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Abstract

Automatic N-gram based metrics such as001
ROUGE are widely used for evaluating gen-002
erative tasks such as summarization. While003
these metrics are considered indicative (even004
if imperfect), of human evaluation for English,005
their suitability for other languages remains006
unclear. To address this, in this paper we sys-007
tematically assess evaluation metrics for gener-008
ation — both n-gram-based and neural-based009
— to assess their effectiveness across languages010
and tasks. Specifically, we design a large-scale011
evaluation suite across eight languages from012
four typological families — agglutinative, iso-013
lating, low-fusional, and high-fusional — from014
both low- and high-resource languages, to ana-015
lyze their correlations with human judgments.016
Our findings highlight the sensitivity of the017
evaluation metric to the language type at hand.018
For example, for fusional languages, n-gram-019
based metrics demonstrate a lower correlation020
with human assessments, compared to isolating021
and agglutinative languages. We also demon-022
strate that tokenization considerations can sig-023
nificantly mitigate this for fusional languages024
with rich morphology, up to reversing such025
negative correlations. Additionally, we show026
that neural-based metrics specifically trained027
for evaluation, such as COMET, consistently028
outperform other neural metrics and correlate029
better than ngrmas metrics with human judg-030
ments in low-resource languages. Overall, our031
analysis highlights the limitations of n-gram032
metrics for fusional languages and advocates033
for investment in neural-based metrics trained034
for evaluation tasks.1035

1 Introduction036

The development of multilingual LLMs (MLLMs)037

such as BLOOM (Le Scao et al., 2023) and XGLM038

(Lin et al., 2021), along with the current trend of039

extending English-centric LLMS (e.g. LLaMA3040

1We will openly publish the human annotation data and
complete evaluation suite to support further research and ex-
ploration of multilingual automatic evaluation of generation.

(Dubey et al., 2024), OpenAI GPT-4o (Hurst et al., 041

2024) and Gemini 1.5 (Team et al., 2024)) to other 042

languages (Alexandrov et al., 2024) reflects the 043

growing interest in prompting such generative mod- 044

els in languages beyond English. This interest high- 045

lights the need for robust evaluation of the genera- 046

tion capabilities of LLMs in multilingual settings. 047

However, assessing these models on non-English 048

generative tasks, particularly in summarization, re- 049

mains challenging due to the lack of clear evalua- 050

tion methodologies. 051

Current evaluation metrics for summarization, 052

both n-gram-based or neural-based, face signifi- 053

cant limitations. N-gram-based evaluation metrics, 054

such as BLEU (Papineni et al., 2002), ROUGE 055

(Lin, 2004), and METEOR (Banerjee and Lavie, 056

2004), are commonly used to assess summarization 057

quality in English, however, these metrics rely on 058

complete word units. This creates challenges for fu- 059

sional languages with flexible word order where in- 060

flectional patterns are embedded within word forms. 061

Moreover, they present difficulties for agglutina- 062

tive languages, where words have complex inter- 063

nal structures, consisting of multiple morphemes 064

that n-gram-based metrics struggle to capture ef- 065

fectively (Abudouwaili et al., 2023). Additionally, 066

the problem of ambiguity — where a single form 067

can have multiple meanings — is amplified in mor- 068

phologically rich languages (MRLs) as variations 069

in prefixes, suffixes, and root conjugations com- 070

plicate both comprehension and generation tasks. 071

These factors can lead to n-gram-based metrics fail- 072

ing to recognize grammatically correct sentences 073

in generated summaries that convey the intended 074

meaning despite slight surface-level differences. 075

Neural network-based approaches, such as 076

BERTScore (Zhang et al., 2019), depend on 077

the availability of large models trained on large 078

amounts of data and may exhibit poor performance 079

for lower resourced languages (Yousuf et al., 2024; 080

Kaster et al., 2021). Languages with greater mor- 081
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phological complexity are particularly challenging,082

as MRLs often produce a large number of infre-083

quent word forms produced by combinations of084

morphemes, resulting in data sparsity (Botev et al.,085

2022). The tokenization problem is also demon-086

strated by Gerz et al. (2018) who shows that lan-087

guage models that use character-level information088

show superior performance to those operating on089

word level alone in next-word prediction task for090

morphologically rich languages.091

Despite such bits of empirical evidence, while092

summarization metrics have been extensively stud-093

ied in English their applicability to other languages094

remains understudied. More concretely, existing095

campaigns for assessing evaluation metrics for gen-096

eration face three key limitations: (i) lack of lan-097

guage diversity, resulting in insufficient typological098

representation—for instance, Koto et al. (2021) ex-099

cluded languages with high-fusional morphology,100

and Forde et al. (2024) evaluated only three lan-101

guages, highlighting scalability concerns; (ii) lack102

of metrics diversity, primarily focusing on n-gram-103

based approaches and excluding neural-based ones,104

particularly those specifically trained for evalua-105

tion, and insufficient evaluation of metric adap-106

tation for non-English; and (iii) lack of reliable107

statistical evidence for the correlation between au-108

tomatic metrics and human judgments, omitting sta-109

tistical significance values of the correlation analy-110

sis. (Koto et al., 2021; Han et al., 2024)111

To address these gaps, we deliver a large re-112

source for summarization in non-English lan-113

guages, manually annotated with human judgments,114

comprising ~20,000 human annotations. This re-115

source upshots are first, the selection of represen-116

tative languages, covering eight languages from117

four typological types (isolating, agglutinative, and118

languages with minimal or high fusional morphol-119

ogy). Within each group, we represent both high-120

and low-resource languages. Secondly we assess121

diverse Metrics, both n-gram and neural metrics,122

including those particularly trained for evaluation.123

Additionally, we evaluate the different methodolo-124

gies to assess the quality of generation, for ex-125

ample, the use of different tokenizers and various126

transformed versions of the original text, including127

lemmatized forms, to assess their impact on the128

evaluation metrics. Finally, our analysis takes care129

to provide statistically sufficient data size. Our130

multilingual annotation task measures correlation131

with both n-gram and neural network metrics while132

reporting the statistical significance of the factors 133

found to affect the results. 134

Our study demonstrates that evaluation metrics 135

perform differently depending on linguistic typol- 136

ogy. For instance, in fusional languages, n-gram 137

metrics like ROUGE align less reliably with hu- 138

man assessments than in isolating or agglutinative 139

languages. Conversely, neural-based metrics like 140

COMET — trained explicitly for assessment gen- 141

erative tasks, achieve stronger correlations with 142

human judgments and consistently surpass both 143

n-gram methods and neural approaches. These 144

findings highlight the limitations of n-gram metrics 145

for fusional languages and emphasize the need for 146

specialized neural metrics trained for multilingual 147

evaluation. 148

2 Limitations of Current Generation 149

Evaluation in Diverse Languages 150

2.1 The Limitations and Shortcomings of 151

Current Generation Evaluation 152

The rise of generative models and their mas- 153

sive prompting to generate online high-quality re- 154

sponses has underscored the importance of prop- 155

erly evaluating these models with automatic met- 156

rics (Manduchi et al., 2024) that allow effective 157

and efficient hill-climbing in the course of model 158

development and assessment. Since the introduc- 159

tion of ROUGE (Lin, 2004), N-gram-based metrics 160

have been commonly used in the NLP community 161

for English as well as for multilingual purposes. 162

However, these metrics face severe issues for lan- 163

guages that differ from English, specifically with 164

tokenization and segmentation matters. 165

For example, metrics such as BLEU face chal- 166

lenges in languages like Chinese and Japanese due 167

to the lack of explicit word boundaries (Denoual 168

and Lepage, 2005), and implementations of met- 169

rics like ROUGE, often struggle with segmentation 170

issues, including filtering out non-alphanumeric 171

Latin characters, making them less effective for 172

non-Latin scripts (Kumar and Solanki, 2023). As 173

a result, these limitations lead to poor correlations 174

with human judgments, especially for high fusional 175

languages. For instance, Bouamor et al. (2014) ob- 176

served weak correlations for BLEU and METEOR 177

in Arabic, while Paz-Argaman et al. (2024) found 178

negative correlations for ROUGE in Hebrew. 179

To address the limitations of n-gram-based met- 180

rics, researchers proposed to utilize neural-based 181

metrics, which fall into three categories: encoder- 182
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based models like BERTScore (Zhang et al., 2019),183

which compare text representations; LLM as a184

judge such as the prompting of Gemini (Team et al.,185

2023) to assess quality, without any task-specific186

training; and neural methods specifically trained187

for evaluating generation such as COMET (Rei188

et al., 2020), fine-tuned to predict quality scores189

for machine translation (MT) task. These metrics,190

while remaining data-driven and agnostic to the191

language type at hand, are prone to suffer from192

resource level effects with varying qualities that193

depend on the model exposure to such data. All194

in all, both the n-gram based metrics and neural195

based metrics (including those specifically trained196

for evaluation) have not been systematically evalu-197

ated for non-English.198

2.2 Generation Evaluation in the Face of199

Language Diversity200

Despite the aforementioned shortcomings, the ef-201

fectiveness of n-gram-based as well as neural based202

metrics for evaluation of generation has not been203

systematically studied across language families204

with varying word complexity and boundary char-205

acteristics. This gap raises concerns, as the linguis-206

tic properties of words may well affect the usability207

of n-gram metrics, but the effects remain unclear.208

In terms of their linguistic properties, language209

families can be placed on a scale. On the one210

hand, there are Isolating Languages, in which211

words typically consist of a single morpheme, e.g.,212

Yoruba and Chinese (Okanlawon, 2016; Arcodia213

et al., 2007). On the other hand, words in Fusional214

Languages contain multiple morphemes fused to-215

gether, often with unclear boundaries, where a sin-216

gle space-delimited token may serve multiple func-217

tions. For example, in the Spanish word habló,218

the suffix ó simultaneously indicates past tense219

and third-person singular (Kambarami et al., 2021).220

This category can be further divided into low-221

fusional (e.g. Spanish (Bergmann et al., 2007)222

and Ukrainian (Budzhak-Jones, 1998)) and high-223

fusional (e.g. Arabic (Smrž, 2007) and Hebrew224

(Tsarfaty et al., 2019)) based on the degree of225

morphological fusion. Additionally, in an orthog-226

onal dimension we can recognize Agglutinative227

Languages that also consist of words made up228

of multiple morphemes, albeit with clear bound-229

aries and distinct functions. For instance, in Shona,230

vakaenda (va-ka-end-a) means “they went”231

where va (plural subject), ka (remote past), and a232

(final vowel) modify the root end (“to go”) (Kam- 233

barami et al., 2021). Examples include Turkish 234

and Japanese (Istek and Cicekli, 2007; Shibatani 235

and Kageyama, 2015). To our knowledge, no non- 236

English evaluation has comprehensively covered 237

languages from all these typological groups. 238

Two primary strategies have been suggested to 239

adapt previously used metrics to different types of 240

languages, for instance data transformation, the 241

adaptation of n-gram metrics where a different to- 242

kenizer or lemmatizer is applied to the data prior 243

to using the n-gram-based metrics. Specifically, 244

converting Chinese text into numerical IDs before 245

applying ROUGE (Wang et al., 2021), or using 246

ROUGE with language-specific tokenizers as Al- 247

hamadani et al. (2022) did for Arabic. Alternatively 248

researchers suggested the use of language-specific 249

encoder, encoders trained on the target language 250

for similarity-based evaluation. For example, using 251

BERTScore with language-specific BERT models 252

(Vetrov and Gorn, 2022). However, all these ap- 253

proaches have not been systematically evaluated 254

across languages. 255

In addition to the lack of languages and met- 256

rics, correlations between multilingual automatic 257

metrics and human judgments lack sufficient evi- 258

dence to be considered reliable due to the absence 259

of reported p-values (Koto et al., 2021; Forde et al., 260

2024; Han et al., 2024). In reproduced experiments 261

(Ernst et al., 2023), the statistical significance was 262

being low to substantiate the findings. Addition- 263

ally, power analysis indicates that ~400 samples 264

per language are needed to detect significant ef- 265

fects at p ≤ 0.05.2 However, existing non-English 266

evaluations fall short of this threshold, with Koto 267

et al. (2021) using only 150 samples and Han et al. 268

(2024) evaluating just 90 summaries per language. 269

3 Our Approach: Systematic Evaluation 270

of Summarization Across Languages 271

In this work we set out to systematically evaluate 272

automatic metrics, assessing their effectiveness and 273

reliability for non-English languages by assessing 274

the correlation achieved compared to human scores. 275

We do so via a comprehensive and controlled proto- 276

col, comprising ~20,000 human annotations while 277

assessing the various research dimensions and pre- 278

viously attested weaknesses. 279

Concretely, in this work we evaluate eight lan- 280

guages from four typological families, covering 281

2See Appendix A.2 for more details on the t-test.
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both low resource (L) and high resource (H) lan-282

guage in each group, including: Isolating (Chinese,283

zh (H); Yoruba, yo (L)), Agglutinative (Japanese, ja284

(H); Turkish, tr (L)), Low Fusional (Spanish, es (H)285

and Ukrainian, ukr (L)) and High Fusional (Arabic,286

ar (H); Hebrew, he (L)). Following Lai et al. (2023)287

method to classify languages using a threshold, we288

classified languages by token percentage (p) based289

on GPT-3’s pre-trained data distribution, relying290

on its broad multilingual coverage and reported291

data proportions.3 Specifically, we classified into292

low- (p < 0.1%) and high-resource (p ≥ 0.1%)293

languages.4 For language selection within each294

typological family, we followed Gerz et al. (2018)295

(see Section 2.2 for additional justifications).296

For each language-metric combination we per-297

form a correlation analysis with both general pur-298

pose metrics, as well as metrics tailored for mul-299

tilingual settings, e.g. BERTScore applied with300

mBERT or with language-specific BERT. Also,301

we have utilized COMET (Rei et al., 2020) which302

was specifically trained for evaluation and ROUGE303

score with language-specific tokenizers.5 Finally,304

to substantiate our results, we included at least 400305

samples per language and reported p-values for306

each evaluated dimension. For all experiments, we307

report inter-annotator agreement to enhance the308

credibility of our annotations.309

4 Data Collection310

To systematically assess the correlation between311

evaluation metrics and human rankings for abstrac-312

tive summarization, we engage human annotators313

to evaluate summaries generated by large language314

models (LLMs). Our data collection evaluates doc-315

ument summaries in eight languages, chosen to316

represent four typological families with both low-317

and high-resource languages within each group.318

We used the XL-Sum dataset (Hasan et al., 2021),319

which provides news articles along with their320

human-generated summaries in various languages.321

For Hebrew, we used HeSum (Paz-Argaman et al.,322

2024). See Table 1 for categorization details.323

3https://github.com/openai/gpt-3/blob/
master/dataset_statistics

4Arabic, with less than 0.1% of tokens, was chosen as a
high-resource language due its worker availability and higher
pre-trained representation than Hebrew. See Appendix A.1 for
the full language proportions.

5See Appendix B.1 for all models and tokenizers we used.

Resource/Type Isolating Agglutinative High Fusion Low Fusion
High Resource Simplified Chinese (zh) Japanese (jp) Arabic (ar) Spanish (es)
Low Resource Yoruba (yor) Turkish (tr) Hebrew (he) Ukraine (ukr)

Table 1: Categorization of languages based on morpho-
logical typology and resource availability. ISO 639-1
language codes are provided in parentheses.

4.1 The Annotation Task: Summary Ranking 324

The task involves annotating two peer summaries, 325

produced by GPT-3.5-Turbo (0125) (Ouyang et al., 326

2022) and Gemini-1.0-pro (Team et al., 2023), by 327

comparing their content to the source article. The 328

evaluation procedure is as follows: (i) The annota- 329

tor reads the source content and the two peer sum- 330

maries. (ii) The annotator answers a question on 331

the article to prove language comprehension. (iii) 332

The annotator evaluates each summary using 1-4 333

Likert scale (Likert, 1932) based on two quality cri- 334

teria (QC): coherence, which assess the summaries’ 335

grammaticality and readability, and completeness, 336

which measures the degree to which they capture 337

the main ideas of the articles. The evaluation page 338

was set up to include the full source article, instruc- 339

tions, definitions of the quality criteria, and two 340

generated summaries. For each summary and crite- 341

rion, there is a scale with four rating options. Ap- 342

pendix A.3 presents the UI interface we designed 343

and built for the assignment as displayed to the 344

annotators in Arabic and Spanish. Appendix A.4 345

gives more details on about the collection protocol. 346

4.2 Ensuring High Annotation Consistency 347

To ensure annotation reliability, we hired anno- 348

tators through Amazon Mechanical Turk (MTurk) 349

(100+ approved HITs, 90%+ approval rate) with ge- 350

ographic constraints aligned to the target languages. 351

For some languages, we were unable to recruit na- 352

tive speakers in their country of birth due to various 353

restrictions and sourcing difficulties; in such cases, 354

we hired native speakers residing in other coun- 355

tries.6 Additionally, we recruited qualified students 356

who passed a matching questionnaire. In total, we 357

recruited 36 raters across 13 locales.7 To improve 358

annotation quality, each model-generated summary 359

was ranked by three different participants. For cor- 360

relation analysis, we used the average score. 361

To verify understanding of the source content we 362

created a Gemini-generated qualification question 363

based on the article to filter annotations from mis- 364

6In these cases, we used the qualification question to assess
the participant’s language skills.

7See Table 3 for participants’ demographics.
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Family Language (L/H) Novel n-grams Redundancy Compression Mean Token Length

1-gram 2-gram 3-gram 4-gram n=1 n=2

Isolating ZH (H) 27.52 67.23 83.82 91.29 14.86 2.34 83.71 53.56
YOR (L) 38.90 60.85 69.38 73.84 32.85 8.03 62.17 105.29

Agglutinative JP (H) 24.29 54.12 69.62 78.23 49.08 15.93 79.22 188.37
TR (L) 41.76 71.44 84.56 90.76 18.41 2.37 72.71 69.95

Low Fusional ES (H) 28.00 63.15 81.16 89.11 26.28 2.83 81.94 83.17
UKR (L) 42.01 73.49 86.72 92.39 18.53 2.21 74.85 66.22

High Fusional AR (H) 47.73 78.72 89.75 94.59 15.05 1.62 77.36 62.32
HE (L) 45.06 75.14 86.75 92.01 20.83 3.49 84.28 80.85

Table 2: Model-Generated Summaries Intrinsic Evaluation per language.

Country of Residence Total Workers Percentage (%)

United States 5 13.9
Nigeria 2 5.6
West Africa 2 5.6
Turkey 3 8.3
Egypt 1 2.8
Jordan 1 2.8
Libya 2 5.6
Ukraine 5 13.9
Israel 5 13.9
Spain 4 11.1
Mexico 1 2.8
Argentina 2 5.6
Venezuela 2 5.6
Japan 1 2.8

Total 36 100.0

Table 3: Distribution of Workers by Country of Birth.

understood articles.8 To measure the consistency365

of the annotators’ scores, we calculated Krippen-366

dorff’s α (Krippendorff, 2011) for an interval scale367

per language.368

Moreover, to achieve a diverse distribution of369

scores, we artificially corrupted one-third of the370

data by randomly degrading quality criteria.9 For371

coherence, we replaced nouns and verbs with their372

lemma forms, creating ungrammatical sentences.373

Additionally, we reordered non-adjacent sentences374

to disrupt the flow. For completeness, we replaced375

named entities in the summary with others from376

the original text and inserted a random, unrelated377

sentence.10378

5 Correlation Analysis379

Having collected the data, we use it to calculate the380

Pearson correlation (Cohen et al., 2009) between381

human evaluation and automatic metric scores. In382

this Section, we first analyze the collected data383

(Section 5.1), we then display the assessed eval-384

8See Appendix A.6 for details on the qualification task.
9This approach was adopted following a previous data

collection attempt without corruption, which revealed that the
scores were clustered and displayed low dispersion.

10See Appendix A.5 for more corruption details.

uation metrics we used (Section 5.2), and finally 385

we present the analysis of metric correlation with 386

human scores for different languages (Section 5.3). 387

5.1 Data Analysis 388

Model-Generated Summaries Analysis To em- 389

pirically quantify the properties of the model- 390

generated summaries we use 4 established metrics: 391

(i) Abstactness (novel n-grams) – the percentage 392

of summary n-grams absent in the article (Narayan 393

et al., 2018). (ii) Redundancy (RED) – measures 394

repetitive n-grams within a summary (S) using the 395

formula: RED(S) =
∑m

i=1(fi−1)∑m
i=1 fi

where m is the 396

number of unique n-grams in the summary and fi 397

represents a frequency of specific n-gram within 398

the summary. (iii) Compression Ratio (CMP) – the 399

word counts in summary (S) divided by the cor- 400

responding article (A): CMPw(S,A) = 1 − |S|
|A| . 401

Higher compression ratios result in greater reduc- 402

tion at the word level, which can make the summa- 403

rization task more difficult (Bommasani and Cardie, 404

2020). (iv) Mean Token Length – The average token 405

count per summary by a word-delimited tokenizer. 406

Table 2 presents a quantitative analysis of 407

the characteristics of model-generated summaries, 408

highlighting the challenges in evaluating our data. 409

Languages with a high level of abstractness (> 35 410

novel 1-gram) tend to be more difficult to evaluate 411

using n-gram-based metrics due to their novel, dis- 412

tilled, and non-redundant nature. This challenge is 413

particularly pronounced in high-fusion languages, 414

which, in addition to their high level of abstractness 415

often exhibit more complex linguistic structures. 416

Human Annotation Analysis Table 4 presents 417

the statistics of the collected human annotations 418

across languages. The average agreement rate, mea- 419

sured using Krippendorff’s α, is 0.4 for coherence 420

and 0.47 for completeness, indicating moderate 421
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Lang. Agreement Avg. Score (Std) Avg. Gap (Std) # Ann.

Coh. Com. Coh. Com. Coh. Com.

ZH 0.35 0.35 3.2 (0.8) 3.2 (0.8) 1.0 (0.7) 1.0 (0.8) 1504
YOR 0.40 0.49 3.0 (0.9) 3.1 (0.8) 1.0 (0.8) 0.9 (0.7) 1296
JA 0.61 0.40 3.5 (0.7) 3.4 (0.7) 0.8 (0.8) 0.7 (0.6) 188
TR 0.32 0.40 3.2 (0.9) 2.9 (1.0) 1.0 (0.9) 1.3 (0.9) 2200
AR 0.32 0.35 2.6 (0.8) 2.7 (0.7) 0.8 (0.8) 0.9 (0.7) 1352
HE 0.71 0.65 3.8 (1.1) 3.5 (1.2) 0.9 (0.9) 0.9 (0.9) 1284
ES 0.42 0.42 3.2 (0.9) 3.1 (0.7) 1.0 (1.0) 0.7 (0.7) 1464
UKR 0.46 0.62 3.3 (0.8) 3.2 (0.8) 0.8 (0.9) 0.9 (0.8) 2212

Table 4: Human Annotation Statistics: Krippendorff’s α
(agreement), average score, mean absolute gap between
Gemini and GPT annotations, and annotation count per
language. Coh. = Coherence, Com. = Completeness.

Figure 1: Elo score distribution of human annotations
for Gemini- and GPT-generated summaries across all
criteria. Coh. = Coherence, Com. = Completeness.

inter-annotator agreement. Scores range within422

[2, 3], and the mean absolute gap between human423

predictions for Gemini and GPT summaries is ∼1424

for all languages in both coherence and complete-425

ness, demonstrating the effectiveness of the applied426

corruption to spread results. Additionally, the data427

analysis helps predict outliers. For example, we428

hypothesize that languages with low agreement429

rates (e.g., Arabic) correlate with more outliers in430

correlation analysis (later filtered via qualification431

questions), while those with high agreement rates432

and moderate average scores (e.g., Japanese) sug-433

gest higher correlations.434

Using Elo rankings (Elo and Sloan, 1978) be-435

tween human annotations and the generated sum-436

maries, as shown in Figure 1, we observe that Gem-437

ini summaries are generally ranked higher for high-438

fusional and low-resource languages, while GPT439

summaries are ranked higher for high-resource lan-440

guages. Additionally, it is interesting to note that441

in all cases the same model is ranked higher for442

both criteria, which is possibly due to the halo443

effect, where an overall impression influences judg-444

ments across multiple specific aspects (Draws et al.,445

2021).446

5.2 Assessed Metrics for Summarization 447

We assess a total of 10 evaluation metrics that 448

are commonly used in summarization: N-Gram 449

Metrics: measuring the lexical overlap (word 450

to word) between the system and reference sum- 451

maries. For this evaluation, we used ROUGE (Lin, 452

2004), considering four variants: ROUGE-1 (uni- 453

gram), ROUGE-2 (bigram), ROUGE-3 (trigram), 454

ROUGE-L (longest common subsequence). CHRF 455

(Popović, 2015) — measuring the character n-gram 456

F-score; and BLEU (Papineni et al., 2002). We 457

have also utilized adapted n-grams for multilin- 458

gual use: ROUGE (mBERT Tokenizer) — lever- 459

ages Byte-Pair Encoding (BPE) tokenization from 460

BERT-multilingual (Kenton and Toutanova, 2019), 461

ensuring more accurate evaluation across 104 lan- 462

guages, and ROUGE (Monolingual) — equipped 463

with a language-specific tokenizer enabling evalua- 464

tion of adaptability to specific languages.11 465

Neural-Based Metrics: MoverScore (Zhao 466

et al., 2019) — measures the Euclidean distance be- 467

tween two contextualized BERT representations 468

and relies on soft alignments of words learned 469

by solving an optimization problem, utilized with 470

mBERT to support multilingual. BERTScore 471

(Zhang et al., 2019) — computes the similarity be- 472

tween BERT token embeddings of the system and 473

reference summaries. For multilingual evaluation, 474

we have used two extended versions: BERTScore 475

(mBERT) which was trained on 104 languages 476

(Kenton and Toutanova, 2019), and BERTScore 477

(Monolingual) — adapted with a language-specific 478

BERT. Gemini as a Judge (1.0-pro) (Team et al., 479

2023) — We used the Gemini model as an eval- 480

uator, which the given prompt was in the same 481

format as the one given to the annotators. COMET 482

(Rei et al., 2020) — we utilized the pre-trained 483

model wmt22-comet-da, built on the XLM-R model 484

(Conneau et al., 2019) and trained for machine 485

translation (MT) evaluation using a regression- 486

based objective to minimize the mean squared er- 487

ror (MSE) between predicted quality scores and 488

human-annotated scores. To adapt COMET for 489

summarization evaluation, we excluded the source 490

input, as summarization assessment focuses on 491

comparing the generated summary to a human- 492

written reference. While COMET was designed 493

for MT, its applicability can be extended to summa- 494

rization, as both tasks are generative and involve 495

11See Appendix B.1 for the full list of the tokenizers we
used.

6



Criteria Coherence Completeness

Typological Family Isolating Agglutinative Low Fusional High Fusional Isolating Agglutinative Low Fusional High Fusional

N-Gram Metrics

1 ROUGE1 0.20** 0.27** 0.11* -0.25** 0.15** 0.11** 0.08* -0.20**
2 ROUGE2 0.20** 0.28** 0.11* -0.07** 0.14** 0.14** 0.08* -0.03
3 ROUGE3 0.16** 0.27** 0.09* -0.01** 0.12** 0.10* 0.01* 0.02
5 ROUGEL 0.19** 0.23** 0.11* -0.23** 0.15** 0.10* 0.08* -0.18**
6 BLEU 0.03** 0.03 0.11** -0.30** 0.02 0.05* 0.07* -0.10**
7 CHRF 0.02** 0.09 0.16** -0.46** 0.01* 0.01* 0.14* -0.38**
8 ROUGE1 (mBERT Tokenizer) 0.14** 0.18** 0.15** 0.10** 0.10* 0.09* 0.14** 0.15**
9 ROUGE2 (mBERT Tokenizer) 0.14** 0.20** 0.15** 0.11* 0.10* 0.09* 0.19** 0.15**

10 ROUGE3 (mBERT Tokenizer) 0.12** 0.22** 0.12** 0.11* 0.10* 0.07* 0.15** 0.14**
11 ROUGEL (mBERT Tokenizer) 0.14** 0.17** 0.13** 0.08* 0.11* 0.05* 0.13** 0.12**
12 ROUGE1 (Monolingual) 0.17** 0.23** 0.11** 0.02* 0.07 0.13* 0.06* 0.07**
13 ROUGE2 (Monolingual) 0.12** 0.25** 0.12** 0.09 0.12* 0.13* 0.07* 0.14**
14 ROUGE3 (Monolingual) 0.07** 0.24** 0.13** 0.07 0.07 0.08* 0.02* 0.09*
15 ROUGEL (Monolingual) 0.10** 0.22** 0.11** 0.03 0.08 0.12* 0.07* 0.11*
16 BLEU (Lemmatized Form) N.A N.A 0.15** 0.30** N.A N.A* 0.08* 0.40*

Neural-Based Metrics

17 Gemini as a Judge 0.15** 0.03 0.15* 0.05* 0.14** 0.16** 0.10** 0.09**

18 MoverScore 0.07** 0.15* 0.18* 0.02 0.08 0.10* 0.17** 0.08*
19 BERTScore (mBERT) 0.09** 0.15** 0.19** 0.15* 0.13** 0.07* 0.16** 0.13**
20 BERTScore (Monolingual) 0.13** 0.32** 0.20** 0.17* 0.12** 0.21** -0.03* 0.15**

21 COMET 0.07** 0.23** 0.23** 0.35* 0.16** 0.18** 0.24** 0.24**

Table 5: Pearson correlation between resource types and evaluation metrics. Significance: * p < 0.05, ** p < 0.01.
The dashed line separates English-based from multilingual metrics. The highest correlation per column is in bold.

evaluating a predicted output against a reference.496

5.3 Results and Analysis497

Having collected the human annotations, we now498

examine the Pearson correlation between the hu-499

man annotations with both n-gram and neural met-500

rics. We aim to investigate what influences the501

correlation and assess systematically the ways that502

have been proposed to mitigate poor correlation.503

To achieve this, we analyze several aspects, includ-504

ing language typology family, resource availabil-505

ity, and metrics that are adapted to multilingual506

evaluation. Table 5 shows the correlation from a507

typological family, while Table 6 presents the cor-508

relation from a resource-type perspective. See the509

Appendix B.2 for the correlations per language.12510

The Impact of Typological Family Table 5 ex-511

amines the Pearson correlations from the typolog-512

ical family perspective. The correlations for each513

family were measured across all the languages514

within the respective linguistic family. Overall,515

it appears that n-gram metrics are sensitive to the516

typological family of the language, while neural517

metrics have not shown this tendency. For exam-518

ple, for both criteria, fusional languages exhibit519

weaker correlations with human judgments, with520

low correlations for Low-Fusional languages and521

even negative correlations for High-Fusional lan-522

guages, due to their rich morphology (lines 1-7).523

However, for neural-based metrics, the typological524

12Also, correlations using Spearman’s rank correlation.

family appears to play a less critical role. For in- 525

stance, low-fusional languages achieve the highest 526

correlation for BERTScore (mBERT) (line 19) in 527

both criteria. Interestingly, COMET exhibits an 528

inverse trend compared to n-gram metrics, consis- 529

tently showing a better correlation with fusional 530

languages (line 21). Additionally, the results for 531

n-gram metrics not adapted to multilingual (lines 532

1-7) show that agglutinative languages displayed 533

better correlations with human scores than Isolating 534

languages in coherence while Isolating languages 535

showed a better correlation in completeness. The 536

advantage of agglutinative languages over Isolating 537

languages is surprising, given that these families 538

tend to have more complex morphological struc- 539

tures due to longer morphemes, which can be more 540

challenging to tokenizers.13 Overall, neural-based 541

metrics show a stronger correlation than gen-gram- 542

based metrics. 543

The Impact of Resource Level Table 6 presents 544

the Pearson correlation between human annota- 545

tions (by resource type) and neural metrics, eval- 546

uating coherence and completeness for high- and 547

low-resource languages. The results indicate that 548

Gemini exhibits the lowest correlations with human 549

scores among other multilingual models for both 550

13We acknowledge that the disparity may stem from the
poor quality of generated summaries in Yoruba, a low-resource
language compared to Turkish. We hypothesize that the low
generation quality contributed to the weak performance of
automatic metrics, despite the relatively high human scores in
Table 4, which may explain the low correlation observed.
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Criteria Coherence Completeness

Resource Type High Low High Low

Gemini as a Judge 0.19* 0.13** 0.08** 0.12**

MoverScore 0.16** 0.13** 0.10* 0.06*
BERTScore (mBERT) 0.23** 0.16** 0.16** 0.15**
BERTScore (Monolingual) 0.27** 0.16** 0.17** 0.21**

COMET 0.32** 0.18** 0.13** 0.24**

Table 6: Pearson correlation between low- and high-
resource human annotations and neural-based metrics.
significance levels denoted by: * p < 0.05, ** p < 0.01.

criteria, regardless of language resource level, in-551

dicating that LLMs as judges still lag behind other552

metrics. Furthermore, the table presents an ad-553

vantage for using language-specific BERT models,554

over multilingual BERT (mBERT), suggesting that555

a dedicated tokenizer improves correlation more556

than training on larger, non-specific datasets.14557

Notably, COMET shows the strongest correla-558

tion with human scores for coherence and outper-559

forms in completeness for low-resource languages560

compared to high-resource ones. This can be at-561

tributed to COMET’s unique training for genera-562

tive evaluation tasks, enabling it to better capture563

human-like evaluation, especially in challenging564

scenarios. Its performance underscores the poten-565

tial of task-specific training to bridge the gap be-566

tween automated metrics and human evaluation,567

particularly for low-resource languages. We hy-568

pothesize that a metric trained specifically for sum-569

marization evaluation could perform even better.570

The Impact of Metrics Adapted to non-English571

Languages The results in Table 5 highlight the572

importance of adequate tokenizers for fusional lan-573

guages and in particular for isolating and aggluti-574

native languages in completeness evaluation (lines575

1-7 vs. 8-15). For example, ROUGE with mBERT576

tokenizer or a language-specific tokenizer (lines577

8–15) improves correlation and can even reverse a578

negative correlation to a positive one in languages579

with highly morphological grammar, such as He-580

brew and Arabic (e.g., ROUGE-L in high-fusional581

languages improves from -0.23 to 0.08, lines 5 &582

11). Also, applying BLEU to the lemmatized text583

shows a significant improvement for fusional lan-584

guages, with the correlation increasing from -0.10585

to 0.40 for high-fusional languages (line 6 vs. 16).586

Notably, for isolating and agglutinative, cor-587

relations decrease, favoring the space-delimited588

14A comprehensive list of the BERT models employed in
this study is provided in Appendix B.1.

ROUGE variation. We hypothesize that tokenizers 589

struggle with the long morphological sequences 590

in agglutinative languages, making it difficult to 591

split morphemes correctly. As a result, tokeniza- 592

tion with space delimitation may be more effective. 593

However, for completeness, the adapted variations 594

have shown better performance. The inverse corre- 595

lation is also observed, with positive correlations 596

for BERTScore variations and MoverScore in high- 597

fusional languages (lines 18-20). Additionally, us- 598

ing models not trained on non-English languages 599

is suboptimal, as shown in Table 6, where Mover- 600

Score—untrained on non-English—performs worst 601

for both coherence and completeness. 602

6 Conclusion 603

In this work, we systematically evaluate the relia- 604

bility of automatic metrics of evaluation for gen- 605

eration in non-English languages through a com- 606

prehensive correlation analysis with human anno- 607

tations. We aim to identify the linguistic factors 608

that influence these correlation and asses new met- 609

rics and approaches designed for the multilingual 610

summarization evaluation task. 611

Our annotation protocol addresses previous 612

weaknesses, including limited typological family 613

and resource type coverage, insufficient evalua- 614

tion of diverse metrics (particularly neural-network- 615

based models trained for evaluation), and adap- 616

tation of general-purpose metrics to non-English 617

languages. We also provide statistical validation, 618

unlike prior non-English evaluations lacking sta- 619

tistical significance reports. We crowd-sourced 620

rank annotations for eight languages representing 621

diverse typological families, each with different 622

word boundaries, a key factor for n-gram-based 623

metrics. To bridge the gap in evaluating neural 624

network metrics, we included both high- and low- 625

resource languages within each typological group. 626

Based on our findings, which highlight the lim- 627

ited ability of n-gram metrics to handle complex 628

linguistic structures, such as those found in fusional 629

languages, compared to neural network-based met- 630

rics—particularly those trained for multilingual 631

evaluation of generative models—we recommend 632

transitioning from n-grams to neural networks 633

specifically trained for multilingual summarization 634

tasks. As an intermediate solution during this tran- 635

sition, when using n-grams for fusional languages, 636

we suggest employing tokenization techniques that 637

can break down complex linguistic structures. 638
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Limitations639

Evaluation Criteria Although we have used co-640

herence and consistency as evaluation criteria (Han641

et al., 2024; Forde et al., 2024), we acknowledge642

that the common approach, based on SummEval643

(Fabbri et al., 2021), typically incorporates fluency,644

coherence, consistency, and relevance. However,645

our previous experiments revealed an extremely646

low inter-annotator agreement rate (~0), suggest-647

ing that annotators struggled to distinguish subtle648

differences among all four metrics. To mitigate649

this issue, we narrowed our focus to coherence and650

consistency, as they offer a more straightforward651

and reliable basis for evaluation.652

Number of Samples To cover diverse typolog-653

ical groups and resource levels while relying on654

available crowd workers, sample sizes vary across655

languages. For example, Japanese had only one656

worker, leading to a smaller dataset than other lan-657

guages.658
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A Data Collection 911

A.1 Language Selection 912

Table 8 displays the full resource-type categoriza- 913

tion per language we have defined using GPT-3 914

pre-trained data. 915

A.2 Power Analysis for Sample Size 916

To ensure the reliability of our statistical tests, we 917

conducted a power analysis to determine the mini- 918

mum required sample size for detecting a statistical 919

correlation (p− value ≤ 0.05). we applied a t-test 920

power analysis and computed the required sample 921

size per group to achieve these conditions. The 922

analysis revealed that a minimum of ~400 sam- 923

ples per language is necessary for a well-powered 924

correlation. 925

A.3 Participant Interface 926

The tasks are performed using a custom-built ap- 927

plication displayed via mTurk, as shown in Figures 928

2-5. The task is in Arabic, for example; see Figure 929

6 for a Spanish example. 930

A.4 Data Collection Details 931

We utilized Amazon Mechanical Turk (MTurk) to 932

distribute the task to various workers. For the stu- 933

dent participants, all were undergraduate students 934

from the linguistics field. To provide a custom user 935

interface (UI) for our evaluation, we developed a 936

JavaScript application and deployed it as a service 937

using Google Cloud Run.15. Subsequently, we con- 938

nected the MTurk participants to this service. 939

All participants were compensated in full, re- 940

gardless of whether they correctly completed the 941

task. The payment was set at $2.5 for rating 5 pairs 942

of summaries, which we estimated would take ap- 943

proximately 10–15 minutes to complete. 944

Drawing lessons from previous studies, we in- 945

vested significant effort into enhancing the user 946

experience (UX) and the visual design of the ap- 947

plication. This focus ensured that the interface 948

was both intuitive and visually appealing, thereby 949

improving participant engagement and task perfor- 950

mance. 951

15https://cloud.google.com/run
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A.5 Data Corruption952

We have experimented with the following corrup-953

tions of the generated summaries concerning each954

quality criteria: Coherence: All verbs were re-955

placed with their lemma forms, resulting in ungram-956

matical sentences. We removed random words957

from each sentence and replaced conjunctions with958

alternatives for languages without a lemmatizer959

(e.g., Chinese, Japanese, and Yoruba). In addition,960

reorder two sentences that are not adjacent. This961

corruption is inspired by the Shuffle Test Barzi-962

lay and Lapata (2008) used to evaluate whether963

models can detect incoherent text. Completness:964

Named entities with the same labels (e.g., PER-965

SON and LOCATION) were shuffled within the966

summary. This is a common factual mistake of967

models (Pagnoni et al., 2021). Additionally, a ran-968

dom sentence from another article was inserted into969

the summary. Table 9 provides an example for a970

clean sentence and it’s corrupted version.971

A.6 Qualification Task972

To filter out unqualified annotators, each was973

required to answer a generated question about974

the article in their native language. The model975

was prompted as follows: Given the text:976

<TEXT> in <LANGUAGE>, generate a977

single-sentence question whose978

answer is found in the text.979

B Correlation Analysis980

B.1 Implementation Details981

Language-Specific BERT Models See Table 7982

for the list of Bert models we used for each lan-983

guage.984

Python Libraries To use BERTScore (mBERT),985

we employed the official implementation. For986

ROUGE (mBERT) and BPE tokenization, we used987

Multilingual-Rouge-Scorer.20 For ROUGE (Lan-988

guage Tokenizer), we used the standard ROUGE989

package commonly applied in non-English pa-990

pers.21 For other metrics, we used the implementa-991

tion from SummEval (Fabbri et al., 2021).22. We992

have used ChatGPT for assistance in coding the993

evaluation framework.994

20https://github.com/faisaltareque/
Multilingual-Rouge-Scorer/tree/main

21https://github.com/csebuetnlp/xl-sum/
tree/master/multilingual_rouge_scoring

22https://github.com/Yale-LILY/SummEval

B.2 Results 995

See Table 11 for the full correlation for each lan- 996

guage and metric. Also, Table 10 shows the cor- 997

relation measured by Spearman’s rank correlation 998

coefficient. 999
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Language BERT Model NER Model Lemmatizer

Turkish bert-base-turkish-cased bert-base-turkish-cased-ner 16 zeyrek 17

Hebrew DiktaBERT DiktaBERT Shmidman et al. (2023) DiktaBERT
Arabic bert-base-arabic CAMeL-Lab/bert-base-arabic-camelbert-msa-ner 18 qalsadi 19

Chinese bert-base-chinese zh_core_web_sm (spacy) N.A
Japanese bert-base-japanese-v3 ja_core_news_sm (spacy) N.A
Spanish bert-base-spanish-wwm-cased es_core_news_sm (spacy) es_core_news_md
Ukrainian bert-base-multilingual-cased uk_core_news_sm (spacy) uk_core_news_sm
Yoruba bert-base-multilingual-cased N.A N.A

Table 7: Language-specific BERT models, NER models, and lemmatizers.

Language Lang Code Number of Tokens Percentage of Tokens (p%) Class

English en 181,015 92.64% A+

Spanish es 1,510 0.77289% A
Japanese ja 217 0.11109% A
Chinese zh 194 0.09905% A

Turkish tr 116 0.05944% B
Arabic ar 61 0.03114% A
Hebrew he 15 0.00769% B

Ukrainian ukr 14 0.00763% B
Yoruba yor 0 0.00000% B

Table 8: List of languages, language codes, number
of tokens in pre-trained GPT-3 data, data ratios. The
languages are grouped into two classes based on their
data ratios in the GPT-3 pre-trained data: High Resource
(p > 0.1%), Low Resource (p < 0.1%)
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Criterion Rule Example

Coherence
Replace with lemmas Clean: The athletes are preparing for the championship.Corrupt: The athlete be prepare for the championship.
Replace conjunctions Clean: Policies address rising inflation.Corrupt: Policies however address rising inflation.

Reorder non-adjacent sentences Clean: The center is hosting a charity event. Volunteers are needed.Corrupt: Volunteers are needed. The center is hosting a charity event.

Completness Replace named entities Clean: Joe Biden met Britney Spears at a charity event.Corrupt: Britney Spears, former president, met Joe Biden.
Insert irrelevant sentence Clean: Scientists found a new fish species in the Amazon.Corrupt: Scientists found a new fish species. A bakery is giving free cake samples.

Table 9: Examples of clean and corrupt sentences based on coherence and completeness criteria.

Figure 2: Participant Interface in a closed mode: The interface includes three drop-down sections: Instructions,
Qualification and the Annotation task.
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Figure 3: The Participant Instructions Interface: The participant has general steps and a detailed explanation and
examples of each tested criteria.
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Figure 4: The Participant Qualification Interface: The human summary is displayed at the top (the example is
in Arabic), while the Qualification section below requires the participant to fill in their home state and answer
a question generated by Gemini based on the human summary, designed to assess basic comprehension of the
provided summary.

Figure 5: The Participant Annotation Interface: Two summaries are displayed side by side. Each criterion includes
a slider ranging from 1 to 4, along with an info hover feature providing a reminder of the criterion’s definition.
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Figure 6: The Participant Annotation Interface: displayed in Spanish

Coherence Completeness

Typological Family Isolating Agglutinative High Fusional Low Fusional Isolating Agglutinative High Fusional Low Fusional
Language Code ZH YOR JA TR AR HE ES UKR ZH YOR JA TR AR HE ES UKR

N-Gram Metrics

1 ROUGE1 0.06 0.06 0.25** 0.28* 0.14* -0.31** 0.16** 0.13* 0.11** 0.06 0.20* 0.08 0.19** -0.26** 0.11* 0.16*
2 ROUGE2 0.07 0.08* 0.23* 0.31* 0.13* -0.14* 0.15* 0.08 0.12** 0.10 0.21* 0.13* 0.17* 0.06 0.10 0.08
3 ROUGE3 0.08 0.06* 0.23* 0.28* 0.14* -0.07 0.08* 0.10* 0.12** 0.06* 0.19* 0.06 0.13* 0.18** 0.07 -0.02
4 ROUGEL 0.06 0.08 0.28* 0.28* 0.10* -0.26** 0.17** 0.09 0.10 0.10* 0.25* 0.09* 0.16* -0.26** 0.12* 0.13*
5 CHRF 0.08 0.02 0.27* 0.25* 0.12* -0.21** 0.15** 0.17** 0.10* 0.02 0.23** 0.19* 0.18* -0.41** 0.13* 0.17**
6 BLEU 0.08 0.10* N.A 0.24* 0.14* -0.16* 0.11** 0.15* -0.05 0.11* 0.24** 0.05 0.12* -0.38** 0.06 0.04
7 ROUGEL (mBERT Tokenizer) 0.10** 0.07* 0.13* 0.21* 0.03 0.36** 0.13** 0.04 0.08 0.09* 0.09* 0.03 0.12* 0.40** 0.09* 0.12*
8 ROUGEL (Language Tokenizer) 0.07 -0.02 0.10* 0.20* 0.04 0.30* 0.13* 0.11* 0.04 -0.02 0.12* 0.06 0.17* 0.40** 0.11* 0.12*

Neural-Based Metrics

11 BERTScore Monolingual 0.10* -0.02 0.30 0.33* 0.10* 0.0 0.24** 0.12* 0.16 0.01 0.26* 0.11** 0.14* 0.13 0.15* 0.21**
12 BERTScore (mBERT) 0.12* 0.02 0.27* 0.25* 0.08* -0.15* 0.22** 0.11* 0.21 0.03 0.24* 0.10* 0.12* -0.06 0.15* 0.15*
13 COMET 0.13* 0.00 0.27* 0.23* 0.00 0.38 0.27** 0.16 0.23** 0.02 0.24* 0.11* 0.25** 0.49** 0.09 0.25*
14 Gemini Model 0.07* 0.11* 0.27 0.08* 0.03 -0.10 0.16** 0.16** 0.05 0.16* 0.23* 0.19** 0.19** 0.12 0.06 0.06

Table 10: Spearman correlation between language and evaluation metrics. Significance levels are denoted by: *
p < 0.05, ** p < 0.01. The dashed line separates the English-based metrics from the multilingual metrics.

Coherence Completeness

Typological Family Isolating Agglutinative High Fusional Low Fusional Isolating Agglutinative High Fusional Low Fusional
Language Code ZH YOR JA TR AR HE ES UKR ZH YOR JA TR AR HE ES UKR

N-Gram Metrics

1 ROUGE1 0.09* 0.12* 0.25** 0.33* 0.10* -0.31** 0.18** 0.09* 0.10** 0.11** 0.15* 0.08** 0.14** -0.23** 0.13* 0.15*
2 ROUGE2 0.11* 0.14* 0.20* 0.45* 0.10* -0.14* 0.14* 0.06* 0.10** 0.11** 0.16* 0.12* 0.13* -0.06 0.11* 0.10*
3 ROUGE3 0.11* 0.08 0.20* 0.36* 0.12* -0.07 0.08* 0.08* 0.10** 0.08** 0.16* 0.07 0.11* -0.01 0.07 0.00
4 ROUGEL 0.10* 0.14** 0.23* 0.34* 0.06* -0.26** 0.19** 0.06* 0.10 0.12** 0.19* 0.09* 0.10* -0.21** 0.13* 0.11**
5 CHRF 0.10* 0.11 0.22* 0.31* 0.09* -0.21** 0.18** 0.12* 0.10* -0.16** 0.18* 0.11* 0.14* -0.12* 0.14* 0.15**
6 BLEU -0.03 0.13* N.A 0.36* 0.06* -0.16* 0.10** 0.10* -0.03 -0.38** 0.10 0.05 0.09( -0.08 0.10* 0.00*
7 ROUGEL (mBERT Tokenizer) -0.05* 0.10* 0.30* 0.28* 0.09* 0.46** 0.18** 0.12* 0.11* 0.10* 0.21* 0.05 0.12* 0.49** 0.09 0.10
8 ROUGEL (Language Tokenizer) -0.06* 0.14** 0.25* 0.32* 0.11* 0.3* 0.17* 0.10* 0.08* 0.00 0.21* 0.08 0.17* 0.47** 0.09 0.09
9 ROUGEL (Llema Form) N.A N.A N.A 0.29* 0.09 0.42* 0.15* 0.14** N.A N.A N.A 0.10* 0.12* 0.46* 0.10 0.09*

Neural-Based Metrics

10 BERTScore 0.02 0.16* 0.16* 0.07 0.10* -0.01 0.19** 0.09* 0.20** 0.25** 0.17* 0.12* 0.14* 0.17* 0.17* 0.13*
11 BERTScore Monolingual 0.12* 0.04 0.09 0.31* 0.09* 0.0 0.27** 0.07* 0.09 0.07 0.19* 0.11** 0.15* 0.11 0.17* 0.15**
12 BERTScore (mBERT) 0.11* 0.09* 0.22* 0.23* 0.05* -0.15* 0.23** 0.08* 0.10 0.15* 0.17* 0.09* 0.09* -0.07 0.16* 0.21**
13 COMET 0.08* 0.01 0.21* 0.21* 0.10 0.38 0.32** 0.11* 0.24** 0.06** 0.18* 0.09* 0.23** 0.17** 0.14* 0.25*
14 Gemini Model 0.16** 0.01 0.23* 0.08* 0.03 -0.10 0.19** 0.16** 0.11* 0.16** 0.20* 0.16** 0.16** 0.00 0.09 0.10*

Table 11: Pearson correlation between language and evaluation metrics. Significance levels are denoted by: *
p < 0.05, ** p < 0.01. The dashed line separates the English-based metrics from the multilingual metrics.
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