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Abstract

Algorithmic fairness has grown rapidly, yet key concepts re-
main unsettled in criminal justice. We review group, individ-
ual, and process fairness and map the conditions under which
they conflict. We then develop a simple modification to stan-
dard group fairness. Rather than exact parity across protected
groups, we minimize a weighted error loss while keeping dif-
ferences in false negative rates within a small tolerance. This
improves feasibility, raises accuracy, and highlights the ethi-
cal choice of error costs. We situate this proposal within three
classes of critique: biased and incomplete data, latent affir-
mative action, and the explosion of subgroup constraints. Fi-
nally, we propose a practical framework for deployment in
public systems, built on three pillars: need-based decisions,
transparency, and narrowly tailored solutions. Together, these
elements link technical design to legitimacy and provide ac-
tionable guidance for agencies that use risk assessment and
related tools.

Keywords Algorithmic fairness, criminal justice, risk assess-
ment, group fairness, individual fairness, process fairness,
disparate impact, equalized odds

Introduction

The use of algorithms has become increasingly pervasive in
modern society, with many important decisions now being
made by computers. It is essential to ensure algorithms are
designed fairly. This paper explores algorithmic fairness, its
challenges, and implications for computer science. By ex-
amining existing research, it will identify key implications
for the future of computer science and consider how algo-
rithmic fairness can be achieved.

We propose a general alternative framework to rethink
fairness. We hope to provide a general framework for the
idea of fairness by offering guiding pillars that can be ap-
plied in a broad context. The paper covers the following:
Popular definitions of fairness in machine learning, Criti-
cisms of the current framework, and proposed Three Pillars
of Fairness.

What is Algorithmic Fairness?

Over the last decade, there has been a bewildering number
of definitions of algorithmic fairness (Narayanan 21). Mak-
ing matters even more problematic, many of these proposed

ideas of fairness are often incompatible with each other. In-
creasing fairness in one sense may decrease it in another.
This paper shall focus on the three following dimensions:
Group Fairness, Individual Fairness, and Process Fairness.

Group Fairness

Definitions Group fairness entails that an algorithm does
not treat different demographic groups systematically dif-
ferently. This idea of fairness was popularized after multiple
real-world algorithms from criminal justice, corporate hir-
ing, and credit ratings were found to systemically discrim-
inate against minority candidates. While these algorithmic
harms were often not malevolent in intent, their damage was
tangible (Slaughter, Kopec, and Batal 2020). In particular,
historically biased data often lead to a biased model. Algo-
rithmic group fairness is often defined as having equal error
rates between the desired groups. For example, a model for
credit ratings should have an equal false positive rate be-
tween racial groups. In legal terms, group fairness is con-
cerned with disparate impact.

There are also a few mathematical notions of group fair-
ness that are based on probability (Zhou 2022). First, there
is demographic parity. This requires that there be the same
proportion of individuals in any group receiving a positive
outcome as the group’s proportion of the population. Con-
sider a binary classification setting, where a model has to
make a prediction Y ¢ {0,1}, where Y = 1 means the
model predicts an individual to have a positive outcome,
while Y = 0 means an individual is predicted to have a
negative outcome. Then, let’s say an individual has a group
membership S € {0, 1}, where S = 0 denotes membership
to an underprivileged group while S = 1 denotes member-
ship to a privileged group. Then, group parity is achieved if
P(}Af =15=1) = P(Y = 1|S = 0), and hence this can
P(Y=1|5=1)
P(Y=1|5=0)
to 1, there is group parity. However, if base rates are differ-
ent, meaning that P(Y = 1|S = 1) and P(Y = 1|S = 0)
are different, then even a classifier that never makes predic-
tion errors (i.e. Y = Y) will have a group parity measure

that is not equal to 1, because IIZ(Y:”S:D is not equal to 1.

P(Y=1|5=0)
Another mathematical definition of group fairness is
called equalized odds, which requires the same false pos-
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itive rate across groups as well as the same true positive
rate across groups. This can be formulated as requiring
PY =1S=0,Y =y)and P(Y = 1|S = 1,V = y)
to be the same for y € {0, 1}.

The third main definition of group fairness is an equal op-
portunity, in which only the true positive rate is required to

be equal across groups. Formally, this means P(Y = 1|S =
0,Y = 1)and P(Y = 1|S = 1,Y = 1) need to be the
same. Note this requirement is a subset of the requirement
for equalized odds.

The fourth definition of group fairness is calibration. It
means that if the algorithm predicts the probability of a pos-
itive outcome to be p for a set of individuals, then we should
expect a p portion of them to have a positive outcome. For
example, for individuals predicted to have a high probability
of recidivating, a large portion of them should actually have
recidivated, which would mean that the algorithm is well-
calibrated. Group fairness is achieved if calibration is held
for different demographic groups (also called calibration
within groups), meaning that for each demographic group,
calibration should be held. Mathematically, in a binary clas-
sification setting, this means that P(Y = 1S = 0,Y = 1)
and P(Y = 1|S = 1,Y = 1) should be the same.

These many definitions of group fairness mean that it is
often up to the discretion of the algorithm designer to decide
which fairness notion to adopt. Once a notion is adopted, the
algorithm designer can then use many different methods to
try to achieve group fairness.

Methods for achieving group fairness A naive way of
achieving group fairness is through unawareness, which
means that sensitive group attributes (such as race and gen-
der) are to be excluded from the model. However, simply
doing this can still easily result in suboptimal group fairness,
since there may be features that correlate with the sensitive
attributes and are still included in the model. If the model
takes in those features to make predictions, and the sensitive
attributes are historically tied to classification outcomes, in-
dividuals of different groups may still be treated differently.

Another problem with unawareness is that group mem-
bership may sometimes offer valuable information, which
the model would lose if group attributes are excluded from
the model. Dwork et al. (2012) discussed this utility by of-
fering the example: suppose that in the culture of a protected
class S, the most talented individuals would enter fields like
science and engineering, while the less talented individuals
enter fields like finance, and the trends are reversed in the
general population. An organization hiring for talent that ig-
nores group membership might select the subset of S most
involved in economics and finance, but this is also the subset
of S that is less talented. This is a poor outcome that arises
from ignoring the group membership of S. Hence, ignoring
sensitive attributes may not necessarily be good.

In addition to the naive method of unawareness, there
are several other methods of pre-processing, which involve
modifying the input data, that help achieve group fairness
(Kamiran and Calders 2011). First, unawareness may be re-
placed by suppression, where we remove not only the group

membership attribute but also attributes that highly corre-
late with group membership, which would address the ini-
tial concern of unawareness. Second, the data may be pre-
processed to remove bias against certain groups. For in-
stance, the data may be “massaged,” where certain outcome
labels are artificially changed. For example, one might turn
a portion of the negative outcomes for an underprivileged
group to become positive, which would cause the algorithm
to more likely assign a positive label to an underprivileged
group. The data may also be re-weighted, whereby individ-
uals are assigned a weight and a larger weight could be as-
signed to an individual with a positive label from an under-
privileged group during training. Last but not least, a class of
algorithms called the disparate impact remover (DI remover)
may be applied to the data, which can help achieve group
fairness (Feldman et al. 2015). Mathematically, the remover
removes disparate impact: given a dataset D = (X, X,,,Y)
where X is a protected attribute such as binary group mem-
bership, X, are the remaining attributes, and Y is a binary
outcome, the data set is considered to contain disparate im-
pact if %};j < 17 = 0.8, where 7 is a tunable param-
eter depending on the need of the algorithm designer. This
directly corresponds to the mathematical definition of de-
mographic parity, where the closer 7 is to 1 the stronger the
demographic parity guarantee. A DI remover hence modi-
fies the input data labels such that the input to the algorithm
satisfies group parity.

Finally, the output of an algorithm could be post-
processed to better abide by group fairness standards. For
example, equalized odds post-processing is an algorithm
that adds a simple post-processing step at the end to solve an
optimization problem of achieving equal false positive and
false negative rates, which involves flipping a certain amount
of output labels (Hardt et al. 2016). Another post-processing
method is called reject option based classification (ROC),
whereby the designer could set a threshold 8 € {0.5,1},
predicting a positive label if confidence in that label exceeds
0 and predicting a negative label if confidence is below 1 —6.
If confidence is between 1 —6 and 6, individuals from the un-
derprivileged group are predicted a favorable outcome while
individuals from the privileged group are predicted an unfa-
vorable outcome (Kamiran and Calders 2011). Note, how-
ever, that many of these examples are for a binary classifica-
tion setting where individuals belong to one of two groups:
privileged and underprivileged. Many of the in- and post-
processing methods may not necessarily generalize to multi-
class settings, and pre-processing may be a more general ap-
proach towards achieving group fairness.

Individual Fairness

Another intuitive definition of fairness comes from the no-
tion of individual fairness. This can be characterized as
whether similar individuals are treated similarly. This can
be thought of as similar to the traditional racial color-blind
arguments (Kleinberg et al. 2018). If a member of one group
must satisfy a great threshold to achieve the same loan as
another group, then the individual may perceive an injus-
tice. Specifically, in a racial context, the individual may ar-



gue they are facing harm purely due to the color of their
skin. This notion of fairness is the common assumption of
many American anti-discrimination laws. In legal terms, in-
dividual unfairness can be thought of as disparate treatment.
Mathematically, this may be formalized as the average dif-
ference between the label of an individual and the average
label of the k-nearest neighbors of that individual based on
non-sensitive attributes.

Process Fairness

Unlike the other notions of fairness, which have been output-
focused, process fairness concerns input fairness. In this
framework, an algorithm gains legitimacy through having
an open and transparent process (Grgic-Hlaca et al. 2016).
While this idea is often under-discussed in computer science
literature, it is very common in political science. At its core,
fairness depends on whether people trust a given institution.
An organization that is transparent both about its intentions
and methods will be trusted more than an organization that
obscures them. The value of process fairness is that it is ro-
bust to model errors and biased data because it does not de-
pend on algorithmic outputs.

The Canonical Definition of Fairness and Its
Critiques
The PAC setup for group fairness

Similar to equal opportunity, a canonical setup for group
fairness is to equalize false negative rates.

In the PAC setting, say the protected category variable is
V, such that V' = {wy,---,v,}, where each of these is a
particular realized value, such as Gender = {male, female}

The false negative rate is defined as:

FN(h,v;) == " 1;)1"NP[h(x) #—1|z=uv,y#+1]. (1)

The goal is to ensure that the output hypothesis h* satis-
fies:

FN(h,v;) = FN(h,v;),Vi#j,1<i,j<n. (2)

This is viewed as the constraint to the traditional loss min-
imization setting, where usually the goal is minimizing the
sum of false negative rates and false positive rates in total:

n
min Z(aFN(h, v;) + BEP(h,v;))W;
i=1
specifically, W; indicates the percent in the population
whose protected trait turns out to be v;, « is the loss assigned
to false negative and S is the loss assigned to false positive.

Equalizing false negative rates can be viewed as the con-
straint to this loss minimization problem.

In specific settings, o and 3 are tailored depending on how
bad the two types of errors are. The relationship between the
associated harm « and (3 can be so balanced, such as
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For example, in the medical setting, doctors usually filter
out those patients who likely have cancer and direct them to
further rounds of tests. Thus, a false negative is a lot worse
than a false positive, because not identifying latent cancer
could delay therapies and intervention. In the case of a false
positive, the doctor could simply not disclose the positive
judgment directly and direct the patient to the next round of
checking. This corresponds to (1).

However, in another setting, such as bank credit card ap-
plications. The influence of granting credits to individuals
who potentially can’t pay back does less social harm than
withholding it from those who deserve it. Specifically, with-
holding credits from the lower social classes will have a sig-
nificant negative impact on their household financial situa-
tions. This corresponds to (2).

In situation (2), the optimization problem is similar to:

min Z aF N (h,v; )W;

i=1

subject to equalized false negative rates. Previous literature,
such as Jakesch et al. (2022) and Grgic-Hlaca et al. (2016),
have shown the need to flexibly address the balance between
false negatives and positives. Being able to justify such a
loss ratio ¢ does indeed make the public audience trust the
ethicality and process fairness of algorithms.

In particular, in the setting of criminal justice, not prose-
cuting a suspect after a police investigation could pose non-
trivial dangers to community safety, whereas excessively
prosecuting all the potential suspects is a waste of judicial
resources and may cause stigmatization or marginalization
of communities. In such settings, striking the balance be-
tween « and /3 seems inherently vague and tough.

Process fairness may require no arbitrary favoring of any
group under the protected category in any step of the algo-
rithm. This is a subtle definition. In some circumstances, it
might not be feasible to achieve exactly. equalized false neg-
ative rates. One potential way to reconcile it is to give some
tolerance bound, which is to make the false negative rejec-
tion rates across all the groups not differ beyond a bound.
One practical situation could be to train a model that asks
the predicted recidivism rate not to differ by 5 percent be-
tween all racial groups. This is a way to tackle the tradeoff
between ‘process fairness’ and ‘feasibility/accuracy’.

Critiques to the Canonical Definition of Fairness

Previous literature on group fairness has challenged its con-
cept. The critiques are that the scheme is either insufficient
or excessive.

Critique 1. Inherent biases in data

The training data may contain unforeseen biases (e.g., in
a complex field such as crime), and the algorithm may fail
to correct them, as documented by Mehrabi et al. (2021).
This phenomenon has been carefully examined empirically
in Chapman et al. (2022) using a comprehensive data set
from the official UK Crime API that provides data on polic-
ing’s impact on crime rates.



Specifically, the underlying logic is similar to weight-
adjusting mechanisms covered in multiple topics in CIS625.
More weights are assigned to the predictor that predicts there
will be recidivism in the areas with historically high crime
rates (especially if there’s been a crime in the past several
days, then the probability another crime will happen is con-
sidered very high by the algorithm without fairness adjust-
ment). The learning theory behind “Near Repeat Theory” is
that a crime incident triggers a temporary increase in crime
rates nearby. Even with completely randomized synthesized
“historical” data, the existing predictive policing algorithms
lead to biased feedback loops that further confirm the as-
sumed pattern. This is simply because more police in the
areas with a prior crime makes crime in these areas more
identifiable and further strengthens the need to police that
area.

Historically, in criminology (Gottfredson and Hirschi
1987), there’s always a notion of positive criminology that
believes crime to be the aggregate result of social issues
such as psychological health problems, poverty, and social
injustice. This thought is fundamentally against penalizing
the “offenders” who are breaking laws as the last resort and
not causing significant harm to the local community. From
the positivist criminologist’s view, the unavoidable biases
within the prior data set make the framework of fairness in-
sufficient to address unfairness.

Critique 2. Latent Affirmative Action

Any group fairness definition ends up using affirmative
action or similar logic, because one may inevitably end up
giving an advantage to certain groups. As outlined by La-
gioia (2022), since different groups have different base rates,
a system that has the same accuracy for different groups
may fail to comply with group-parity standards. The authors
analyzed the performance of Correctional Offender Man-
agement Profiling for Alternative Sanctions, also known as
COMPAS, in evaluating defendants’ risk profiles and classi-
fying individuals as being at a high risk of recidivism if the
system assigns the individual a score higher than a certain
threshold based on the individual’s criminal history, educa-
tion, income level, family situation, etc. The authors found
that by using the same threshold for different groups, indi-
vidual fairness is achieved, in which the system would as-
sign the same score to individuals with an equal likelihood
of recidivism and therefore make the same classification for
the two individuals. However, by setting different thresh-
olds for the different groups, individuals with the same score
may be classified differently, which violates individual fair-
ness. Also, if the scores of different groups are calibrated,
meaning that they are “equally correlated with the predicted
classifications,” then having different thresholds would lead
to lowered accuracy for at least one of the groups. This
accuracy-fairness tradeoff may be of concern to many.

Overall, it appears that satisfying group fairness may re-
sult in unavoidable damage to individual fairness. Whether
this is acceptable might depend on the quality of the input
data: for example, if the input data is historically biased
against certain groups, then having different thresholds al-
lows the system to be calibrated such that predictions and

probabilities can be aligned even with biased data. Also, de-
pending on the policy goals, having different thresholds may
be desired; “the goal of increasing diversity or balancing ac-
cess to education, types of jobs, or positions” may be some
examples in which we might compromise individual fair-
ness for certain policy goals [Lagioia]. Nonetheless, this pa-
per illustrates how group fairness may be incompatible with
individual fairness, and therefore one must be careful when
applying group fairness metrics. As the authors argue, this
requires “discretionary value-based political choices” that
statistical notions alone are insufficient to address.

Nonetheless, we know that individual fairness alone is not
sufficient for ensuring a fair model either. As proposed by
Fleisher (2021), a model that classifies the same outcome
for every individual would satisfy individual fairness (same
treatment for similar individuals), but it is clearly unfair. In-
stead, Speicher (2018) has proposed an index for overall fair-
ness that can be decomposed into two components: between-
group and within-group unfairness. They acknowledged that
improving components may be to the detriment of the other,
but the decision of which component to prioritize might rest
upon the user of the algorithm.

Critique 3. Vagueness of Fairness in Subgroups

As raised in Kearns et al. (2018), the intersection of de-
mographic groups poses a challenge to achieving equaliza-
tion of false negative rates across all protected categories.
There are hundreds of different possible intersections of de-
mographic variables, such as black homosexual women with
a college education, and white heterosexual men with asso-
ciate’s degrees. In most census or social surveys, there could
be 6 different options under religion, 7 under race, 20 un-
der country of origin, and 3 under sexual orientation. Natu-
rally, this may introduce over one thousand categories with
a considerable number of people in each of them. While the
authors proposed an algorithm that relies on heuristics for
learning to converge to the best subgroup-fair distribution
over classifiers within polynomial time, it could be unclear
how one should decide at what point we stop considering
further intersection between subgroups.

This subgrouping problem leads to the following three is-
sues:

1. There is an insufficient moral justification for why it suf-
fices to not consider the intersection of the protected fea-
tures, but just consider group fairness alone.

2. This practice is equivalent to introducing a thousand or
even more linear constraints to a convex optimization
problem, which could make the solution suboptimal or
infeasible.

3. To get a fair representation of the intersections between
many different demographic subgroups, a large sample
size may be needed for each intersection, which is diffi-
cult to obtain.

Summary of Critiques

While none of these critiques alone serve to make group
fairness unworkable, put together, they raise concerns over
whether to adopt certain notions of group fairness. More-
over, not every issue with group fairness may be solved with



technical solutions alone, but may also require value-based
decisions. For example, the choice of definition of group
fairness will depend on the values of those affected by the
algorithm. All this goes to show that any working idea of
group fairness requires a value-based framework. The paper
will explore this idea more fully in the last section.

Modified Alternative Definition of Fairness

We develop this idea inspired by the related literature (Ho
and Xiang 2020; Schoeffer, Kuehl, and Machowski 2022)
ourselves as the following:

min Z aF N (h,v; )W;

i=1
subject to

where «, 3 are the loss of false negatives and false positives,
and 7 is the tolerance bound for the difference in false nega-
tive rates.

This setup has two benefits: (i) by fine-tuning the param-
eter 7, we can at least ensure that there’s a feasible solution.
(ii) Since the binding equalities are relaxed, the total accu-
racy (weighted sum of false negatives and false positives)
can be higher.

The fundamental critique of this alternative setup is that
designers of the algorithm may be well aware of the effect
of which equations are the binding ones in the original set-
ting. For example, in the bank credit application, we know
that the probability of an African American person getting
falsely denied is higher than a white American. Then by set-
ting 7 to be 5 percent, we are either making the African
American applicant further disadvantaged. Or to the other
extreme, if we decide to make the false negative rejection
rate for African American persons to be 5 percent lower than
other racial groups, we are essentially practicing ‘affirmative
action’ based on race, which leads to significant legal con-
troversy.

Individual fairness vs. group fairness

As we have noted in previous sections, individual fairness
and group fairness may sometimes be in conflict; doing bet-
ter with the former might lead to unavoidable harm to the
latter and vice versa. We will now examine the literature
on this conflict in more detail. As argued by Dwork et al.
(2012), premised on the classification setting where an algo-
rithm needs to map an individual to a probability distribution
over outcomes, individual fairness is achieved when the sta-
tistical distance between the distributions that individuals x
and y are mapped is at most the distance between the two
individuals, meaning that “the distributions over outcomes
observed by x and y are indistinguishable up to their dis-
tance d(z,y).” Mathematically, this is known as the Lips-
chitz condition, where for a set of individuals V' and out-
comes A = {0,1}, a mapping M : V — A(A) satis-
fies the (D, d)-Lipschitz property if for every =,y € V,
D(Mz, My) < d(x,y). D could be chosen as the statistical

distance between two distributions P and Q, in which case
D(P,Q) = £> ,c4|P(a) — Q(a)|, while d may denote
the distance between two individuals on input attributes.

Achieving individual fairness can then be formulated as a
linear program, where the expected loss of any arbitrary loss
function L : V x A — R is minimized subject to the con-
straint that the (D, d)-Lipschitz property is satisfied, mean-
ing that the output distribution over outcomes for any two
individuals differs by at most the distance of the two indi-
viduals. However, the researchers also proved that individ-
ual fairness (where the program is subject to the constraint of
the Lipschitz property) implies group fairness if and only if
the Wasserstein distance (a measure of the distance between
two probability distributions) between the distributions of
features between the two groups is small. This means that
if the two groups share a similar distribution of features, in-
dividual fairness and group fairness can be achieved simul-
taneously. The opposite is also true: if the two groups share
very different feature distributions, the two notions of fair-
ness cannot be achieved simultaneously.

What happens then if the statistical distance between the
two groups is large? How exactly does one balance individ-
ual fairness and group fairness? Dwork et al. (2012) pro-
posed an algorithm that attempts to balance the two by im-
plementing fair affirmative action. The algorithm relaxes the
Lipschitz condition such that similar individuals from two
different groups, S and T need not be treated similarly; the
Lipschitz condition only needs to be held between individu-
als in group S and between individuals in group 7'. This al-
gorithm ensures demographic parity between S and T up to
abias €, meaning that D(P,Q) = £ > . 4 |P(a) —Q(a)| <
€, where P and Q are the probability distributions over out-
comes for the same individual with group membership S and
T respectively. At the same time, individual fairness within
a group is achieved, because the Lipschitz condition is sat-
isfied for every pair (z,y) € (S x S) U (T x T). Hence,
this work shows that by sacrificing individual fairness across
groups, individual within groups and group fairness may be
achieved simultaneously even if the feature distribution be-
tween different groups is very different.

To determine the empirical trade-off between individual
and group fairness when the Wasserstein distance is large,
Zhou (2022) applied a disparate impact (DI) remover, which
attempts to achieve group parity, on a real dataset Adult
(Asuncion and Newman 2007). The dataset consists of a bi-
nary sensitive attribute (sex or race), five non-sensitive at-
tributes (e.g., age and education), and a binary outcome label
of whether the individual’s income exceeds 50K a year. The
researchers found that a larger Wasserstein distance between
the attribute distributions of the two groups (e.g. male vs. fe-
male) leads to a larger decrease in individual fairness after
applying the DI remover. Individual fairness is also more
likely to decrease if the large Wasserstein distance is due to
a difference in mean rather than a difference in variance (as
both can give the same Wasserstein distance). This confirms
the intuition that it is difficult to achieve both group and in-
dividual fairness if the two groups are very different, espe-
cially if the mean rather than the variance of their attributes
is different.



Viable Framework: Three Pillars of Fairness

We have seen how individual and group fairness may be in
conflict. To reconcile these different ideas of fairness, it is
crucial to have a guiding framework. Ideally, this framework
provides general principles that can be applied to any orga-
nization and to address any problem of algorithmic unfair-
ness. In this paper, we propose the following Three Pillars
as leading principles:

1. Need-based decisions
2. Transparency and Accountability
3. Narrowly Tailored Solutions and Definitions

Need-based decisions

As outlined in Srivastava, Heidari, and Krause (2019), while
mathematical notions of fairness are important, it should be
noted that fairness is inherently a value-based notion that
may carry different meanings for different people or under
different scenarios. For example, given data that may suf-
fer from historical bias, setting different thresholds for clas-
sifications may help combat the bias in the data and help
achieve group parity. However, if we are confident that all
groups have a fair representation in the data, it may be best
to set the same threshold across groups such that similar in-
dividuals, regardless of group membership, may be treated
similarly. The decision as to which notion of fairness matters
the most depends on the situation and the discretionary deci-
sion of the policymaker. There is thus not a one-size-fits-all
notion of fairness that can be applied to all contexts, and we
think future research in algorithmic fairness may continue to
focus on how different specific scenarios may require differ-
ent notions of fairness that best accommodate the needs of
society in that area.

Transparency, Accountability, and Narrow
Tailoring

Fairness definitions often conflict, so policy-makers must
specify which notion they adopt and how tradeoffs are han-
dled, such as between individual and group fairness. These
choices should be explained clearly to affected groups, using
mathematics only when necessary. Transparency enables ac-
countability and prevents designers from masking arbitrary
decisions.

Fairness also requires precise, context-specific definitions
and remedies. Broad or vague definitions risk eroding trust,
while narrow ones make solutions more feasible and defen-
sible. Adjustments should be justified with historical con-
text and communicated in plain language. Remedies must be
specific to the problem rather than generic fixes. Together,
transparency and narrow tailoring improve both the legiti-
macy and effectiveness of algorithmic systems.

Why Tailored Definitions are Needed To address any
specific case of algorithmic unfairness, it is crucial to have
a tailored definition of unfairness. An organization using a
too broad or ill-conceived definition will struggle not only
to create a technical solution to the problem but may face
what political scientists refer to as “mission creep.” Mission
creep is when there is a gradual shift away from the initial

mission. In this case, the fear is that algorithm creators may
be able to commit arbitrary changes by justifying them with
some notion of fairness. In this way, broad definitions of al-
gorithmic unfairness may lead to a decrease in algorithmic
accountability and transparency.

Likewise, there is no good reason to assume that every
problem will require the same definition of fairness. For ex-
ample, if the creator of an algorithm is a corporation, it may
have different goals of fairness than if the creator were a be-
nign social planner (Jakesch et al. 2022). It would be both
unreasonable and likely undesirable to require every cor-
poration to play the role of the ultimate arbiter of fairness.
In this way, any definition of fairness should be limited by
the incentives and power of the algorithmic creator. More
broadly, a large assortment of different problems may all
fall under the same umbrella term of unfairness and it would
make little sense to use the same definition in every context.

Finally, a tailored definition of unfairness makes techni-
cal solutions more feasible. The main limitation of techni-
cal solutions to algorithmic unfairness has been requiring a
model to do too much. Different notions of fairness carry
with them their trade-offs. There is almost always no solu-
tion that can satisfy every definition of fair. In light of this,
a context-specific, tailored definition of fairness also has the
benefit of being the most workable.

Why Tailored Solutions are Needed Even with tailored
definitions, solutions must be tailored as well. One-size-
fits-all approaches risk legal challenge under U.S. anti-
discrimination law, which requires narrow tailoring and ex-
haustion of race-neutral alternatives (Slaughter, Kopec, and
Batal 2020). Algorithmic interventions should reflect lo-
cal context and history—for example, admissions models
should differ across institutions with distinct pasts.

As Ho and Xiang (2020) argue, fairness-as-awareness is
both legally viable and empirically effective: aligning model
design with institutional histories and data imperfections
better promotes substantive fairness. Each use of non-race-
blind features should be justified by social-science evidence;
deeper histories of discrimination warrant stronger adjust-
ments.

Tailoring also improves legitimacy and performance. Out-
put legitimacy improves because models fit local goals
and data; input legitimacy improves when designers ex-
plain case-specific tradeoffs. Uniform methods risk mis-
calibration across settings and erode public trust. Clear,
narrowly scoped adjustments—especially on sensitive at-
tributes—sustain transparency and confidence.

Conclusion

As algorithmic fairness moves from an academic idea to
real-world applications, a general framework must be estab-
lished. This framework should provide universal principles
that organizations can follow to ensure fairness in their own
algorithms. While there will always exist trade-offs between
different systems, a proper framework can act as a guiding
star to navigate historical discrimination and injustice. This
paper hopes to lay the foundations of such a framework with
our Three Pillars Model.



Future extensions of our framework could provide more
mathematically rigorous analysis of the trade-offs between
different types of unfairness. Likewise, more research can be
done to integrate the political science idea of “legitimacy”
into our model. Other extensions of this paper may in-
clude examples of practical applications of the Three Pillars
Model. Specifically, future papers may show proposed anal-
ysis of real-world problems using the Three Pillars Model in
comparison to other frameworks. We hope this could offer a
holistic framework to tackle the complex issues of algorith-
mic unfairness.
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