
curacy of 0.67+0.7

2 = 0.685, failing to meet its accuracy
SLO (Plan 1). Similarly, s4 also fails with an accuracy
of 0.67. Job 3 arrives shortly after 20 with a deadline
of 150. If Job 2 selects s1, it occupies the system until
140, leaving Job 3 unable to meet its deadline (Plan 2).
By selecting a lower accuracy modality, Job 2 can free
up resources for Job 3 (Plan 3) allowing Job 3 to use a
higher accuracy video modality (Plan 4).

Challenge 1: find optimal modalities to use. Fig- 228

ure 2 illustrates the challenges of multi-modal in- 229

ference. Each job, consisted of multiple requests 230

3

submitted by an application, has specific accuracy231

and latency SLOs. Job 1 with an audio modality232

runs from time 0 to 20, Job 2 arrives at 10 and starts233

at 20, and Job 3 arrives shortly after 20. All jobs are234

executed in the order they arrive (a First-In-First-235

Out, FIFO, manner). Each job requires a modality236

selection strategy to determine the modalities to237

use for each request. Figure 2 shows six possible238

strategies for Job 2 or Job 3. For example, S1 uses239

both modalities for both requests, while S4 uses240

only the audio modality.241

The number of strategies can be large and grow242

exponentially with the number of requests and the243

number of modalities. For a job with 20 requests244

and 3 modalities, there are 231 possible strate-245

gies. Some strategies may be infeasible, failing246

to meet accuracy or latency SLOs. For instance,247

only two of the six strategies for Job 2 satisfy the248

accuracy SLO (0.71) and the latency SLO (140).249

To achieve faster model deployment, efficient meth-250

ods are needed to prune infeasible strategies and251

estimate latency for feasible ones.252

Challenge 2: handle resource contention. Fig-253

ure 2 illustrates that multiple strategies can yield254

valid accuracy. But we note that some strategies255

that create opportunities for a job potentially come256

at the cost of other jobs. In particular, greedily257

increasing accuracy for a job comes at the cost of258

increased resource consumption that may in turn259

hurt other jobs. This is illustrated by Plan 2 in Fig-260

ure 2: it offers great accuracy for Job 2 by selecting261

both modalities for both requests (effective accu-262

racy of 0.8) and finishing exactly by 140 time units.263

But, it leaves no room for Job 3 to finish by its264

deadline. On the other hand, by lowering accuracy265

for some jobs, we are left with extra resources that266

can be used to improve the outcomes for other jobs;267

e.g., in Plan 3, we use just the audio modality for268

one of Job 2’s requests, yielding an effective accu-269

racy of 0.735, which allows Job 3 to start at time270

100 and use the audio modality for both its requests271

in order to finish by time 140 with an accuracy of272

0.67. In fact, we can improve Job 3 – by picking273

a higher-accuracy modality (video) for one of its274

requests, Job 3 achieves an effective accuracy of275

0.685 (Plan 4), while finishing at its deadline of276

150.277

The upshot is that we may have to look for278

less-than-optimal strategies for some jobs in the279

queue to enable other later-coming jobs to meet280

their objectives. To tackle the challenges for mod-281

els that dynamically adapt to input data, we need282

The Online Stage

1 2 ...

30 45
10 15
60 85

0.6 0.72 ...

1 :10 :60
2 :45 :70
...

A+V

J1 J2

(a) Profile (latency) (b) Optimal modality selection
strategies (plan : latency)

A+V

J1 J2
A+V

J3

A A+V

A A

A+V

J1 J2

A+V

A

A+V

J3

A

A+V

A A A+V

J1 J2
A+V

J3

optimize

optimize

(1) queue (2) new job

(3) Search for alternatives

(4) Finalize strategy

The Offline Stage

batch
modality (accuracy) batch

accuracy

V

A+V

A

A A + V

A A A A + V

A+V A+V A+V A+V A+V

A A+V A A

A A A+V A+V

A A A+V A+VA+V A+V A+V A+V

(0.7)
(0.6)
(0.8)

A+V A+V

Se
ar

ch

Figure 3: MOSEL During the offline phase, MOSEL first (a)
profiles latency for different accuracy-batch size pairs,
then (b) constructs the optimized modality selection
strategy matrix based on profile. In the online phase, it
uses this matrix to dynamically derive modality selection
strategies for different jobs.

techniques that adapt to the changing SLOs and 283

query load across jobs. Existing inference serv- 284

ing systems leverage various techniques, includ- 285

ing autoscaling (Microsoft Azure; Amazon Web 286

Services), model switching (Romero et al., 2021a; 287

Zhang et al., 2020), batching (Crankshaw et al., 288

2017a), predictive serving (Gujarati et al., 2020) 289

and preemption (Zhang et al., 2023a). Inference 290

systems for multi-modality such as (Li et al., 2021) 291

focus on speculatively executing modalities using 292

augmented data. All of these techniques are agnos- 293

tic to input data modalities and to the possibility of 294

exploiting them for efficiency. 295

4 MOSEL Overview 296

4.1 Design Goals 297

We design MOSEL to achieve three key goals. First, 298

MOSEL should automate modality selection, allow- 299

ing users to only focus on high-level SLOs. Second, 300

MOSEL should dynamically scale inference accu- 301

racy in response to varying system loads, maximize 302

accuracy whenever possible while ensuring SLO 303

compliance. Finally, MOSEL should easily integrate 304

with existing inference systems for ease of use and 305

adoption. This section provides an overview of our 306

approach to meeting these goals and addressing the 307

challenges outlined in Section 3. 308

Figure 3 illustrates the two stages of MOSEL’s 309

approach: offline profiling and online optimiza- 310

tion. The offline stage generates potential modal- 311

ity selection strategies, thereby preparing the sys- 312

tem for varying operational scenarios. During the 313

online stage, the system selects from these pre- 314

computed strategies in real-time, adjusting modal- 315

4

ity choices to scale accuracy based on system load316

and SLOs of active jobs. This two-stage process317

ensures that MOSEL can minimize job deadline vi-318

olations, enhance inference accuracy, and boost319

overall throughput - all without direct user inter-320

vention in modality selection.321

4.2 The Offline Stage322

MOSEL’s offline stage generates a repository of po-323

tential modality selection strategies. As discussed324

in Section 3, each job has specific SLOs for ac-325

curacy and latency. Moreover, the number of re-326

quests submitted by different users can vary, re-327

sulting in variations in batch sizes. Consequently,328

MOSEL must prepare diverse modality strategies to329

accommodate diverse request volumes and accu-330

racy demanded by users.331

However, exhaustively exploring every poten-332

tial possible modality selection strategy to identify333

those that fulfill the specified criteria is not prac-334

tical. Consider a model with three modalities and335

jobs sizes ranging from 1 to 64; this results in ap-336

proximately 400, 000 distinct strategies, taking up337

to 25 hours just for profiling. Moreover, increas-338

ing the jobs sizes and the number of modalities339

significantly escalates the complexity of the search340

space.341

Therefore, we adopt an alternative approach:342

profiling individual modality combinations and343

leveraging the profiled data to synthesize optimized344

modality selection strategies. Taking the same345

model for example, we can form seven distinct346

combinations by selecting one, two, or three modal-347

ities. This requires profiling only 448 = 64 × 7348

instances — a dramatic reduction from the exhaus-349

tive method. This approach decreases the profiling350

workload by a factor of 890×, making it signifi-351

cantly more efficient. We profile each instance for352

latency, documenting the accuracy and batch size.353

The latency for each batch-modality pair is stored354

as an entry in a profile table (Figure 3(a)).355

MOSEL uses the profile table to construct a matrix356

of modality selection strategies for different job357

sizes and accuracy constraints for a given model,358

as shown in Figure 3(b). MOSEL first defines a range359

of possible job sizes, as well as a range of po-360

tential accuracy SLOs. Then, it uses an integer361

non-linear program (INLP) solver to generate an362

optimal strategy with minimal latency for a given363

accuracy-job size pair, represented by an entry in364

Figure 3(b). The construction happens in a one-365

time offline phase before the model is deployed.366

More details can be found in Section 5.1. 367

4.3 The Online Stage 368

MOSEL’s online stage dynamically selects modality 369

selection strategies, generated during offline stage, 370

for each job in real-time. As outlined in Section 3, 371

MOSEL’s goal is to scale accuracy for all requests, 372

maximizing it during low system load and balanc- 373

ing it against higher loads, ensuring compliance 374

with user-defined accuracy and latency SLOs. This 375

requires an ongoing update of modality strategies 376

in response to the fluctuating system load and the 377

SLOs of active jobs. 378

Once a model is deployed, the system queues all 379

incoming jobs. MOSEL prioritizes and orders these 380

jobs by their deadlines, as shown in Figure 3(1) 381

(bottom half; leftmost panel). By default, Each new 382

job adopts the strategy with the highest accuracy. 383

MOSEL monitors the queued jobs and detects if 384

incoming new jobs may suffer from deadline vi- 385

olations. For a given job, MOSEL calculates the 386

total latency by adding the latency of the existing 387

modality selection strategy used by the job and the 388

total latency of all preceding jobs. It then checks 389

whether the sum would exceed the given job’s la- 390

tency SLO. If a job risks missing its deadline, as 391

shown in Figure 3(2), MOSEL adjusts the modality 392

selection strategies for all preceding jobs, poten- 393

tially sacrificing accuracy, in order to reduce the 394

wait time for the job at risk of a deadline violation. 395

When a job is detected to be at risk of a deadline 396

violation, MOSEL considers the violator and all its 397

preceding jobs as candidates for potential modal- 398

ity selection strategy changes. For each candidate 399

job, MOSEL selects from the pre-computed modality 400

strategies generated during the offline stage, whose 401

accuracy are greater than the accuracy SLO speci- 402

fied for each job, as shown in Figure 3(3). MOSEL 403

then takes all such strategies for all candidate jobs, 404

and inputs them into an INLP solver, which reas- 405

signs a strategy for each candidate job, as shown 406

in Figure 3(4). If the solver fails to find a solution, 407

it means MOSEL is unable to reduce the queue time 408

further without violating the accuracy SLO, and it 409

will drop the job at risk of a deadline violation. 410

This approach allows MOSEL to dynamically ad- 411

just modality selection strategies to accommodate 412

varying system loads. If the queue becomes rela- 413

tively empty or contains few jobs, MOSEL will at- 414

tempt to increase the accuracy for all queued jobs 415

by progressively trying higher-accuracy modality 416

strategies for each queued job. The modality strat- 417

5

INLP

Modality Strategy
GeneratorProfiler

Modality Metrics

Optimal Modality
Strategies

Strategy Optimizer

INLPJob

1 2
3

5

Worker

Update
Latency

6

7

MOSEL

"Ok"

Offline

Online

4

Figure 4: MOSEL Workflow

egy reassignment process is formulated as an INLP,418

detailed in Section 5.2.419

5 Formulation420

This section outlines how we identify optimal421

modality selection strategies to minimize latency422

while meeting accuracy SLOs for different job423

sizes. We also explain how we dynamically ad-424

just these strategies in real-time to adapt to varying425

system resources.426

5.1 Offline Optimal Strategy Generation427

For a given model supporting n modalities and428

batch size from 1 to b, we profile the latency for429

each modality combination and batch size, yield-430

ing, in total, b(2n− 1) results, collectively denoted431

as the set D (represented by Figure 3 (a)). Dij rep-432

resents the latency using modality combination i433

with batch size j.434

The submitted requests, with an accuracy SLO435

α, and the number of requests |R|, are divided436

into multiple batches, denoted as J , each us-437

ing a different modality selection strategy from438

D. For each batch, we aim to find the modal-439

ity combination I, such that the total latency of440

all batches
∑

i,j∈I,J Dij is minimized, subject441

to two constraints: (1) The sum of all batches442

sizes must be equal to the total number of requests:443

R| =
∑

j∈J j, and (2) The average accuracy of444

all batches must exceed the user-specified accu-445

racy SLO α. We use acc(i) to denote the accuracy446

achieved by a modality selection strategy i. For-447

mally, we have:
∑

i,j∈I,J acc(i)j ≥ α|R448

The INLP solver requires only three components449

to function: the profiled results D, the request size450

R, and the accuracy SLO α. This enables us to451

precompute the modality selection strategies com-452

pletely offline, reducing the risk of deadline viola-453

tions once a model is deployed. Formally, given N454

possible request sizes and A accuracy requirements,455

we optimize for each of the N · A combinations.456

The optimal strategies are denoted as P , where Pij457

represents the optimal strategy for a request of size 458

i with accuracy SLO j) (shown by Figure 3 (b)). 459

This process has negligible overheads. 460

5.2 Online Modality Selections and 461

Adjustment 462

Once a model is deployed, incoming requests are 463

enqueud. To ensure no job misses its deadline 464

(shown in Figure 3), we use T to represent the 465

maximum allowed time budget. If MOSEL detects 466

a deadline violation, T is set to the difference be- 467

tween the violator’s deadline and the start time of 468

the most recently executed job. Otherwise, T is 469

set to the difference between the last job’s deadline 470

and the start time of the most recent job. 471

MOSEL selects one strategy from P for each job 472

in the queue, based on the available time budget 473

T . We denote the set of all such strategies as S, 474

and the set of all involved jobs as J . Our goal is 475

to select a strategy for each job in J such that the 476

total accuracy is maximized:
∑

s,j∈S,J acc(s) · |j|. 477

We use l(s) to represent the execution latency of 478

a strategy. To ensure the total latency fits within 479

the budget T , wee add this constraint to our INLP: 480∑
s∈S l(s) ≤ T . 481

6 MOSEL Implementation 482

MOSEL is implemented in 3k lines of Python code. 483

The offline profiler uses Pytorch (Paszke et al., 484

2019) to execute 1 DNNs on the GPU and pro- 485

file 2 system metrics through CUDA API. We 486

use GEKKO (Beal et al., 2018) to generate 3 the 487

offline modality selection strategies. GEKKO is 488

an optimizer that solves large-scale mixed-integer 489

and differential algebraic equations with nonlinear 490

programming solvers. The generated strategies are 491

stored in a single pickle object. During model de- 492

ployment, the monitor process buffers incoming 493

jobs, 4 retrieves the generated modality plans, 5 494

uses GEKKO to finalize the modality plan for each 495

job, and puts the job into a FIFO queue shared 496

with the worker process. To handle the GEKKO’s 497

overhead (which takes up to 80 ms), the monitor 498

process enqueues enough jobs to compensate for 499

the optimizer overhead. The worker process polls 500

the FIFO queue, executes 6 the jobs, and reports 501

the latest 7 execution latency metrics back to the 502

monitor process for accurate resource estimation. 503

7 Evaluation 504

To evaluate our implementation, we conduct exper- 505

iments using realistic workloads and address the 506

6

following questions:507

Q1: What are the benefits of modality-aware opti-508

mizations? (Section 7.1)509

Q2: Is MOSEL resilient towards profiling error?510

(Section 7.2)511

Unless specified otherwise, our experiments use the512

following configurations. We explore MOSEL’s com-513

patibility with existing model optimization tech-514

niques in Appendix C.515

Experimental Setup All measurements are con-516

ducted on real hardware using a NVIDIA Tesla517

A100 GPU (80GB DRAM) and an Intel Xeon Sil-518

ver 4314 CPU (2.40GHz, 128GB DRAM). We used519

NVIDIA driver version 525.85, CUDA 12.0, and520

PyTorch 2.1.0. The operating system is Ubuntu521

22.04.1 LTS with 5.15.0 kernel.522

Models. Table 1 summarizes the five pretrained Py-523

Torch models used for evaluation. The models dif-524

fer in size and fusion strategy. All models are fine-525

tuned on the task-specific datasets and preloaded526

onto the GPU before evaluation.527

Workloads. We conducted experiments using both528

synthetic and real-world query patterns. For syn-529

thetic workloads, we generated queries with con-530

stant loads at fixed intervals. For real-world work-531

loads, we used timing information from a month-532

long 2018 Twitter trace (twi, 2018), which reflects533

realistic inference workloads with diurnal patterns534

and spikes (Zhang et al., 2019). For each experi-535

ment, we randomly selected a day from the Twitter536

trace.537

7.1 MOSEL with production workload538

Here we show that dynamic modality selection en-539

ables MOSEL to improve throughput and utilization540

while reducing SLO violations under heavy load.541

Experimental setup. We evaluated various models542

summarized in Table 1. To account for the vary-543

ing processing latency, we adjusted the query per544

second (QPS) for each model. The Twitter trace545

was mapped to a minimum of 5 QPS. We set the546

maximum QPS based on each model’s capacity to547

process requests within one second without miss-548

ing deadlines: TVLT (60), AVHuBERT (20), TBN549

(40), MMSA (100), and ViLT (40). These values550

are twice the maximum requests each model can551

process per second. Requests were generated fol-552

lowing a normal distribution, with a mean of 1 and553

a standard deviation of 6, until the total number of554

requests matches the QPS. We randomly assigned555

each job an accuracy SLO within the model’s per-556

formance range, based on the lowest and highest557

achievable accuracy using different modalities. 558

We used four different policies: (a) optimized: 559

(Section 5.2) uses available resources to achieve the 560

highest accuracy for all enqueued jobs; (b) random 561

(Algorithm 1) selects jobs randomly from the queue 562

and applies the fastest strategy meeting the accu- 563

racy SLO, repeating until no deadline violations 564

occur; (c) aggressive applies the fastest strategy 565

satisfying the accuracy SLO to all enqueued jobs, 566

regardless of deadline violations; and (d) none 567

(modality-agnostic) performs no modality modifi- 568

cation and serves as the baseline. 569

Results and discussion. Figure 5 shows dynamic 570

modality selection results in higher throughput 571

for all models compared to the modality-agnostic 572

approach. TVLT, AvHUBERT, TBN, MMSA, 573

and ViLT achieved throughput increase of 5.3× 574

2.2×, 3.1×, 1.12×, and 4.3×, respectively. At 575

low request arrival rate, both the modality-aware 576

and modality-agnostic approaches have similar 577

throughput. However, the modality-aware methods 578

can handle higher request arrival rates, while the 579

modality-agnostic method suffers from high pro- 580

cessing latency and fluctuation. Note that MMSA 581

has consistently low processing latency across all 582

modalities, resulting in similar performance among 583

different modality strategies. 584

Figure 5 also shows that all modality-aware tech- 585

niques have significantly fewer SLO violations 586

compared to the modality-agnostic approach. The 587

optimized policy achieves 25%, 18%, 17%, 15%, 588

and 4% lower average SLO violation ratios for 589

TVLT, VilT, TBN, AVHuBERT, MMSA, respec- 590

tively. Note the optimized policy has a slightly 591

higher SLO violation ratio compared to the aggres- 592

sive and random policy for models like TVLT and 593

MMSA, due to processing latency being close the 594

online optimizer latency. MOSEL compensates for 595

this with higher accuracy and more consistency 596

accuracy distributions across jobs, as shown in Fig- 597

ure 6. For larger models, the online optimizer over- 598

head is negligible. 599

7.2 Resilience to Variations 600

In this section, we show how variations in offline 601

and online optimizations can affect the inference 602

process. 603

Experimental setup. To evaluate the impact of the 604

offline optimization on accuracy and throughput, 605

we generate optimized modality selection strate- 606

gies, discussed in Section 4.2. We then vary the 607

latency from 20% to 250% of the original latency 608

7

Task Dataset Model Modalities Fusion
Sentiment Analysis MOSEI (Zadeh et al., 2018) TVLT (Tang et al., 2022) audio, video Early
Speech Recognition LRS3 (Afouras et al., 2018) AVHuBERT (Shi et al.,

2022)
audio, video Early

Action Recognition EPIC-KITECHENS (Damen et al.,
2022)

TBN (Kazakos et al.,
2019)

audio, video, im-
age

Late

Sentiment Analysis MOSEI (Zadeh et al., 2018) Self-MM (Yu et al., 2021) text, audio, video Late
Multi-Label Classifica-
tion

MM-IMDb (Ovalle et al., 2017) ViLT (Kim et al., 2021) text, image Early

Table 1: Tasks, datasets used for finetuning and evaluation, model architectures, model sizes, modalities used,
fusion strategy

0 100 200

10
20
30

Re
qu

es
ts

\s

(a) TVLT

0 100 200

20

40

60

(b) ViLT

0 100 200
Time (s)

5

10

15

(c) TBN

0 100 200

5

10

(d) AVHuBERT

0 100 200

20

40

60
(e) mmsa

none rand aggressive optimized

1 2 3 4
0.0

0.5

1.0

SL
O

vi
ol

at
io

n
ra

tio

(a) TVLT

1 2 3 4
0.0

0.5

(b) ViLT

1 2 3 4
Strategy

0.0

0.5

(c) TBN

1 2 3 4
0.0

0.5

1.0
(d) AVHuBERT

1 2 3 4
0.0

0.2

0.4

(e) MMSA

none [1] aggressive [2] rand [3] optimized [4]

Figure 5: Throughput and SLO violation ratio (number of SLO violations by total number of requests), profiled
every 4 seconds. Each box shows the outlier, median, mean, 25%, and 75% quartiles.

none aggressive rand optimized

0.735

0.740

Ac
cu

ra
cy

Figure 6: Accuracy distribution of TVLT with average
accuracy of all jobs using different modality strategies.

0.5 1.0 1.5 2.0
Estimated / Actual Latency

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TVLT
ViLT
HuBERT
TBN
mmsa

0.8× 1.6× 7.5 10.0
Estimated / Actual Latency

0.73

0.74

Ac
cu

ra
cy

Figure 7: Left: demonstrating the effect of the deviation
between the expected and actual execution latency on
models’ normalized throughput. The discrepancy is cal-
culated by estimated latency over actual latency. Right:
accuracy distribution under different discrepancy be-
tween estimated and actual execution latency for TVLT.
The discrepancy is calculated by estimated latency over
actual latency.

to simulate discrepancies between estimated and609

actual inference latency on real hardware. Using610

TVLT with a fixed QPS of 40, we apply optimized611

strategy for all experiments.612

Results and discussion. As Figure 7 shows, all613

models can tolerate underestimated latency and614

maintain throughput. TVLT, AVHuBERT, and 615

MMSA and tolerate up to 50% latency overestima- 616

tion with negligible sacrifice in throughput. Since 617

it’s rare to obverse such discrepancy in inference 618

infrastructures (Gujarati et al., 2020), we believe 619

MOSEL is robust against estimation errors in most 620

scenarios. The changing accuracy, as shown in 621

Figure 7, is attributed to the system having false 622

impression of resources due to overestimation, thus 623

dropping jobs prematurely. 624

8 Conclusions 625

We modulate the input to a model at inference time 626

to achieve accuracy scaling. We show the bene- 627

fits of this approach in multi-modal inference. We 628

highlight the key challenges and present practical 629

solutions within MOSEL. We believe that input data 630

modulation, combined with model and system op- 631

timization, opens new possibilities in inference lit- 632

erature. Modifying the input data can lead to sig- 633

nificant benefits across the inference serving stack, 634

including reduced network bandwidth, lower pre- 635

processing costs, energy efficiency, and reduced 636

operating costs. We envision MOSEL being applied 637

to many scenarios with high input data variability 638

that require adaptive optimizations. 639

8

Limitations640

MOSEL presents two limitations in order to lever-641

age the opportunity (§3) in a profitable way. First,642

MOSEL only considers the strategies that select the643

same modality for every request in a single job.644

This may lead to sub-optimal decisions. For exam-645

ple, Plan 4 in Figure 2 cannot be chosen. However,646

this design choice is inevitable otherwise the of-647

fline phase incurs prohibitive profiling costs. In the648

online phase, MOSEL may adopt a greedy heuristic649

that could be sub-optimal. We introduce it because650

solving the optimization problem online imposes651

a non-negligible latency overhead. We empirically652

show that the proposed heuristic works well and is653

close to the solver-based approach.654

References655

Accelerating inference with sparsity using the nvidia656
ampere architecture and nvidia tensorrt. https://657
shorturl.at/wCHI3.658

Deliver high performance ml inference with659
aws inferentia. https://d1.awsstatic.com/660
events/reinvent/2019/REPEAT_1_Deliver_661
high_performance_ML_inference_with_AWS_662
Inferentia_CMP324-R1.pdf.663

2018. Twitter traces. https:664
//archive.org/details/665
archiveteam-twitter-stream-2018-04.666

M. Abavisani, H. Joze, and V. M. Patel. 2019. Im-667
proving the performance of unimodal dynamic hand-668
gesture recognition with multimodal training. In669
2019 IEEE/CVF Conference on Computer Vision and670
Pattern Recognition (CVPR), pages 1165–1174, Los671
Alamitos, CA, USA. IEEE Computer Society.672

Triantafyllos Afouras, Joon Son Chung, and An-673
drew Zisserman. 2018. Lrs3-ted: a large-scale674
dataset for visual speech recognition. arXiv preprint675
arXiv:1809.00496.676

Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas677
Williams, Ramesh K. Sitaraman, and Thomas Woo.678
2024. Proteus: A high-throughput inference-serving679
system with accuracy scaling. In Proceedings of the680
29th ACM International Conference on Architectural681
Support for Programming Languages and Operat-682
ing Systems, Volume 1, ASPLOS ’24, page 318–334,683
New York, NY, USA. Association for Computing684
Machinery.685

Amazon Web Services. Amazon SageMaker. https:686
//aws.amazon.com/sagemaker/.687

Pradeep K. Atrey, M. Anwar Hossain, Abdulmotaleb El688
Saddik, and M. Kankanhalli. 2010. Multimodal fu-689
sion for multimedia analysis: a survey. Multimedia690
Systems, 16:345–379.691

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe 692
Morency. 2018. Multimodal machine learning: A 693
survey and taxonomy. IEEE transactions on pattern 694
analysis and machine intelligence, 41(2):423–443. 695

Logan D. R. Beal, Daniel C. Hill, R. Abraham Martin, 696
and John D. Hedengren. 2018. Gekko optimization 697
suite. Processes, 6(8). 698

Lingjiao Chen, Matei Zaharia, and James Zou. 2023. 699
Frugalgpt: How to use large language models while 700
reducing cost and improving performance. CoRR, 701
abs/2305.05176. 702

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. 703
A survey of model compression and acceleration for 704
deep neural networks. arXiv preprint. 705

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse 706
Park, Youngjin Kwon, and Jaehyuk Huh. 2022. Serv- 707
ing heterogeneous machine learning models on multi- 708
gpu servers with spatio-temporal sharing. In 2022 709
USENIX Annual Technical Conference, USENIX ATC 710
2022, Carlsbad, CA, USA, July 11-13, 2022, pages 711
199–216. USENIX Association. 712

Y. Choi, Y. Kim, and M. Rhu. 2021. Lazy batching: An 713
sla-aware batching system for cloud machine learn- 714
ing inference. In 2021 IEEE International Sympo- 715
sium on High-Performance Computer Architecture 716
(HPCA), pages 493–506, Los Alamitos, CA, USA. 717
IEEE Computer Society. 718

Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey 719
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey 720
Tumanov. 2020. Inferline: Latency-aware provision- 721
ing and scaling for prediction serving pipelines. In 722
Proceedings of the 11th ACM Symposium on Cloud 723
Computing, SoCC ’20, page 477–491, New York, 724
NY, USA. Association for Computing Machinery. 725

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. 726
Franklin, Joseph E. Gonzalez, and Ion Stoica. 2017a. 727
Clipper: A Low-Latency online prediction serv- 728
ing system. In 14th USENIX Symposium on Net- 729
worked Systems Design and Implementation (NSDI 730
17), pages 613–627, Boston, MA. USENIX Associa- 731
tion. 732

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J 733
Franklin, Joseph E Gonzalez, and Ion Stoica. 2017b. 734
Clipper: A {Low-Latency} online prediction serv- 735
ing system. In 14th USENIX Symposium on Net- 736
worked Systems Design and Implementation (NSDI 737
17), pages 613–627. 738

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, 739
Antonino Furnari, Jian Ma, Evangelos Kazakos, Da- 740
vide Moltisanti, Jonathan Munro, Toby Perrett, Will 741
Price, and Michael Wray. 2022. Rescaling egocentric 742
vision: Collection, pipeline and challenges for epic- 743
kitchens-100. International Journal of Computer 744
Vision (IJCV), 130:33–55. 745

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 746
Kristina Toutanova. 2019. Bert: Pre-training of deep 747

9

https://shorturl.at/wCHI3
https://shorturl.at/wCHI3
https://shorturl.at/wCHI3
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1109/CVPR.2019.00126
https://doi.org/10.1145/3617232.3624849
https://doi.org/10.1145/3617232.3624849
https://doi.org/10.1145/3617232.3624849
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://api.semanticscholar.org/CorpusID:6387482
https://api.semanticscholar.org/CorpusID:6387482
https://api.semanticscholar.org/CorpusID:6387482
https://doi.org/10.3390/pr6080106
https://doi.org/10.3390/pr6080106
https://doi.org/10.3390/pr6080106
https://doi.org/10.48550/ARXIV.2305.05176
https://doi.org/10.48550/ARXIV.2305.05176
https://doi.org/10.48550/ARXIV.2305.05176
https://doi.org/10.48550/ARXIV.1710.09282
https://doi.org/10.48550/ARXIV.1710.09282
https://doi.org/10.48550/ARXIV.1710.09282
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

bidirectional transformers for language understand-748
ing. Preprint, arXiv:1810.04805.749

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. Nestdnn:750
Resource-aware multi-tenant on-device deep learn-751
ing for continuous mobile vision. Proceedings of752
the 24th Annual International Conference on Mobile753
Computing and Networking.754

Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E755
Gonzalez, and Ion Stoica. 2022. D3: a dynamic756
deadline-driven approach for building autonomous757
vehicles. In Proceedings of the Seventeenth Euro-758
pean Conference on Computer Systems, pages 453–759
471.760

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.761
2020. Compressing BERT: Studying the effects of762
weight pruning on transfer learning. In Proceedings763
of the 5th Workshop on Representation Learning for764
NLP, pages 143–155, Online. Association for Com-765
putational Linguistics.766

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,767
Antoine Kaufmann, Ymir Vigfusson, and Jonathan768
Mace. 2020. Serving dnns like clockwork: Per-769
formance predictability from the bottom up. In770
14th USENIX Symposium on Operating Systems De-771
sign and Implementation (OSDI 20), pages 443–462.772
USENIX Association.773

Jashwant Raj Gunasekaran, Cyan Subhra Mishra,774
Prashanth Thinakaran, Bikash Sharma, Mahmut Tay-775
lan Kandemir, and Chita R Das. 2022. Cocktail:776
A multidimensional optimization for model serv-777
ing in cloud. In 19th USENIX Symposium on Net-778
worked Systems Design and Implementation (NSDI779
22), pages 1041–1057.780

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim781
Naumov, Brandon Reagen, David Brooks, Bradford782
Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia,783
et al. 2020. The architectural implications of face-784
book’s dnn-based personalized recommendation. In785
2020 IEEE International Symposium on High Perfor-786
mance Computer Architecture (HPCA), pages 488–787
501. IEEE.788

David Harwath, Antonio Torralba, and James Glass.789
2016. Unsupervised learning of spoken language790
with visual context. In Advances in Neural Informa-791
tion Processing Systems, volume 29. Curran Asso-792
ciates, Inc.793

Kim Hazelwood, Sarah Bird, David Brooks, Soumith794
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed795
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al.796
2018. Applied machine learning at facebook: A data-797
center infrastructure perspective. In 2018 IEEE Inter-798
national Symposium on High Performance Computer799
Architecture (HPCA), pages 620–629. IEEE.800

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian801
Sun. 2015. Delving deep into rectifiers: Surpassing802
human-level performance on imagenet classification.803
In 2015 IEEE International Conference on Computer804
Vision (ICCV), pages 1026–1034.805

Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, 806
Shivaram Venkataraman, Paramvir Bahl, Matthai 807
Philipose, Phillip B Gibbons, and Onur Mutlu. 2018. 808
Focus: Querying large video datasets with low la- 809
tency and low cost. In 13th USENIX Symposium 810
on Operating Systems Design and Implementation 811
(OSDI 18), pages 269–286. 812

Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, 813
and Ying Xu. 2015. Tencentrec: Real-time stream 814
recommendation in practice. In Proceedings of the 815
2015 ACM SIGMOD International Conference on 816
Management of Data, SIGMOD ’15, page 227–238, 817
New York, NY, USA. Association for Computing 818
Machinery. 819

H. Vaezi Joze, A. Shaban, M. L. Iuzzolino, and 820
K. Koishida. 2020. Mmtm: Multimodal transfer mod- 821
ule for cnn fusion. In 2020 IEEE/CVF Conference on 822
Computer Vision and Pattern Recognition (CVPR), 823
pages 13286–13296, Los Alamitos, CA, USA. IEEE 824
Computer Society. 825

Aggelos K. Katsaggelos, Sara Bahaadini, and Rafael 826
Molina. 2015. Audiovisual fusion: Challenges 827
and new approaches. Proceedings of the IEEE, 828
103(9):1635–1653. 829

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, 830
and Dima Damen. 2019. Epic-fusion: Audio-visual 831
temporal binding for egocentric action recognition. 832
In Proceedings of the IEEE/CVF International Con- 833
ference on Computer Vision, pages 5492–5501. 834

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt: 835
Vision-and-language transformer without convolu- 836
tion or region supervision. In International Con- 837
ference on Machine Learning, pages 5583–5594. 838
PMLR. 839

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 840
2015. Deep learning. nature, 521(7553):436. 841

M. LeMay, S. Li, and T. Guo. 2020. Perseus: Character- 842
izing performance and cost of multi-tenant serving 843
for cnn models. In 2020 IEEE International Con- 844
ference on Cloud Engineering (IC2E), pages 66–72, 845
Los Alamitos, CA, USA. IEEE Computer Society. 846

Tianxing Li, Jin Huang, Erik Risinger, and Deepak 847
Ganesan. 2021. Low-latency speculative inference 848
on distributed multi-modal data streams. In Proceed- 849
ings of the 19th Annual International Conference on 850
Mobile Systems, Applications, and Services, pages 851
67–80. 852

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. 853
Runtime neural pruning. Advances in neural infor- 854
mation processing systems, 30. 855

Mengyuan Liu and Junsong Yuan. 2018. Recognizing 856
human actions as the evolution of pose estimation 857
maps. In 2018 IEEE/CVF Conference on Computer 858
Vision and Pattern Recognition, pages 1159–1168. 859

10

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:52978791
https://api.semanticscholar.org/CorpusID:52978791
https://api.semanticscholar.org/CorpusID:52978791
https://api.semanticscholar.org/CorpusID:52978791
https://api.semanticscholar.org/CorpusID:52978791
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://proceedings.neurips.cc/paper_files/paper/2016/file/82b8a3434904411a9fdc43ca87cee70c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/82b8a3434904411a9fdc43ca87cee70c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/82b8a3434904411a9fdc43ca87cee70c-Paper.pdf
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1109/CVPR42600.2020.01330
https://doi.org/10.1109/CVPR42600.2020.01330
https://doi.org/10.1109/CVPR42600.2020.01330
https://doi.org/10.1109/JPROC.2015.2459017
https://doi.org/10.1109/JPROC.2015.2459017
https://doi.org/10.1109/JPROC.2015.2459017
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/10.1109/CVPR.2018.00127
https://doi.org/10.1109/CVPR.2018.00127
https://doi.org/10.1109/CVPR.2018.00127
https://doi.org/10.1109/CVPR.2018.00127
https://doi.org/10.1109/CVPR.2018.00127

Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and860
Wen Gao. 2022. Instance-aware dynamic neural net-861
work quantization. In IEEE/CVF Conference on862
Computer Vision and Pattern Recognition, CVPR863
2022, New Orleans, LA, USA, June 18-24, 2022,864
pages 12424–12433. IEEE.865

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.866
2019. ViLBERT: Pretraining Task-Agnostic Visi-867
olinguistic Representations for Vision-and-Language868
Tasks. Curran Associates Inc., Red Hook, NY, USA.869

Mengmeng Ma, Jian Ren, Long Zhao, Davide Testug-870
gine, and Xi Peng. 2022. Are multimodal transform-871
ers robust to missing modality? In 2022 IEEE/CVF872
Conference on Computer Vision and Pattern Recog-873
nition (CVPR), pages 18156–18165.874

Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov,875
Cathy Wu, and Xi Peng. 2021. Smil: Multimodal876
learning with severely missing modality. Preprint,877
arXiv:2103.05677.878

Microsoft Azure. Azure Machine Learn-879
ing. https://azure.microsoft.com/en-us/880
products/machine-learning.881

Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva882
Ramanan, and Kayvon Fatahalian. 2019. Online883
model distillation for efficient video inference. In884
Proceedings of the IEEE/CVF International Confer-885
ence on Computer Vision, pages 3573–3582.886

Vishvak Murahari, Carlos E Jimenez, Runzhe Yang,887
and Karthik R Narasimhan. 2022. DataMUX: Data888
multiplexing for neural networks. In Thirty-Sixth889
Conference on Neural Information Processing Sys-890
tems.891

Markus Nagel, Marios Fournarakis, Rana Ali Amjad,892
Yelysei Bondarenko, Mart Van Baalen, and Tijmen893
Blankevoort. 2021. A white paper on neural network894
quantization. arXiv preprint arXiv:2106.08295.895

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen,896
Cordelia Schmid, and Chen Sun. 2021. Attention897
bottlenecks for multimodal fusion. In Advances in898
Neural Information Processing Systems, volume 34,899
pages 14200–14213. Curran Associates, Inc.900

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan901
Nam, Honglak Lee, and Andrew Y Ng. 2011. Mul-902
timodal deep learning. In Proceedings of the 28th903
international conference on machine learning (ICML-904
11), pages 689–696.905

John Edison Arevalo Ovalle, Thamar Solorio, Manuel906
Montes-y-Gómez, and Fabio A. González. 2017.907
Gated multimodal units for information fusion. In 5th908
International Conference on Learning Representa-909
tions, ICLR 2017, Toulon, France, April 24-26, 2017,910
Workshop Track Proceedings. OpenReview.net.911

Adam Paszke, Sam Gross, Francisco Massa, Adam912
Lerer, James Bradbury, Gregory Chanan, Trevor913
Killeen, Zeming Lin, Natalia Gimelshein, Luca914

Antiga, Alban Desmaison, Andreas Köpf, Edward 915
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, 916
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun- 917
jie Bai, and Soumith Chintala. 2019. Pytorch: An 918
imperative style, high-performance deep learning li- 919
brary. CoRR, abs/1912.01703. 920

Juan-Manuel Perez-Rua, Valentin Vielzeuf, Stephane 921
Pateux, Moez Baccouche, and Frederic Jurie. 2019. 922
Mfas: Multimodal fusion architecture search. In 923
2019 IEEE/CVF Conference on Computer Vision and 924
Pattern Recognition (CVPR), pages 6959–6968. 925

Antonio Polino, Razvan Pascanu, and Dan Alistarh. 926
2018. Model compression via distillation and quanti- 927
zation. arXiv preprint arXiv:1802.05668. 928

Vijay Janapa Reddi, Christine Cheng, David Kanter, 929
Peter Mattson, Guenther Schmuelling, Carole-Jean 930
Wu, Brian Anderson, Maximilien Breughe, Mark 931
Charlebois, William Chou, et al. 2020. Mlperf infer- 932
ence benchmark. In 2020 ACM/IEEE 47th Annual 933
International Symposium on Computer Architecture 934
(ISCA), pages 446–459. IEEE. 935

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and 936
Christos Kozyrakis. 2021a. {INFaaS}: Automated 937
model-less inference serving. In 2021 USENIX An- 938
nual Technical Conference (USENIX ATC 21), pages 939
397–411. 940

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and 941
Christos Kozyrakis. 2021b. {INFaaS}: Automated 942
model-less inference serving. In 2021 USENIX An- 943
nual Technical Conference (USENIX ATC 21), pages 944
397–411. 945

Victor Sanh, Lysandre Debut, Julien Chaumond, and 946
Thomas Wolf. 2019. Distilbert, a distilled version 947
of bert: smaller, faster, cheaper and lighter. arXiv 948
preprint arXiv:1910.01108. 949

Jaime Sevilla, Pablo Villalobos, and 950
Juan Cerón. 2021. Parameter counts 951
in Machine Learning. https://www. 952
lesswrong.com/posts/GzoWcYibWYwJva8aL/ 953
parameter-counts-in-machine-learning. 954

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 955
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and 956
Jeff Dean. 2017. Outrageously large neural networks: 957
The sparsely-gated mixture-of-experts layer. In 5th 958
International Conference on Learning Representa- 959
tions, ICLR 2017, Toulon, France, April 24-26, 2017, 960
Conference Track Proceedings. OpenReview.net. 961

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, 962
Bingyu Kong, Matthai Philipose, Arvind Krishna- 963
murthy, and Ravi Sundaram. 2019a. Nexus: A gpu 964
cluster engine for accelerating dnn-based video anal- 965
ysis. SOSP ’19, pages 322–337. 966

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, 967
Bingyu Kong, Matthai Philipose, Arvind Krishna- 968
murthy, and Ravi Sundaram. 2019b. Nexus: A gpu 969

11

https://doi.org/10.1109/CVPR52688.2022.01211
https://doi.org/10.1109/CVPR52688.2022.01211
https://doi.org/10.1109/CVPR52688.2022.01211
https://doi.org/10.1109/CVPR52688.2022.01764
https://doi.org/10.1109/CVPR52688.2022.01764
https://doi.org/10.1109/CVPR52688.2022.01764
https://arxiv.org/abs/2103.05677
https://arxiv.org/abs/2103.05677
https://arxiv.org/abs/2103.05677
https://azure.microsoft.com/en-us/products/machine-learning
https://azure.microsoft.com/en-us/products/machine-learning
https://azure.microsoft.com/en-us/products/machine-learning
https://openreview.net/forum?id=UdgtTVTdswg
https://openreview.net/forum?id=UdgtTVTdswg
https://openreview.net/forum?id=UdgtTVTdswg
https://proceedings.neurips.cc/paper_files/paper/2021/file/76ba9f564ebbc35b1014ac498fafadd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/76ba9f564ebbc35b1014ac498fafadd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/76ba9f564ebbc35b1014ac498fafadd0-Paper.pdf
https://openreview.net/forum?id=S12_nquOe
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1109/CVPR.2019.00713
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658

cluster engine for accelerating dnn-based video anal-970
ysis. In Proceedings of the 27th ACM Symposium971
on Operating Systems Principles, SOSP ’19, page972
322–337, New York, NY, USA. Association for Com-973
puting Machinery.974

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-975
delrahman Mohamed. 2021. Learning audio-visual976
speech representation by masked multimodal cluster977
prediction. In International Conference on Learning978
Representations.979

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-980
delrahman Mohamed. 2022. Learning audio-visual981
speech representation by masked multimodal cluster982
prediction. arXiv preprint arXiv:2201.02184.983

Cees GM Snoek, Marcel Worring, and Arnold WM984
Smeulders. 2005. Early versus late fusion in seman-985
tic video analysis. In Proceedings of the 13th annual986
ACM international conference on Multimedia, pages987
399–402.988

C. Sun, A. Myers, C. Vondrick, K. Murphy, and989
C. Schmid. 2019. Videobert: A joint model for990
video and language representation learning. In 2019991
IEEE/CVF International Conference on Computer992
Vision (ICCV), pages 7463–7472, Los Alamitos, CA,993
USA. IEEE Computer Society.994

Zineng Tang, Jaemin Cho, Yixin Nie, and Mohit Bansal.995
2022. Tvlt: Textless vision-language transformer.996
Advances in Neural Information Processing Systems,997
35:9617–9632.998

Surat Teerapittayanon, Bradley McDanel, and H. T.999
Kung. 2017. BranchyNet: Fast Inference via Early1000
Exiting from Deep Neural Networks. arXiv e-prints,1001
arXiv:1709.01686.1002

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob1003
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz1004
Kaiser, and Illia Polosukhin. 2017. Attention is all1005
you need. Advances in neural information processing1006
systems, 30.1007

Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux,1008
and Frédéric Jurie. 2018. Centralnet: a multi-1009
layer approach for multimodal fusion. Preprint,1010
arXiv:1808.07275.1011

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien1012
Chaumond, Clement Delangue, Anthony Moi, Pier-1013
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,1014
et al. 2019. Huggingface’s transformers: State-of-1015
the-art natural language processing. arXiv preprint1016
arXiv:1910.03771.1017

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,1018
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and1019
Shuaiwen Leon Song. 2023. Flash-llm: Enabling1020
cost-effective and highly-efficient large generative1021
model inference with unstructured sparsity. Preprint,1022
arXiv:2309.10285.1023

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and 1024
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting 1025
for accelerating BERT inference. In Proceedings 1026
of the 58th Annual Meeting of the Association for 1027
Computational Linguistics, pages 2246–2251, Online. 1028
Association for Computational Linguistics. 1029

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. 1030
2021. BERxiT: Early exiting for BERT with better 1031
fine-tuning and extension to regression. In Proceed- 1032
ings of the 16th Conference of the European Chap- 1033
ter of the Association for Computational Linguistics: 1034
Main Volume, pages 91–104, Online. Association for 1035
Computational Linguistics. 1036

Zihui Xue and Radu Marculescu. 2023. Dynamic multi- 1037
modal fusion. Preprint, arXiv:2204.00102. 1038

Neeraja J Yadwadkar, Francisco Romero, Qian Li, and 1039
Christos Kozyrakis. 2019. A case for managed and 1040
model-less inference serving. In Proceedings of the 1041
Workshop on Hot Topics in Operating Systems, pages 1042
184–191. 1043

Peifeng Yu and Mosharaf Chowdhury. 2020. Fine- 1044
grained gpu sharing primitives for deep learning ap- 1045
plications. Proceedings of Machine Learning and 1046
Systems, 2:98–111. 1047

Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. 2021. 1048
Learning modality-specific representations with self- 1049
supervised multi-task learning for multimodal sen- 1050
timent analysis. In Proceedings of the AAAI con- 1051
ference on artificial intelligence, volume 35, pages 1052
10790–10797. 1053

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, 1054
Erik Cambria, and Louis-Philippe Morency. 2018. 1055
Multimodal language analysis in the wild: Cmu- 1056
mosei dataset and interpretable dynamic fusion graph. 1057
In Proceedings of the 56th Annual Meeting of the As- 1058
sociation for Computational Linguistics (Volume 1: 1059
Long Papers), pages 2236–2246. 1060

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng 1061
Yan. 2019. MArk: Exploiting cloud services for 1062
Cost-Effective, SLO-Aware machine learning infer- 1063
ence serving. In 2019 USENIX Annual Technical 1064
Conference (USENIX ATC 19), pages 1049–1062, 1065
Renton, WA. USENIX Association. 1066

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and 1067
Ion Stoica. 2023a. SHEPHERD: Serving DNNs 1068
in the wild. In 20th USENIX Symposium on Net- 1069
worked Systems Design and Implementation (NSDI 1070
23), pages 787–808, Boston, MA. USENIX Associa- 1071
tion. 1072

Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, 1073
and Siddharth Garg. 2020. {Model-Switching}: 1074
Dealing with fluctuating workloads in {Machine- 1075
Learning-as-a-Service} systems. In 12th USENIX 1076
Workshop on Hot Topics in Cloud Computing (Hot- 1077
Cloud 20). 1078

12

https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1109/ICCV.2019.00756
https://doi.org/10.1109/ICCV.2019.00756
https://doi.org/10.1109/ICCV.2019.00756
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/1808.07275
https://arxiv.org/abs/1808.07275
https://arxiv.org/abs/1808.07275
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://arxiv.org/abs/2309.10285
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
https://arxiv.org/abs/2204.00102
https://arxiv.org/abs/2204.00102
https://arxiv.org/abs/2204.00102
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,1079
Gang Chen, and Sharad Mehrotra. 2023b. Draft1080
& verify: Lossless large language model ac-1081
celeration via self-speculative decoding. CoRR,1082
abs/2309.08168.1083

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian1084
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses1085
patience: Fast and robust inference with early exit. In1086
Advances in Neural Information Processing Systems,1087
volume 33, pages 18330–18341. Curran Associates,1088
Inc.1089

A Greedy Heuristic1090

Algorithm 1 Random modality strategy selection

1: function RAND(jobQ,P)
2: S← {}
3: if deadlineViolation(jobQ) then
4: J ← jobsBeforeViolator(jobQ)
5: else
6: J ← jobQ
7: end if
8: deadline← overhead(J) + currT ime
9: while deadline > violatorDeadline do

10: j ← randomJob(J)
11: s← P|j|, accuracy(j)
12: deadline← update(deadline, s)
13: S.append(s)
14: end while
15: return S
16: end function

During the online stage (discussed in Sec-1091

tion 5.2), the INLP solver may take up to 70 ms1092

to assign modality selection strategies for each en-1093

queued job, posing challenges for jobs with ex-1094

tremely low latency SLOs, such as MMSA. To ad-1095

dress this issue, we propose a greedy heuristic that1096

adapts the accuracy of enqueued jobs by randomly1097

applying the fasted modality selection strategies1098

meeting the minimum SLO for jobs preceding the1099

deadline violator. We repeat this process until the1100

total queue wait time is within the violator’s dead-1101

line. The steps are described in Algorithm 1. We1102

present the evaluation setup and the performance1103

of the random heuristic in Section 7.1104

B Related Work1105

System-level dynamic optimization (Crankshaw1106

et al., 2017a) proposes dynamic input batching to1107

improve serving throughput by amortizing GPU1108

kernel execution costs across multiple requests. It1109

dynamically selects the largest profitable batch size1110

that meets latency constraints.1111

Serving systems dynamically assign GPUs to 1112

jobs based on their SLOs and request rates. Some 1113

of them (Shen et al., 2019b; Yu and Chowdhury, 1114

2020; Choi et al., 2022) consider GPU sharing to 1115

improve GPU utilization and goodput. (Zhang 1116

et al., 2023a) proposes burst-tolerant resource pro- 1117

visioning by mapping multiple jobs to a group of 1118

resources at runtime. (Zhang et al., 2023a) ar- 1119

gues that preemption is necessary to maximize a 1120

serving system’s goodput and their system makes 1121

preemption decisions at runtime providing formal 1122

guarantees on goodput. 1123

(Romero et al., 2021a) introduces a new dy- 1124

namism layer, model-variants. A user specifies a 1125

task, accuracy, and latency requirements, and the 1126

proposed serving system automatically and dynam- 1127

ically explores the accuracy-latency tradeoff space 1128

of model-variants for the same task. (Chen et al., 1129

2023) generates cost-effective LLM cascade ex- 1130

ecution plans, leveraging different cost-accuracy 1131

characteristics of different LLMs. 1132

(Li et al., 2021) focused on dealing with the 1133

delayed communication of input data in the case 1134

of multi-modal inference on streaming sensor data. 1135

Their proposed approach generates an input modal- 1136

ity that is delayed based on the available input using 1137

a generative adversarial network (GAN) instead of 1138

waiting for the delayed input. They assume that 1139

dropping a modality always causes a significant 1140

accuracy drop. 1141

Model-level optimization A number of ML com- 1142

pression techniques (Cheng et al., 2017) includ- 1143

ing pruning (Xia et al., 2023; sem) and quantiza- 1144

tion (Nagel et al., 2021) reduce both a model’s 1145

memory and computational costs by reducing 1146

model weights or precision. They are usually ap- 1147

plied before deployment, but recent work shows 1148

that runtime quantization bit-width decision is ben- 1149

eficial (Liu et al., 2022). 1150

Early exiting (Xin et al., 2020; Zhou et al., 2020; 1151

Teerapittayanon et al., 2017; Xin et al., 2021) adds 1152

task-specific layers (e.g. classification) to exist- 1153

ing models, and stops inference early based on a 1154

given confidence level. (Zhang et al., 2023b) uses 1155

layer skipping and output verification for LLMs. It 1156

dynamically skips layers to reduce per-token infer- 1157

ence time. 1158

In mixture-of-experts (MoE) models (Shazeer 1159

et al., 2017), a model is partially activated during 1160

its forward pass. A gating network selects the ex- 1161

pert networks that will be activated based on input. 1162

This architecture allows a model’s parameters to 1163

13

https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

0 50 100
0.0

0.5

1.0
SL

O
vi

ol
at

io
n

ra
tio (a) TVLT

0 50 100
0.0

0.5

1.0
(b) ViLT

0 25 50 75
QPS

0.0

0.5

1.0
(c) TBN

0 10 20
0.0

0.5

1.0
(d) AVHuBERT

0 100 200 300

0.5

1.0
(e) MMSA

fp32 fp16 dynamic+fp16

Figure 8: SLO violation ratio using FP32, FP16, and dynamic modality selection combined with FP16.

scale while avoiding the prohibitive forward pass1164

execution costs of a dense model with the same1165

number of parameters.1166

Data multiplexing (Murahari et al., 2022) adds1167

multiplexing and demultiplexing layers at the be-1168

ginning and end of the original model. The former1169

transforms inputs into a succinct encoding and the1170

latter does the opposite at the output. This improves1171

throughput as the original model only runs on the1172

more succinct encoding space. This technique is1173

complementary to our approach that drops portions1174

of the input data.1175

C Complimenting Existing Approaches1176

We show that MOSEL can be seamlessly incorpo-1177

rated into existing model optimization techniques1178

to further improve inference throughput.1179

Experiment Setup. We use quantization to show1180

how modality-aware techniques can be combined1181

with other model optimization techniques to fur-1182

ther reduce inference latency and satisfy SLOs.1183

Quantization reduces the precision of numerical1184

values in a model (Nagel et al., 2021), reducing1185

memory footprint and speed up the inference pro-1186

cess. We perform evaluation using two data types:1187

float32, and float16. To study the effects under1188

varying system loads, we select a range of QPS for1189

each model. For modality selection, we use the1190

optimized policy, employing the INLP solver dur-1191

ing the online stage (as discussed in Section 5.2).1192

The maximum QPS is set where the deadline viola-1193

tion ratio reaches 99%.1194

Results and discussion. Figure 8 shows that quan-1195

tization allows all models to handle higher QPS1196

before the deadline violation ratio increases sig-1197

nificantly. For instance, AVHuBERT, when solely1198

using quantization, fails to increase its process-1199

ing throughput. However, with the combined use1200

of quantization and dynamic modality selection,1201

AVHuBERT can process up to 7× more requests1202

before reaching a 99% violation ratio. This shows1203

our approach is complimentary to existing model1204

optimization techniques and can significantly im-1205

prove inference processing throughput.1206

D MOSEL’s decision overheads 1207

In the offline profiling stage, MOSEL performs two 1208

tasks: (a) it measures the latency of different modal- 1209

ities under various batch sizes, and (b) it generates 1210

the optimal modality selection strategies for each 1211

batch size. Table 2 shows the median latency of 1212

these tasks and the speedup achieved by MOSEL over 1213

a brute-force search. Generating a single optimal 1214

modality offline selection strategy takes only 12ms. 1215

Profile(s) Optimize(s) Speedup
32 45 31×

Table 2: The amoutnt of time TVLT spends in both sys-
tem metrics profiling and modality generations, as well
as speedup compared to brute force search for optimal
modality generations.

In the online stage, MOSEL does two things: (a) 1216

it searches for the pre-computed optimal modality 1217

strategies that match the SLOs of each enqueued 1218

job, and (b) it finds the best modality selection 1219

strategy for each job. The optimizer’s overhead 1220

varies from 12 ms to 80 ms. Note that this not on 1221

the critical path on job execution, as we overlap 1222

the optimization process with the job execution by 1223

having enough jobs enqueued by worker, as dis- 1224

cussed in Section 6. For models with extremely 1225

low processing latency, we also propose a heuris- 1226

tic based method with lower latency, discussed in 1227

Appendix A. 1228

14

	Introduction
	Background
	Opportunities & Challenges
	MOSEL Overview
	Design Goals
	The Offline Stage
	The Online Stage

	Formulation
	Offline Optimal Strategy Generation
	Online Modality Selections and Adjustment

	MOSEL Implementation
	Evaluation
	MOSEL with production workload
	Resilience to Variations

	Conclusions
	Greedy Heuristic
	Related Work
	Complimenting Existing Approaches
	MOSEL's decision overheads

