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Abstract

In recent years, Large Language Models001
(LLMs) have demonstrated exceptional pro-002
ficiency across a broad spectrum of Natural003
Language Processing (NLP) tasks, including004
Machine Translation. However, previous meth-005
ods predominantly relied on iterative processes006
such as instruction fine-tuning or continual pre-007
training, leaving unexplored the challenges of008
training LLMs solely on parallel data. In this009
work, we introduce PLUME (Parallel Language010
Model), a collection of three 2B LLMs featur-011
ing varying vocabulary sizes (32k, 128k, and012
256k) trained exclusively on Catalan-centric013
parallel examples. These models perform com-014
parably to previous encoder-decoder architec-015
tures on 16 supervised translation directions016
and 56 zero-shot ones. Utilizing this set of mod-017
els, we conduct a thorough investigation into018
the translation capabilities of LLMs, probing019
their performance, the impact of the different020
elements of the prompt, and their cross-lingual021
representation space. We will make our models022
publicly available1.023

1 Introduction024

Neural Machine Translation (NMT) has tradition-025

ally relied on encoder-decoder architectures, where026

an encoder processes the source sentence and a de-027

coder generates the target sentence based on the028

encoder’s output. However, recent advancements029

have moved away from this paradigm, with the030

introduction of decoder-only Large Language Mod-031

els (LLMs). In these models, the source sentence032

acts as a prompt, eliminating the need for a conven-033

tional encoder.034

With the rise of LLMs, research has increasingly035

focused on adapting these models for translation036

tasks by using techniques such as prompt-tuning037

(Zhang et al., 2023), instruction-finetuning (Xu038

1We release anonymous code at https://anonymous.
4open.science/r/Plume_fork-69D1

et al., 2024), or continual pretraining (Rei et al., 039

2022a). While these methods have shown impres- 040

sive results, they open new questions about the 041

performance of LLMs when trained exclusively 042

on parallel data, and therefore, the possibility of 043

having models that are trained directly on the task 044

of machine translation. Additionally, the major- 045

ity of these models are trained predominantly on 046

English-centric-corpora. 047

To address these questions, our paper proposes a 048

new approach consisting of training LLMs solely 049

on parallel corpora to evaluate their efficacy in 050

machine translation (MT). Our investigation re- 051

volves around questions such as: How does an 052

LLM trained exclusively on parallel data perform? 053

And how does the model leverage prompt informa- 054

tion to ensure accurate translations? 055

Our contributions are twofold: Firstly, we intro- 056

duce PLUME (Parallel Language Model), an inno- 057

vative ensemble comprising three multilingual 2B 058

LLMs, trained from scratch on Catalan-centric par- 059

allel data. Each model has a different vocabulary 060

size (32k, 128k and 256k). All models are profi- 061

cient in 16 supervised translation directions, as well 062

as 56 zero-shot translation directions. Results show 063

comparable results to previous encoder-decoder 064

architectures of similar size. 065

Secondly, to understand how these models work, 066

we study how they utilize contextual information 067

across different layers to execute translation tasks 068

effectively. Our experiments show distinctive atten- 069

tion patterns associated with the different parts of 070

the prompt, and how they vary through the different 071

attention blocks. We also observe how languages 072

use the source tag information differently, leading 073

to a large performance variability when this token 074

is missing. As a byproduct, we propose a strat- 075

egy to remove attention heads with minimal per- 076

formance loss. Finally, we study the cross-lingual 077

space learned by the models and how it progresses 078

through the model’s attention blocks. 079
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2 Related work080

Neural Machine Translation (NMT) has predom-081

inantly relied on encoder-decoder architectures082

(Cho et al., 2014; Bahdanau et al., 2015; Sutskever083

et al., 2014). These methods have proven effective084

by conditioning language models to generate trans-085

lations that accurately retain the meaning of the086

source sentence. Moreover, these systems are eas-087

ily extendable to multilingual scenarios, enabling088

zero-shot translation between language pairs that089

have not been seen together during training (Firat090

et al., 2016; Wu et al., 2016).091

Over the years, some approaches to NMT have092

dropped the traditional encoder-decoder setup to093

adopt decoder-only architectures (Fonollosa et al.,094

2019; He et al., 2018). Although these methods095

showed promise, they did not become the standard096

due to issues with context loss and hallucinations097

(Fu et al., 2023).098

Recent advancements in training Large Lan-099

guage Models (LLMs) (Touvron et al., 2023; Jiang100

et al., 2023; Gemma Team et al., 2024; Abdin et al.,101

2024), including techniques like scaling and Rotary102

Embeddings (Su et al., 2024), have significantly en-103

hanced the ability of decoder-only architectures104

to handle long contexts of hundreds or even thou-105

sands of tokens. Consequently, several studies have106

proposed leveraging pretrained LLMs for NMT107

through continual pretraining and instruction tun-108

ing (Alves et al., 2024; Xu et al., 2024; Yang et al.,109

2023). These methods have demonstrated results110

comparable to traditional encoder-decoder systems,111

while also supporting multiple translation direc-112

tions.113

However, training and adapting these systems to114

various languages remains challenging (Ali et al.,115

2024). Creating a vocabulary that accurately rep-116

resents all supported languages can lead to per-117

formance disparities of up to 68% on some down-118

stream tasks. Additionally, interpretability methods119

have gained popularity in order to understand bet-120

ter how models utilize provided information and to121

guide further improvements (Voita et al., 2019b,a;122

Ferrando et al., 2024).123

3 Methodology124

3.1 Catalan-Centric Dataset125

In order to study zero-shot translation using a126

decoder-only architecture, we employ a Catalan-127

centric dataset. This dataset pairs Catalan sentences128

with their counterparts in one of eight other lan- 129

guages: Spanish, French, Italian, Portuguese, Gali- 130

cian, German, English, and Basque. Specifically, 131

for each language, we include translation direc- 132

tions both to Catalan (xx→ca) and from Catalan 133

(ca→xx). The dataset consists of 783.6M sentences 134

and 30.9 billion words. 135

Data preprocessing All data is first filtered us- 136

ing LaBSE (Feng et al., 2022). Off-target transla- 137

tions are removed using the Lingua2 library. Fol- 138

lowing the filtering process, the data undergoes 139

deduplication and punctuation normalization using 140

the Bifixer library (Ramírez-Sánchez et al., 2020). 141

Further details about the dataset are provided in 142

Appendix A. 143

3.2 Tokenizer 144

Prior studies have shown that vocabulary overlap 145

plays a crucial role in zero-shot translation for 146

encoder-decoder architectures (Stap et al., 2023; 147

Tan and Monz, 2023). More related to our work 148

concerning tokenizer size in decoder-only architec- 149

tures is the study by Ali et al. (2024), who found 150

that larger vocabulary sizes lead to improved down- 151

stream performance in multilingual settings. The 152

main difference is that our focus is in Multilingual 153

Neural Machine Translation (MNMT) while Ali 154

et al. (2024) focused on more general multilingual 155

tasks (Natural language inference, Question An- 156

swering, etc.). 157

To investigate the impact of vocabulary shar- 158

ing on zero-shot MNMT for decoder-only architec- 159

tures, we train 3 tokenizers using BPE (Sennrich 160

et al., 2016) from the Huggingface tokenizer library 161

(Moi and Patry, 2023) with different vocabulary 162

sizes; 32k, 128k, and 256k. Regarding the train- 163

ing data used to train the tokenizer, recent work 164

has shown that while NMT performance is rela- 165

tively robust to language imbalance, better perfor- 166

mance is often achieved when languages are more 167

equally represented in the training data (Zhang 168

et al., 2022). In this work, we equally sample 169

Romance languages and we oversample English, 170

Basque, and German to avoid underrepresenting 171

these languages and to achieve near parity (Petrov 172

et al., 2024) and fertility among all language pairs. 173

More details about tokenizer experiments can be 174

found in Appendix B. 175

2https://github.com/pemistahl/lingua-py
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<s> [cat_Latn] I com és ell? D’on és? \n[spa_Latn] ¿Y cómo es él? ¿De dónde es? </s>

Begin of Sentence (BOS)

Source tag Source sentence

Target tag

Target sentence

End of sentence (EOS)

Figure 1: Prompt strategy used to train PLUME.

3.3 Model176

We trained one model for each of our three tokeniz-177

ers using the same architecture as GEMMA 2B3178

(Gemma Team et al., 2024) to train a 2 billion pa-179

rameter, transformer-based, decoder-only model.180

Following the scaling law proposed by (Hoffmann181

et al., 2022), each model was trained on 30.9 bil-182

lion words, corresponding to 54.7, 46.8, and 44.6183

billion tokens for vocabularies of 32k, 128k, and184

256k respectively. Details about the model size and185

model architecture can be found in Appendix C.186

3.4 Training187

We train all PLUME models with a context win-188

dow of 2048 tokens, utilizing the Adam optimizer189

(Kingma and Ba, 2015) and the causal language190

modeling objective. Note that the main focus of191

this study is to understand how LLMs perform192

translation. Thus, PLUME models are not trained193

for state-of-the-art performance on MNMT. A more194

detailed description of the training configuration195

can be found in Appendix D.196

Formatting Figure 1 presents an example of a197

formatted sentence for the Catalan to Spanish trans-198

lation direction. During batching, we concate-199

nate formatted sentences up to a context length200

of 2048 tokens, mixing different translation direc-201

tions within a single batch. Padding is added to fill202

out the remainder of the sequence.203

3.5 Evaluation204

To compute reference-based translation quality we205

use COMET-22 (Rei et al., 2022a) and BLEU206

(Papineni et al., 2002) metrics on the FLORES-200207

devtest (NLLB Team et al., 2022) and NTREX-101208

(Federmann et al., 2022) datasets. We additionally209

report CHRF (Popović, 2015) and COMET-KIWI-210

22 (Rei et al., 2022b) in appendix I. We use TOW-211

EREVAL4 (Alves et al., 2024) to compute all the212

evaluation metrics. For inference, we use beam213

3https://huggingface.co/google/gemma-2b
4TOWEREVAL uses the sacreBLEU implementation to

compute BLEU and CHRF metrics.

search decoding with a beam size of 5 and limiting 214

the translation length to 512 tokens. 215

We compare PLUME models with the following 216

bilingual and multilingual models. 217

• NLLB (NLLB Team et al., 2022): A trans- 218

former encoder-decoder model that supports 219

202 languages. We use the 600 million, the 220

1.3 billion, and the 3.3 billion parameter vari- 221

ants. 222

• Bilingual models BSC: Transformer encoder- 223

decoder models, trained from scratch on lan- 224

guage pairs that include Catalan. These 225

models were developed as part of the Aina 226

Project5. 227

It is important to note that NLLB has seen par- 228

allel data for our zero-shot directions, therefore 229

zero-shot only describes the condition in PLUME 230

models. Our setup is designed to study the potential 231

of a decoder-only architecture to perform zero-shot 232

translation, specifically using Catalan as the pivot 233

language. 234

4 Results 235

Table 1 shows results for all PLUME models ag- 236

gregated by supervised and zero-shot directions. 237

The PLUME 32k, 128k and 256k variants per- 238

form equally well in supervised directions, achiev- 239

ing similar BLEU and COMET scores for both 240

NTREX and FLORES-200 datasets. In supervised 241

directions, PLUME models demonstrate competi- 242

tive performance, matching the COMET scores of 243

the Bilingual BSC models and achieving scores 244

comparable to the NLLB variants. 245

In zero-shot directions, the PLUME models ex- 246

hibit a decline in performance compared to super- 247

vised directions. However, the decline is more pro- 248

nounced in the BLEU scores than in the COMET 249

scores, indicating that the overall quality remains 250

relatively robust. Specifically, the PLUME 256k 251

variant achieves a COMET score of 0.84 on the 252

5https://huggingface.co/projecte-aina
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Supervised directions Zero-shot directions

FLORES-200 NTREX FLORES-200 NTREX

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-3.3B 32.02 0.87 30.48 0.85 28.97 0.86 28.74 0.84
NLLB-1.3B 31.02 0.86 29.68 0.85 28.48 0.86 28.37 0.84
NLLB-600M 29.24 0.85 28.37 0.84 27.04 0.85 27.25 0.84
Bilinguals BSC 31.93 0.86 29.77 0.84 - - - -

PLUME 32k 30.44 0.86 28.46 0.84 23.25 0.83 23.03 0.80
PLUME 128k 30.81 0.86 28.78 0.84 23.97 0.83 23.53 0.81
PLUME 256k 30.72 0.86 28.87 0.84 24.42 0.84 23.81 0.81

Table 1: Averaged BLEU and COMET scores on supervised and zero-shot directions for FLORES-200 devtest
and NTREX.

FLORES-200 dataset and 0.81 on the NTREX253

dataset, which, although lower than its supervised254

performance, still demonstrates its zero-shot trans-255

lation capabilities when training using only Catalan256

as the bridge language.257

Larger vocabulary sizes improve zero-shot258

translation. The results in Table 1 show that259

higher vocabulary sizes consistently yield better260

zero-shot capabilities. Specifically, the PLUME261

256k variant outperforms the 32k and 128k vari-262

ants in zero-shot scenarios for both FLORES-200263

and NTREX datasets.264

To further understand the influence of the vo-265

cabulary size in zero-shot translation quality, we266

calculated the vocabulary overlap (Tan and Monz,267

2023) for each zero-shot translation direction as268

follows:269

Overlap =
|Vsrc ∩ Vtgt|

|Vtgt|
(1)270

where Vsrc, Vtgt are the set of unique words in271

the source and target language vocabulary respec-272

tively. We show the correlation between vocab-273

ulary overlap and both BLEU and COMET for274

zero-shot directions in table 2. On average there is275

a positive correlation between the vocabulary over-276

lap and the translation quality of 0.3 for BLEU and277

0.57 for COMET, which diminishes as vocabulary278

size increases. This suggests that vocabulary over-279

lap between the source and target languages further280

helps explain zero-shot performance, particularly281

for smaller vocabulary sizes.282

PLUME 32k PLUME 128k PLUME 256k

BLEU 0.351 0.280 0.255
COMET 0.593 0.588 0.538

Table 2: Correlation between vocabulary overlap and
BLEU, COMET metrics for different vocabulary sizes
in zero-shot directions.

4.1 Understanding translation with an LLM 283

Our goal is to understand how an LLM performs 284

translation. We start by examining which parts 285

of the prompt the model focuses on. This helps 286

us determine the most important attention heads 287

for each section of the prompt. Then, we study 288

the model’s cross-lingual representation space by 289

extracting contextualized token embeddings. 290

4.2 Attention 291

For each attention head, we assess its importance 292

by calculating coverage as defined by (Tu et al., 293

2016). Originally, coverage was proposed for 294

encoder-decoder attention and refers to the total 295

attention a source token receives from target to- 296

kens. We adapt coverage for masked-self attention. 297

Given a set of prompt’s tokens I , the coverage for- 298

mula for a single sentence is defined as: 299

covI(head) =
∑
j∈J

(∑
i∈I

αi,j

)2

(2) 300

where αi,j denotes the attention weight from 301

token i to token j and J represent the set of the 302

decoded (target) tokens. 303

Each coverage metric is computed and averaged 304

4



Figure 2: Coverage evaluating on FLORES-200 devtest using PLUME 32k. Each heatmap for each part of the
prompt shows the coverage scores for each layer (vertical axis) and for each head (horizontal axis) in the model.

over the FLORES-200 devtest for each head in the305

model and for each translation direction. To under-306

stand which part of the prompt the model is focus-307

ing on in each head we study coverage separately308

for different parts of the prompt: BOS, source tag,309

source sentence and target tag. Figure 3 shows a310

graphical illustration of the regions in the attention311

matrix that are used to compute coverage based on312

the part of the prompt.313

In Figure 2, we show the average coverage across314

all translation directions for each part of the prompt,315

employing PLUME 32k. We note that heads within316

the same layer generally exhibit similar coverage317

patterns. Future work may investigate how these318

patterns arise and how they are related to the usage319

of Multi-Query attention6 (Shazeer, 2019).320

We find that source tag is the part of the prompt321

with least coverage. However, BOS, source sen-322

tence and target tag tokens exhibit varying degrees323

of coverage with some coverage spikes in specific324

layers and heads. Interestingly, layers 5, 6, 10325

and 11 show coverage uniquely for the BOS token326

which suggests that all attention mass is given to the327

BOS token, leaving the residual stream unchanged.328

This patterns have recently been observed in auto-329

regressive language models and are named atten-330

tion sink mechanisms (Xiao et al., 2024; Ferrando331

and Voita, 2024; Ferrando et al., 2024; Cancedda,332

6When we use Multi-Query attention with num_kv_heads
set to 1, the keys and values are shared across all heads from
a specific layer and is only the query that differs which may
hinder the specialization of the heads.

2024). For instance, Cancedda (2024) demon- 333

strates that in Llama 2, the feed-forward blocks 334

embed crucial information into the residual stream 335

of the BOS token, enabling the attention sink mech- 336

anism to happen in subsequent layers. We show 337

in appendix E the coverage heatmaps for PLUME 338

128k and 256k. 339

Source tag importance As previously pointed 340

out, the source tag receives less attention than 341

the other parts of the prompt. Specifically, it has 342

<s>
[cat_Latn]

I
qui
és

ell?
\n[eng_Latn]

Who
is

he?

<s
>

[c
at

_L
at

n] I
qu

i és
el

l?
\n

[e
ng

_L
at

n]
W

ho is
he

?

Figure 3: Illustration of the regions in the attention
matrix used to compute coverage for each part of the
prompt. We show the cross-attention regions between
decoded tokens and the BOS, source tag, source sen-
tence and target tag tokens in green, yellow, blue, and
red, respectively.
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PLUME 32k PLUME 128k PLUME 256k

ca→xx -1.80 -0.54 -0.83
es→xx -0.43 0.23 -0.33
pt→xx -8.13 -6.01 -5.54
gl→xx -6.52 -4.18 -4.92
it→xx -6.57 -10.79 -5.03
fr→xx -13.16 -19.90 -17.63

de→xx -7.54 -2.73 -6.73
en→xx -19.83 -25.52 -20.03
eu→xx -16.73 -11.03 -13.23

Avg. -8.97 -8.94 -8.25

Table 3: Relative BLEU change with respect to PLUME
models after ignoring the source tag. We label languages
according to their BCP-47 language code (see Table 6
from Appendix A).

an average coverage of 0.56 which is 3.7 times343

less coverage than the target token or 18.5 times344

less coverage than the BOS token. This motivates345

our next experiments which consist of evaluating346

PLUME models without indicating the source lan-347

guage. Specifically, we replace the source tag with348

another BOS token to mantain the same learned349

positional encodings and evaluate the model’s per-350

formance on FLORES-200 devtest using BLEU.351

Table 3 shows the relative BLEU change with re-352

spect to the original model aggregated by language353

pair. Results show varying impacts across differ-354

ent language pairs when the source tag is omitted.355

For languages like English, French and Basque,356

the drop in BLEU scores is particularly significant.357

However, for other translation directions like Span-358

ish and Catalan, the decrease in BLEU scores is359

negligible. This suggests that the model is more360

reliant on the source tag to represent certain lan-361

guages, particularly those which are less related362

to the bridge language or those that the model has363

seen less during training.364

Regarding the vocabulary size, the model with365

a 256k vocabulary shows the smallest average de-366

crease in BLEU scores, suggesting that a larger367

vocabulary may improve the model’s representa-368

tion of the source language.369

Redundant heads Previous work on MNMT has370

shown that coverage is a good indicator for prun-371

ing cross attention heads in encoder-decoder archi-372

tectures (Kim et al., 2021). Following Kim et al.373

(2021), we study whether coverage can be used to374

prune heads in a decoder-only architecture without375

sacrificing the model’s performance. Specifically, 376

we mask all attention heads within a specific layer 377

that fall below a predetermined coverage thresh- 378

old. We compute coverage per layer for a specific 379

direction as follows: 380

COVl = ϕ(
H∑
i=1

∑
j∈Pr

covj (headl,i))

Pr = {BOS, Source tag, Source sentence, Target tag}

(3) 381

where COVl represents the coverage of layer 382

l, H is the total number of attention heads in the 383

model, and Pr is a set that contains sets of tokens 384

for each part of the prompt. Finally, ϕ is a MinMax 385

Scaler used to normalize the metric between 0 and 386

1. 387

We use FLORES-200 devtest to evaluate the im- 388

pact of masking heads per layer based on the cover- 389

age criterion (Equation 3). Figure 4 (left) illustrates 390

the evolution of BLEU scores as we mask heads 391

in PLUME 32k for the Spanish to Catalan direction 392

(supervised). The right axis indicates the number of 393

heads that are masked. We find that up to 64 heads 394

can be masked without degrading the model’s per- 395

formance using a threshold of 0.2, representing 396

47.05% of the model’s total heads. In Figure 4 397

(right), we show the cumulative coverage for the 398

different parts of the prompt. We observe that for a 399

threshold of 0.2, the masked heads represent 9.05%, 400

2.61%, 36% and 58.9% total coverage for the BOS, 401

source tag, source sentence and target tag tokens 402

respectively. This indicates that the majority of the 403

masked heads are paying attention to the target tag 404

token and to a lesser extent to the source sentence 405

tokens. This suggests that these heads are less criti- 406

cal for maintaining translation quality. Specifically, 407

when masking these 64 heads we are only using 408

heads from layers 5, 6, 8, 9, 10, 11, 15, and 16 409

which are the layers with higher coverage for the 410

BOS, source tag and source sentence tokens (see 411

Figure 2). Regarding the source tag, we find that 412

even though it is the part of the prompt with the 413

lowest coverage, it is still useful for maintaining 414

the translation quality. This observation aligns with 415

our previous findings from section 4.2. 416

In table 14 from appendix F we report the num- 417

ber of heads that we can mask without losing more 418

than 2 BLEU points for different translation di- 419

rections and for different vocabulary sizes. We 420

find that for larger vocabulary sizes we can mask a 421

higher number of heads without hurting the model’s 422

6



Figure 4: Impact of masking on BLEU score and number of masked heads across different coverage thresholds (left).
Accumulated coverage of masked heads for source tag, target tag, source sentence, and BOS (right). Experiments
are evaluated on the Spanish to Catalan direction.

performance. Specifically, with PLUME 256k, we423

can mask 88 heads on average, which represents424

64.7% of the total number of heads. Future work425

may investigate how this can be used for model426

pruning.427

4.3 Language subspaces428

Subspace distances We first extract sub-word429

tokens output by each layer in the Transformer.430

Specifically, we use the first 300 sentences from431

FLORES-200 devtest for each source language, de-432

noted as s. These sentences are used to create433

translation prompts from s to each target language434

(300 * 8 = 2,400 prompts). For each prompt, we435

extract the token embeddings from each layer of436

the model and concatenate the consecutive tokens437

to form Hs
l . Then, we apply singular value decom-438

position (SVD) on Hs
l after substracting the mean.439

We calculate pairwise distances among the 9 lan-440

guages using the affine subspace for each language441

computed by the SVD, utilizing the Riemannian442

metric on the space of positive definite matrices443

described in (Chang et al., 2022), which is both444

symmetric and invariant to affine transformations.445

Figure 5 shows the mean distance between lan-446

guage subspaces in each layer. As we can see,447

the distance between language subspaces decreases448

with model depth. Initially, from the embeddings449

layer to layer 0 we can observe a significant de-450

crease of approximately 5.07%, and from layer 0 to451

layer 1, a further reduction of 7.23%. In middle lay-452

ers (layers 3 to 11), distances are relatively stable453

Figure 5: Mean distance between language subspaces
grouped by vocabulary size. Additional plots grouped
by languages and vocabulary sizes are included in Ap-
pendix G.

and show minimal variations. This suggests that 454

the model applies only minimal transformations 455

to the representations along these layers. Interest- 456

ingly, in layer 8 we can observe a small decrease 457

in the distance of 0.05% which we hypothesize 458

may be due to the model’s attention focusing more 459

on the source token at this layer (see Figure 2). 460

As we move to the deeper layers, the distances 461

continue to decrease, with a significant drop of ap- 462

proximately 8.88% from layer 11 to layer 12, a 463

trend that persists through layers 12 to 16. How- 464

ever, in the last layer, there is a notable increase in 465

distance by approximately 23.06%. These results 466

align with previous work on encoder-only models, 467

7
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Figure 6: From left to right: Representations at the token embeddings in the embedding layer, the penultimate layer,
and the last layer of PLUME 32k grouped by source language. See Appendix H for more additional plots.

which suggest that in intermediate layers the model468

representations diverge more from the embedding469

layer representation and from the final layer. Both470

the embedding layer and the final layer are highly471

language-sensitive (Chang et al., 2022; Libovický472

et al., 2020; Pires et al., 2019).473

Regarding the vocabulary size, as shown in Fig-474

ure 5, we observe that for PLUME 32k the distance475

between embeddings are higher than PLUME 128k476

or PLUME 256k until layer 12, where distances be-477

come similar. This can be attributed to the higher478

vocabulary overlap between languages in PLUME479

32k, where each embedding represents a more di-480

verse concept, limiting its ability to learn language-481

agnostic representations.482

Visualization In the previous subsection, we483

found that the distances between embeddings ini-484

tially decrease, then in the last layer, the embed-485

dings spread out. To understand this phenomenon,486

we visualize the token embeddings using Uniform487

Manifold Approximation and Projection (UMAP)488

(McInnes et al., 2018). We construct prompts from489

each source language to Galician. Token embed-490

dings per layer are concatenated to form Ps
l , then491

we apply UMAP to reduce the dimensionality of492

the representations.493

Figure 6 shows the UMAP visualizations for494

token embeddings in the embedding layer and the495

two last layers of the model coloured by source496

language. As we can see, token embeddings remain497

language-neutral as they pass through the model498

until the last layer, where token embeddings group499

by source language. This suggests that the model500

must align embeddings cross-linguistically until501

reaching the last layer where it clusters by source502

language. This explains the distance of the last503

layer (see Figure 5). See Appendix H for more 504

additional plots7. 505

5 Conclusions 506

This work demonstrates the successful training of 507

an LLM-based machine translation system from 508

scratch using only parallel data. The achieved re- 509

sults are comparable to those of existing encoder- 510

decoder architectures for supervised translation 511

tasks. We identified that larger vocabulary sizes 512

consistently improve translation quality across 513

zero-shot directions, suggesting the potential bene- 514

fits of experimenting with even larger or language- 515

specific vocabularies. 516

Further analysis revealed that different LLM lay- 517

ers focus on distinct aspects of the prompt, par- 518

ticularly the source language tag, which exhibits 519

significant language variation. By leveraging this 520

insight and employing an appropriate criterion, we 521

achieved a performance reduction of less than 2 522

BLEU score while removing over 47% of attention 523

heads. Additionally, our exploration of the learned 524

cross-lingual space demonstrates that languages 525

get closer in the cross-lingual space as they get to 526

deeper layers and highlight the layers with the most 527

significant impact on the learned space. 528

This research opens doors for further investi- 529

gation. We identified "sink heads" that primarily 530

focus on the BOS token. Exploring their utility 531

and relationship to the learned cross-lingual repre- 532

sentations presents an opportunity for future work. 533

Additionally, further research into the optimization 534

of vocabulary size along model size could also lead 535

to better NMT models. 536

7Additionally, we include UMAP Spherical Voronoi dia-
grams as supplementary materials (see Appendix H.1).
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6 Limitations537

This study focused on understanding the capabili-538

ties of an LLM trained solely on parallel data, with-539

out aiming to achieve state-of-the-art translation540

quality or extensive language support. Here are541

some key limitations to consider when interpreting542

the results:543

Data Scope: The experiment employed non-544

English centric data with a focus on Western, Latin-545

script languages. This approach aimed to isolate546

the impact of vocabulary size and overlap, but547

limits generalizability to languages with different548

scripts or historical connections. However, the in-549

clusion of Basque, a non-Indo-European Subject-550

Object-Verb (SOV) language, provides valuable551

insights into the model’s handling of structural vari-552

ations.553

Scalability: The study did not explore the impact554

of model scale and data availability on translation555

across diverse languages and scripts. Further re-556

search is necessary to understand how these factors557

influence performance in more complex settings.558

These two main aspects will be considered as559

future work by studying the scalability of these560

architectures on both model size and translation561

directions.562
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A Dataset 943

Table 4 shows the number of sentences and number of words per language pair in the created Catalan- 944

Centric dataset. 945

Pair N sentences N words

ca SYN ↔ de 187,483,456 6,847,140,698
ca ↔ de 12,516,544 603,121,312

ca SYN ↔ it 181,034,146 6,526,304,128
ca ↔ it 18,965,862 577,243,404

ca ↔ es 171,907,026 8,252,262,032

ca SYN ↔ pt 62,858,532 2,429,548,286
ca ↔ pt 12,319,262 504,959,082

ca ↔ en 60,046,068 2,429,961,320

ca ↔ fr 37,269,716 1,114,635,790

ca SYN ↔ eu 17,998,782 749,042,034
ca ↔ eu 2,091,356 61,237,122

ca SYN ↔ gl 11,434,180 531,773,730
ca ↔ gl 7,713,022 263,280,596

Total 783,637,952 30,890,509,534

Table 4: Number of sentences and words for each
language pair. We label languages with their BCP-47
language code. SYN means synthetic data generated
on the source side for the ca-xx direction.

Dataset

Aina-ca-en-Parallel-Corpus
CCAligned
Covost2
DOGC
EUBookshop
Europarl
Globalvoices
Gnome
HLPT
KDE4
MultiCCAligned
NLLB
OpenSubtitles
ParaCrawl
Tatoeba
TildeModel
Ubuntu
Wikimatrix
Wikimedia
XLEnt

Table 5: Data sources.

Language Id

Catalan ca
German de
English en
Spanish es
Basque eu
Italian it
Galician gl
French fr
Portuguese pt

Table 6: List of BCP-
47 language codes.

B Tokenizer 946

In our experiments, we utilized the BPE algorithm (Sennrich et al., 2016) from the Huggingface Tokenizer 947

library (Moi and Patry, 2023). The settings used for training the tokenizer are detailed in Table 7. Every 948

language tag is represented by a BCP-47 tag sequence where the base subtag is a three-letter ISO 639-3 949

code, followed by ISO 15924 script subtags. 950

Hyper-Parameter Value(s)

model_type BPE
vocab_size 32k & 128k & 256k
nfkd_normalizer True
lowercase_normalizer False
pre_tokenizer ByteLevel
add_prefix_space False
special_tokens <s>, </s>, <pad>, <mask>, [deu_Latn],

[eng_Latn], [eus_Latn], [fra_Latn], [glg_Latn],
[ita_Latn], [por_Latn], [spa_Latn], [cat_Latn]

Table 7: BPE tokenizer configuration.

We trained various tokenizers employing two distinct sampling strategies for each vocabulary size, then 951

we evaluated them on fertility and parity (Petrov et al., 2024) metrics on FLORES-200 devtest. For a 952

13



given tokenizer T and a set of sentences S, fertility is determined by dividing the total number of tokens953

generated from S (using T) by the total number of words in S. Parity is defined as achieving a balanced954

tokenization ratio between two languages. Specifically, a tokenizer T achieves parity for language A955

with respect to language B if the ratio |T (sA)|
|T (sB)| ≈ 1, where sA and sB denote the sets of all sentences for956

languages A and B, respectively.957

We experimented with both unigram and BPE implementations from the Huggingface Tokenizer library.958

We tested two sampling strategies: one involving the sampling of 1 million sentences from all languages,959

and another involving the equal sampling of 1 million sentences from Romance languages, with an960

oversampling of 3 million sentences for English, Basque, and German. Figure 7 presents the fertility961

metrics on English, Basque, and German. Given the results, we decided to use the BPE algorithm with the962

oversampling strategy for our final experiments. We also report obtained parity metrics by vocabulary963

size in figure 8 and average fertility (average of fertility per each language) per vocabulary size as well as964

the number of tokens in the dataset in Table 8 8.965
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Figure 7: From left to right: fertility evaluated on Basque, English and German. Fertility is in the vertical axis, and
vocabulary size is in the horizontal axis.

Figure 8: Parity for the different vocabulary sizes.

Vocabulary size Average Fertility Number of tokens

PLUME 32k 1.77 54.7B
PLUME 128k 1.52 46.8B
PLUME 256k 1.44 44.6B

Table 8: Fertility and number of tokens in the dataset grouped by vocabulary size.

8We compute the number of tokens as Average Fertility * Number of words in the dataset. The number of words is
30,890,509,534.

14



C Model Architecture 966

Table 9 summarizes the architecture used for PLUME models. 967

Hyper-Parameter Value

Hidden Dimension 2048
Layers 18
Intermediate Size (in MLPs) 16384
Attention-Heads 8
Head size 256
Num KV Heads 1
Max Seq Length 2048
Position Embeddings Rotary
Rope Theta 10000
Precision float-32
RMSNorm ϵ 1e-06

Table 9: Model architecture.

D Training 968

For training, the learning rate is warmed up from 1× 10−7 to a maximum of 3× 10−4 over the first 2000 969

steps. We apply a weight decay of 0.1 and a gradient clipping of 1.0. During training, we set an effective 970

batch size of 81,920 tokens per gradient step distributed over 40 NVIDIA H100-64GB GPUs. We use 971

DeepSpeed with full float32 training. 972

Hyper-Parameter

Batch size 40
Number of Epochs 1
Optimizer Adam
Adam-β1 0.9
Adam-β2 0.999
Adam-ϵ 1e-08
Learning rate 3e-04
LR Scheduler Linear
Warmup Steps 2000

Table 10: Model training hyper-parameters

Num examples 26,301,993
Num tokens = Num examples * 2048 (considering pad tokens) 53,866,481,664
Num Epochs 1
Instantaneous batch size per device 1
Total train batch size (w. parallel, distributed & accumulation) 40
Gradient Accumulation steps 1
Total optimization steps 657,550
Number of trainable parameters 2,047,420,416

Table 11: Training and performance information for PLUME 32k.
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Num examples 23,093,719
Num tokens = Num examples * 2048 (considering pad tokens) 47,295,936,512
Num Epochs 1
Instantaneous batch size per device 1
Total train batch size (w. parallel, distributed & accumulation) 40
Gradient Accumulation steps 1
Total optimization steps 577,343
Number of trainable parameters 2,244,028,416

Table 12: Training and performance information for PLUME 128k.

Num examples 22,213,825
Num tokens = Num examples * 2048 (considering pad tokens) 45,493,913,600
Num Epochs 1
Instantaneous batch size per device 1
Total train batch size (w. parallel, distributed & accumulation) 40
Gradient Accumulation steps 1
Total optimization steps 555,346
Number of trainable parameters 2,506,172,416

Table 13: Training and performance information for PLUME 256k.
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Figure 9: Training loss.

E Coverage metrics973

We show in Figure 11 and Figure 12 the coverage heatmaps for PLUME 32k, 128k and 256k respectively.974

In Figure 13 we show the average coverage per layer for the different vocabulary sizes. We notice that975

PLUME 32k, 128k and 256k exhibit a similar coverage pattern across layers.976
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Figure 10: Coverage evaluating on FLORES-200 devtest using PLUME 32k. Each heatmap for each part of the
prompt shows the coverage scores for each layer (vertical axis) and for each head (horizontal axis) in the model.
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Figure 11: Coverage evaluating on FLORES-200 devtest using PLUME 128k. Each heatmap for each part of the
prompt shows the coverage scores for each layer (vertical axis) and for each head (horizontal axis) in the model.
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Figure 12: Coverage evaluating on FLORES-200 devtest using PLUME 256k. Each heatmap for each part of the
prompt shows the coverage scores for each layer (vertical axis) and for each head (horizontal axis) in the model.
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Figure 13: Average coverage per layer for each part of the prompt across various vocabulary sizes.

E.1 Attention matrices977

An attention sink mechanism occurs when all the attention mass is given to some special tokens. We978

visualize the attention matrices for the first head of layer 9 and layer 17 (last layer) in Figure 14. We979

observe that in layer 9, the model is giving all the attention mass to the BOS token9 which allows the980

model to keep the residual stream of the network unchanged.981

Figure 14: Attention weights for head 1 in layer 9 (left) and head 1 in layer 17 (right).

F Redundant Heads982

Table 14 shows the number of heads that can be masked in various directions for different vocabulary983

sizes without losing more than 2 BLEU points. We observe that as vocabulary size increases, we can984

mask more heads. Specifically, on average we can mask 41.56%, 49.41% and 64.7% of the model’s heads985

for PLUME 32k, PLUME 128k and PLUME 256k respectively.986

9There is a special token created by Huggingface BPE implementation, which is positioned between the BOS and the source
tag tokens. We consider this special token as part of the BOS token.
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PLUME 32k PLUME 128k PLUME 256k

de→ca 64 64 88
de→en 32 72 88
de→pt 64 64 88
es→ca 64 104 88
es→en 64 72 88
es→pt 64 104 88
fr→ca 64 64 88
fr→en 24 72 88
fr→pt 64 0 88
gl→ca 64 104 88
gl→en 24 72 88
gl→pt 64 64 88
it→ca 64 80 88
it→en 64 72 88
it→pt 64 0 88

Avg. 56.53 67.2 88

Table 14: Number of masked heads across different language pairs and vocabulary sizes such that BLEU drop is
less than 2 points.

G Subspace distances 987

We show in Figure 15 the distances between language subspaces computed using the Riemannian metric 988

on the space of positive definite matrices as detailed in (Chang et al., 2022) grouped by language and for 989

each vocabulary size. We observe that for all the vocabulary sizes, Basque’s subspace is further from 990

the rest of the languages subspaces which could explain why model’s performance on Basque is lower 991

compared to other languages. 992
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Figure 15: Mean distance between language subspaces grouped by languages and vocabulary sizes.

H UMAP Plots 993

Below we show the token representations10 using Uniform Manifold Approximation and Projection 994

(UMAP) (McInnes et al., 2018) for all the layers in PLUME 32k, 128k and 256k. We employ the cosine 995

distance and we set the number of neighbours to 8 for computing UMAP’s embeddings. 996

10We use the first sentence from FLORES-200 devtest in each source language to construct the prompts: "We now have
4-month-old mice that are non-diabetic that used to be diabetic," he added.
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Figure 16: UMAP representations at the token embeddings in each layer grouped by source language using PLUME
32k.
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Figure 17: UMAP representations at the token embeddings in each layer grouped by source language using PLUME
128k.
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Figure 18: UMAP representations at the token embeddings in each layer grouped by source language using PLUME
256k.

H.1 Spherical Voronoi diagrams997

To better visualize high-dimensional token embeddings in PLUME models, we used spherical voronoi998

diagrams. Specifically, we reduced the embeddings to a 2D space, optimizing for cosine similarity using999

UMAP. Then, the 2D UMAP embeddings were projected onto a unit sphere. Specifically, each 2D point1000

(x, y) was mapped to 3D coordinates (X,Y, Z) as follows:1001

X = sin(x) · cos(y) Y = sin(x) · sin(y) Z = cos(x) (4)1002

Then, for each language, we calculated the centroid of its corresponding tokens on the sphere and using1003

these centroids, we computed Voronoi regions (where each region contains all the closest points to a1004
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specific centroid). We add as supplementary material the spherical voronoi diagrams for each layer in 1005

PLUME 32k. 1006

I Detailed results 1007

We report in the following tables the results of PLUME models for each translation direction. We also 1008

provide comparisons for TOWERBASE 7B (Alves et al., 2024) in those directions that PLUME and 1009

TOWERBASE 7B share, as well as comparisons with NLLB 3.3B (NLLB Team et al., 2022). 1010

Table 15: Results for ca→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

ca-de BSC Bilinguals 33.30 61.12 0.85 0.84 25.04 55.00 0.83 0.83
NLLB 3.3B 31.19 58.41 0.85 0.84 21.72 53.41 0.81 0.82

PLUME 128k 28.00 57.53 0.83 0.82 21.98 53.36 0.80 0.81
PLUME 256k 28.55 57.63 0.83 0.82 21.39 52.72 0.80 0.81
PLUME 32k 27.81 57.00 0.83 0.82 27.79 56.66 0.83 0.84

ca-en BSC Bilinguals 46.29 70.44 0.88 0.86 41.20 66.57 0.87 0.86
NLLB 3.3B 49.65 71.68 0.89 0.86 33.22 62.82 0.85 0.85

PLUME 128k 42.91 68.69 0.88 0.86 33.73 63.07 0.85 0.85
PLUME 256k 42.47 68.47 0.88 0.85 32.82 62.14 0.85 0.84
PLUME 32k 41.92 68.15 0.87 0.85 37.61 64.98 0.87 0.85

ca-es BSC Bilinguals 24.70 53.42 0.86 0.86 36.89 61.83 0.86 0.85
NLLB 3.3B 25.62 53.73 0.86 0.86 35.44 61.27 0.86 0.85

PLUME 128k 24.66 53.44 0.86 0.86 35.66 61.23 0.86 0.85
PLUME 256k 24.59 53.37 0.86 0.85 35.70 61.24 0.86 0.85
PLUME 32k 24.50 53.37 0.86 0.86 35.97 61.40 0.86 0.85

ca-eu BSC Bilinguals 18.26 57.03 0.86 0.81 9.83 46.47 0.80 0.74
NLLB 3.3B 13.13 50.47 0.83 0.75 12.40 49.99 0.82 0.78

PLUME 128k 14.88 53.41 0.84 0.79 12.09 49.96 0.82 0.78
PLUME 256k 14.97 53.75 0.84 0.78 12.17 49.58 0.81 0.77
PLUME 32k 14.38 53.29 0.84 0.78 14.08 52.70 0.84 0.81

ca-fr BSC Bilinguals 38.25 63.23 0.85 0.84 27.60 56.73 0.84 0.85
NLLB 3.3B 39.89 64.05 0.86 0.85 25.20 54.13 0.81 0.82

PLUME 128k 35.46 61.08 0.84 0.83 25.48 54.16 0.81 0.82
PLUME 256k 35.72 61.18 0.84 0.83 24.94 53.76 0.81 0.82
PLUME 32k 34.32 60.68 0.83 0.82 27.71 55.53 0.82 0.83

ca-gl BSC Bilinguals 31.96 59.66 0.87 0.84 34.07 60.52 0.86 0.84
NLLB 3.3B 32.78 59.25 0.87 0.85 33.23 60.22 0.86 0.84

PLUME 128k 32.22 59.73 0.87 0.84 33.37 60.24 0.86 0.83
PLUME 256k 32.07 59.51 0.87 0.84 33.23 60.27 0.86 0.84
PLUME 32k 32.21 59.73 0.87 0.85 32.59 59.76 0.85 0.82

ca-it BSC Bilinguals 26.92 56.55 0.87 0.85 29.46 58.00 0.87 0.85
NLLB 3.3B 26.38 55.66 0.88 0.86 27.91 57.43 0.86 0.84

PLUME 128k 25.77 55.78 0.87 0.85 28.11 57.62 0.86 0.84
PLUME 256k 25.76 55.94 0.87 0.85 27.80 57.33 0.85 0.84
PLUME 32k 25.45 55.51 0.87 0.85 29.07 57.95 0.86 0.84

ca-pt BSC Bilinguals 37.18 62.73 0.88 0.84 31.46 57.67 0.86 0.84
NLLB 3.3B 36.68 61.97 0.88 0.85 27.79 55.97 0.85 0.83

PLUME 128k 36.27 62.12 0.88 0.84 28.50 56.29 0.85 0.83
PLUME 256k 35.76 61.88 0.88 0.84 27.92 55.91 0.85 0.83
PLUME 32k 35.81 61.67 0.88 0.84 28.19 56.17 0.85 0.83
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Table 16: Results for de→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

de-ca BSC Bilinguals 30.15 57.65 0.83 0.82 28.24 55.02 0.83 0.84
NLLB 3.3B 31.45 57.99 0.86 0.85 28.34 55.03 0.82 0.82

PLUME 128k 32.23 59.02 0.85 0.83 28.13 54.66 0.82 0.82
PLUME 256k 31.76 58.73 0.85 0.83 27.94 54.58 0.82 0.81
PLUME 32k 31.76 58.56 0.85 0.83 24.49 53.60 0.78 0.80

de-en NLLB 3.3B 46.02 69.30 0.90 0.85 41.01 66.16 0.88 0.84
TOWERBASE 7B 43.69 68.56 0.89 0.84 41.01 66.16 0.88 0.84

PLUME 128k 36.17 63.49 0.86 0.82 29.73 59.26 0.84 0.81
PLUME 256k 36.99 64.04 0.87 0.83 29.80 59.39 0.84 0.81
PLUME 32k 34.12 62.13 0.86 0.81 28.73 58.11 0.83 0.80

de-es NLLB 3.3B 23.86 51.39 0.84 0.86 31.13 57.36 0.84 0.85
TOWERBASE 7B 21.66 50.94 0.83 0.85 31.13 57.36 0.84 0.85

PLUME 128k 22.00 50.41 0.82 0.83 28.41 54.92 0.81 0.82
PLUME 256k 22.35 50.80 0.82 0.83 28.76 54.89 0.81 0.82
PLUME 32k 20.90 49.74 0.82 0.82 27.83 54.18 0.81 0.81

de-eu NLLB 3.3B 9.83 45.23 0.78 0.71 7.83 41.70 0.76 0.69

PLUME 128k 9.91 46.23 0.78 0.73 8.18 42.65 0.75 0.72
PLUME 256k 11.48 47.52 0.79 0.74 8.93 43.59 0.76 0.73
PLUME 32k 10.77 46.22 0.77 0.72 8.46 42.39 0.74 0.71

de-fr NLLB 3.3B 37.62 62.60 0.86 0.85 28.06 56.03 0.83 0.85
TOWERBASE 7B 34.84 61.23 0.85 0.85 28.06 56.03 0.83 0.85

PLUME 128k 28.50 56.32 0.80 0.80 20.26 49.16 0.77 0.78
PLUME 256k 29.01 56.15 0.80 0.79 20.84 49.13 0.77 0.78
PLUME 32k 27.13 54.89 0.79 0.78 20.37 48.30 0.75 0.76

de-gl NLLB 3.3B 28.87 55.70 0.85 0.85 29.17 56.21 0.84 0.84

PLUME 128k 26.01 54.15 0.83 0.83 24.55 52.87 0.81 0.81
PLUME 256k 25.20 53.46 0.83 0.82 24.87 52.86 0.81 0.81
PLUME 32k 25.31 53.11 0.82 0.82 24.11 51.92 0.80 0.80

de-it NLLB 3.3B 25.88 54.95 0.87 0.86 27.84 56.12 0.86 0.85
TOWERBASE 7B 24.73 54.26 0.86 0.85 27.84 56.12 0.86 0.85

PLUME 128k 22.47 52.44 0.84 0.83 22.77 52.04 0.82 0.82
PLUME 256k 22.74 52.34 0.85 0.83 23.12 52.16 0.82 0.82
PLUME 32k 21.36 51.19 0.84 0.82 22.39 51.53 0.81 0.81

de-pt NLLB 3.3B 33.42 59.32 0.87 0.85 29.42 55.97 0.85 0.85
TOWERBASE 7B 30.94 58.48 0.86 0.85 29.42 55.97 0.85 0.85

PLUME 128k 30.02 57.17 0.85 0.83 24.09 51.90 0.82 0.82
PLUME 256k 30.36 57.46 0.85 0.83 24.06 51.90 0.82 0.82
PLUME 32k 29.19 55.98 0.84 0.81 23.00 51.09 0.80 0.80
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Table 17: Results for en→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

en-ca BSC Bilinguals 44.05 67.95 0.88 0.85 37.49 62.38 0.85 0.83
NLLB 3.3B 42.33 65.97 0.88 0.85 35.80 61.29 0.83 0.81

PLUME 128k 42.29 66.44 0.87 0.84 35.95 61.30 0.83 0.81
PLUME 256k 42.64 66.59 0.87 0.84 35.05 60.72 0.82 0.80
PLUME 32k 42.32 66.39 0.86 0.84 37.93 63.19 0.84 0.82

en-de NLLB 3.3B 39.88 65.14 0.88 0.84 32.46 60.93 0.85 0.84
TOWERBASE 7B 37.53 64.47 0.87 0.84 32.46 60.93 0.85 0.84

PLUME 128k 31.27 59.30 0.82 0.80 24.31 54.33 0.78 0.77
PLUME 256k 31.81 60.17 0.83 0.81 24.94 55.13 0.79 0.78
PLUME 32k 29.86 58.22 0.82 0.79 23.46 53.42 0.77 0.75

en-es NLLB 3.3B 28.14 55.85 0.86 0.86 39.33 63.79 0.85 0.84
TOWERBASE 7B 26.38 55.02 0.86 0.86 39.33 63.79 0.85 0.84

PLUME 128k 24.34 53.01 0.83 0.84 35.62 60.75 0.81 0.80
PLUME 256k 25.00 53.43 0.84 0.84 36.42 61.36 0.82 0.81
PLUME 32k 23.47 52.61 0.83 0.83 34.86 60.10 0.81 0.79

en-eu NLLB 3.3B 15.71 53.25 0.85 0.82 11.62 47.74 0.81 0.79

PLUME 128k 13.02 48.69 0.81 0.78 10.51 44.21 0.76 0.75
PLUME 256k 12.95 50.05 0.81 0.79 10.96 45.41 0.77 0.75
PLUME 32k 13.03 48.89 0.80 0.78 10.73 44.79 0.75 0.74

en-fr NLLB 3.3B 50.90 71.70 0.88 0.87 34.77 61.69 0.84 0.85
TOWERBASE 7B 49.28 70.83 0.88 0.87 34.77 61.69 0.84 0.85

PLUME 128k 36.49 62.25 0.82 0.82 26.36 54.27 0.77 0.79
PLUME 256k 38.27 63.03 0.83 0.83 27.20 54.95 0.77 0.79
PLUME 32k 36.11 61.92 0.81 0.81 26.36 54.15 0.76 0.78

en-gl NLLB 3.3B 35.98 61.55 0.87 0.85 39.01 63.75 0.85 0.83

PLUME 128k 32.26 59.64 0.85 0.83 33.28 59.53 0.81 0.79
PLUME 256k 32.61 59.66 0.85 0.83 33.13 59.59 0.81 0.79
PLUME 32k 31.16 58.92 0.84 0.82 31.88 58.48 0.80 0.77

en-it NLLB 3.3B 30.63 59.52 0.88 0.87 37.68 63.84 0.87 0.85
TOWERBASE 7B 29.64 59.13 0.88 0.87 37.68 63.84 0.87 0.85

PLUME 128k 25.58 55.15 0.84 0.84 28.84 57.37 0.82 0.81
PLUME 256k 25.64 55.75 0.85 0.85 30.73 58.42 0.82 0.81
PLUME 32k 24.51 54.69 0.84 0.84 29.55 57.32 0.81 0.80

en-pt NLLB 3.3B 49.45 70.54 0.90 0.85 37.37 62.46 0.87 0.84
TOWERBASE 7B 49.67 71.36 0.90 0.85 37.37 62.46 0.87 0.84

PLUME 128k 40.94 65.75 0.87 0.83 30.59 57.41 0.82 0.79
PLUME 256k 42.62 66.47 0.87 0.83 31.27 57.81 0.82 0.79
PLUME 32k 40.57 65.13 0.86 0.82 30.13 56.87 0.81 0.78

25



Table 18: Results for es→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

es-ca BSC Bilinguals 23.34 53.98 0.86 0.84 34.47 60.52 0.86 0.84
NLLB 3.3B 25.70 55.24 0.86 0.84 33.16 60.59 0.86 0.83

PLUME 128k 23.43 54.22 0.86 0.84 33.41 60.49 0.86 0.83
PLUME 256k 23.42 54.20 0.86 0.84 33.23 60.60 0.86 0.83
PLUME 32k 23.55 54.30 0.86 0.84 34.14 60.73 0.86 0.83

es-de NLLB 3.3B 22.88 53.27 0.84 0.84 24.63 55.15 0.83 0.84
TOWERBASE 7B 18.86 51.44 0.82 0.84 24.63 55.15 0.83 0.84

PLUME 128k 17.69 50.73 0.80 0.81 19.90 52.08 0.79 0.81
PLUME 256k 18.06 51.26 0.81 0.82 20.41 52.30 0.80 0.81
PLUME 32k 17.63 50.19 0.80 0.80 19.47 51.49 0.78 0.80

es-en NLLB 3.3B 32.93 61.52 0.88 0.86 41.88 67.47 0.88 0.86
TOWERBASE 7B 30.47 60.37 0.87 0.86 41.88 67.47 0.88 0.86

PLUME 128k 24.74 56.76 0.85 0.85 31.64 62.07 0.85 0.84
PLUME 256k 24.91 57.16 0.85 0.85 31.53 62.24 0.85 0.84
PLUME 32k 23.79 56.29 0.84 0.85 31.05 61.38 0.85 0.84

es-eu NLLB 3.3B 11.31 49.93 0.84 0.81 11.13 47.56 0.81 0.77

PLUME 128k 10.39 49.12 0.82 0.81 11.45 48.54 0.81 0.79
PLUME 256k 11.22 49.59 0.83 0.81 11.29 48.92 0.81 0.79
PLUME 32k 11.26 49.16 0.82 0.79 11.31 47.79 0.80 0.78

es-fr NLLB 3.3B 29.97 58.18 0.85 0.86 27.92 56.77 0.84 0.85
TOWERBASE 7B 25.16 55.84 0.84 0.85 27.92 56.77 0.84 0.85

PLUME 128k 21.91 52.76 0.81 0.82 23.99 52.86 0.80 0.81
PLUME 256k 22.15 52.87 0.81 0.82 23.85 52.99 0.80 0.81
PLUME 32k 21.96 52.78 0.81 0.82 24.39 53.10 0.79 0.81

es-gl NLLB 3.3B 24.64 53.77 0.87 0.84 34.92 61.24 0.87 0.83

PLUME 128k 21.47 52.69 0.87 0.84 33.34 60.71 0.86 0.83
PLUME 256k 21.59 52.54 0.86 0.84 33.63 60.81 0.86 0.82
PLUME 32k 21.29 52.51 0.86 0.84 33.08 60.63 0.86 0.83

es-it NLLB 3.3B 22.77 52.86 0.87 0.86 29.60 58.19 0.87 0.85
TOWERBASE 7B 19.95 51.18 0.86 0.86 29.60 58.19 0.87 0.85

PLUME 128k 18.76 50.27 0.85 0.85 25.08 55.31 0.84 0.83
PLUME 256k 18.86 50.53 0.85 0.84 25.42 55.57 0.85 0.84
PLUME 32k 19.29 50.45 0.85 0.84 25.14 55.55 0.84 0.83

es-pt NLLB 3.3B 26.18 55.23 0.87 0.85 32.30 58.24 0.87 0.84
TOWERBASE 7B 23.11 53.87 0.87 0.85 32.30 58.24 0.87 0.84

PLUME 128k 21.16 52.25 0.86 0.84 25.82 54.84 0.85 0.83
PLUME 256k 21.84 52.70 0.86 0.84 27.27 55.53 0.85 0.83
PLUME 32k 21.65 52.74 0.86 0.84 27.00 55.35 0.85 0.83
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Table 19: Results for eu→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

eu-ca BSC Bilinguals 26.18 54.14 0.85 0.82 24.56 51.56 0.83 0.81
NLLB 3.3B 26.70 53.97 0.86 0.82 22.29 49.79 0.81 0.79

PLUME 128k 24.33 51.85 0.84 0.80 21.70 49.48 0.81 0.78
PLUME 256k 24.02 51.67 0.84 0.80 20.19 48.69 0.80 0.77
PLUME 32k 22.92 50.69 0.83 0.79 24.29 51.84 0.82 0.81

eu-de NLLB 3.3B 22.71 51.75 0.83 0.80 18.96 48.84 0.81 0.79

PLUME 128k 13.64 44.72 0.76 0.72 11.38 41.74 0.73 0.72
PLUME 256k 13.58 44.77 0.76 0.72 10.74 41.78 0.73 0.72
PLUME 32k 10.62 40.74 0.72 0.69 9.30 38.93 0.69 0.69

eu-en NLLB 3.3B 33.44 60.57 0.87 0.86 29.59 57.37 0.85 0.85

PLUME 128k 21.49 51.65 0.82 0.81 16.70 48.58 0.79 0.80
PLUME 256k 22.12 52.31 0.82 0.82 16.41 48.54 0.79 0.80
PLUME 32k 17.52 48.60 0.79 0.78 13.84 45.54 0.77 0.77

eu-es NLLB 3.3B 20.50 48.29 0.84 0.84 27.50 53.84 0.84 0.83

PLUME 128k 17.74 45.98 0.81 0.81 20.71 48.75 0.79 0.79
PLUME 256k 17.94 45.41 0.81 0.81 20.58 48.54 0.79 0.79
PLUME 32k 15.61 43.47 0.79 0.79 18.76 47.03 0.78 0.78

eu-fr NLLB 3.3B 29.05 56.00 0.84 0.83 22.63 50.58 0.81 0.82

PLUME 128k 18.58 46.77 0.75 0.75 14.90 42.94 0.73 0.73
PLUME 256k 18.39 46.08 0.75 0.74 14.73 42.58 0.72 0.72
PLUME 32k 15.77 44.00 0.71 0.71 12.58 40.59 0.69 0.70

eu-gl NLLB 3.3B 25.16 52.52 0.86 0.83 24.18 52.15 0.83 0.82

PLUME 128k 19.24 47.58 0.82 0.78 18.04 46.91 0.79 0.77
PLUME 256k 18.53 46.92 0.81 0.78 18.23 46.74 0.79 0.76
PLUME 32k 15.91 45.11 0.79 0.75 16.13 44.99 0.77 0.75

eu-it NLLB 3.3B 21.27 51.07 0.86 0.84 22.45 51.13 0.84 0.83

PLUME 128k 16.39 45.65 0.81 0.80 16.82 46.45 0.79 0.79
PLUME 256k 16.46 45.76 0.81 0.80 15.96 46.05 0.79 0.78
PLUME 32k 14.01 43.52 0.79 0.77 14.34 44.19 0.77 0.76

eu-pt NLLB 3.3B 27.79 54.65 0.86 0.84 23.93 50.72 0.83 0.82

PLUME 128k 20.12 48.58 0.82 0.80 16.11 44.79 0.79 0.78
PLUME 256k 20.89 48.87 0.81 0.80 16.80 45.27 0.79 0.78
PLUME 32k 17.64 46.34 0.79 0.77 14.05 42.96 0.76 0.76
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Table 20: Results for fr→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

fr-ca BSC Bilinguals 34.44 60.10 0.86 0.83 29.22 55.76 0.84 0.83
NLLB 3.3B 34.00 59.82 0.87 0.84 27.30 54.40 0.83 0.82

PLUME 128k 34.35 60.24 0.86 0.83 27.57 54.40 0.83 0.81
PLUME 256k 33.63 59.83 0.86 0.83 27.00 54.18 0.83 0.81
PLUME 32k 34.28 60.16 0.86 0.83 27.03 54.04 0.83 0.81

fr-de NLLB 3.3B 29.96 57.73 0.85 0.84 23.82 53.55 0.83 0.84
TOWERBASE 7B 25.48 56.02 0.82 0.84 23.82 53.55 0.83 0.84

PLUME 128k 24.63 54.96 0.81 0.80 19.07 49.59 0.78 0.78
PLUME 256k 23.85 54.54 0.82 0.80 18.18 49.18 0.78 0.78
PLUME 32k 22.45 53.56 0.81 0.78 18.35 48.80 0.77 0.77

fr-en NLLB 3.3B 48.38 70.72 0.90 0.86 40.30 64.78 0.87 0.86
TOWERBASE 7B 45.48 69.54 0.89 0.86 40.30 64.78 0.87 0.86

PLUME 128k 37.37 64.47 0.87 0.85 28.95 58.15 0.84 0.84
PLUME 256k 37.74 64.80 0.87 0.85 29.11 58.37 0.84 0.84
PLUME 32k 34.87 63.11 0.86 0.84 28.36 57.38 0.83 0.83

fr-es NLLB 3.3B 24.45 52.39 0.86 0.86 32.28 57.85 0.85 0.85
TOWERBASE 7B 22.02 51.42 0.84 0.85 32.28 57.85 0.85 0.85

PLUME 128k 21.65 50.63 0.84 0.84 27.18 54.18 0.82 0.83
PLUME 256k 21.80 50.74 0.84 0.84 27.30 54.22 0.82 0.83
PLUME 32k 21.60 50.66 0.84 0.84 27.23 54.00 0.82 0.82

fr-eu NLLB 3.3B 10.73 46.16 0.80 0.73 7.79 41.10 0.76 0.69

PLUME 128k 10.79 48.17 0.80 0.76 9.32 44.51 0.78 0.75
PLUME 256k 11.78 48.71 0.80 0.77 9.43 44.37 0.78 0.75
PLUME 32k 11.59 48.08 0.79 0.75 8.65 43.30 0.76 0.72

fr-gl NLLB 3.3B 30.59 57.45 0.86 0.85 29.61 56.42 0.85 0.84

PLUME 128k 27.95 55.92 0.85 0.84 24.65 52.84 0.81 0.81
PLUME 256k 28.49 55.94 0.85 0.84 24.57 52.94 0.82 0.81
PLUME 32k 27.69 55.65 0.85 0.83 24.11 52.42 0.81 0.81

fr-it NLLB 3.3B 27.06 56.27 0.88 0.86 28.22 56.47 0.86 0.86
TOWERBASE 7B 25.14 55.00 0.87 0.86 28.22 56.47 0.86 0.86

PLUME 128k 24.45 53.92 0.86 0.84 24.25 53.18 0.84 0.83
PLUME 256k 24.27 53.92 0.86 0.84 24.45 53.22 0.84 0.83
PLUME 32k 23.98 53.72 0.86 0.84 23.84 53.05 0.83 0.82

fr-pt NLLB 3.3B 36.18 61.28 0.88 0.85 29.11 55.64 0.85 0.84
TOWERBASE 7B 33.03 60.10 0.87 0.85 29.11 55.64 0.85 0.84

PLUME 128k 32.15 59.00 0.86 0.83 24.59 52.51 0.83 0.82
PLUME 256k 32.86 59.22 0.86 0.83 24.85 52.21 0.82 0.81
PLUME 32k 31.72 58.70 0.86 0.82 24.33 52.19 0.82 0.81
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Table 21: Results for it→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

it-ca BSC Bilinguals 27.68 56.63 0.86 0.84 31.87 57.96 0.86 0.84
NLLB 3.3B 27.77 56.56 0.87 0.86 31.18 57.64 0.85 0.83

PLUME 128k 27.92 57.34 0.87 0.85 31.00 57.62 0.85 0.83
PLUME 256k 27.86 57.25 0.87 0.85 30.69 57.35 0.85 0.83
PLUME 32k 27.48 57.19 0.86 0.85 30.67 57.08 0.84 0.82

it-de NLLB 3.3B 25.33 55.23 0.85 0.86 26.76 56.82 0.84 0.85
TOWERBASE 7B 18.14 49.13 0.82 0.86 26.76 56.82 0.84 0.85

PLUME 128k 20.84 52.75 0.82 0.83 20.84 51.69 0.79 0.82
PLUME 256k 21.05 53.04 0.82 0.83 21.06 52.07 0.80 0.82
PLUME 32k 19.77 51.78 0.81 0.82 20.28 51.35 0.79 0.80

it-en NLLB 3.3B 36.33 64.25 0.88 0.87 43.96 67.59 0.88 0.86
TOWERBASE 7B 32.95 62.57 0.88 0.86 43.96 67.59 0.88 0.86

PLUME 128k 27.80 58.98 0.86 0.85 33.76 62.30 0.85 0.84
PLUME 256k 28.91 59.82 0.86 0.86 34.76 62.75 0.85 0.85
PLUME 32k 27.43 58.75 0.85 0.85 32.90 61.49 0.84 0.84

it-es NLLB 3.3B 22.70 51.45 0.86 0.87 34.15 59.45 0.86 0.86
TOWERBASE 7B 20.71 50.87 0.85 0.87 34.15 59.45 0.86 0.86

PLUME 128k 20.91 50.70 0.85 0.86 30.30 56.88 0.84 0.85
PLUME 256k 21.35 51.04 0.85 0.86 30.62 56.96 0.84 0.85
PLUME 32k 20.99 50.72 0.85 0.86 30.06 56.70 0.84 0.85

it-eu NLLB 3.3B 7.65 43.50 0.79 0.73 8.09 41.63 0.76 0.70

PLUME 128k 9.77 47.74 0.81 0.79 10.07 45.74 0.79 0.76
PLUME 256k 11.33 49.20 0.82 0.80 10.82 46.47 0.79 0.77
PLUME 32k 10.69 48.55 0.81 0.78 10.44 45.82 0.78 0.76

it-fr NLLB 3.3B 33.24 60.44 0.87 0.87 29.23 57.43 0.84 0.86
TOWERBASE 7B 29.16 58.49 0.85 0.87 29.23 57.43 0.84 0.86

PLUME 128k 27.21 56.24 0.83 0.84 23.92 52.66 0.81 0.82
PLUME 256k 27.89 56.11 0.83 0.84 24.39 52.83 0.80 0.82
PLUME 32k 26.35 55.67 0.82 0.83 24.04 52.53 0.80 0.81

it-gl NLLB 3.3B 25.72 54.62 0.87 0.86 32.39 58.86 0.86 0.84

PLUME 128k 23.80 54.06 0.86 0.85 29.04 56.66 0.84 0.83
PLUME 256k 23.79 53.94 0.86 0.84 29.34 56.60 0.84 0.82
PLUME 32k 23.59 53.88 0.85 0.84 28.20 55.97 0.84 0.82

it-pt NLLB 3.3B 28.17 56.94 0.88 0.86 33.41 58.86 0.87 0.85
TOWERBASE 7B 24.49 55.37 0.86 0.85 33.41 58.86 0.87 0.85

PLUME 128k 26.64 56.24 0.87 0.84 28.48 55.43 0.85 0.83
PLUME 256k 27.10 56.52 0.87 0.85 28.33 55.31 0.84 0.83
PLUME 32k 25.86 55.58 0.86 0.84 28.03 55.24 0.84 0.82
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Table 22: Results for gl→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

gl-ca BSC Bilinguals 32.43 60.50 0.87 0.84 34.27 60.27 0.86 0.84
NLLB 3.3B 34.43 60.88 0.87 0.85 34.25 60.34 0.86 0.83

PLUME 128k 32.77 60.71 0.87 0.84 34.28 60.55 0.86 0.83
PLUME 256k 33.00 60.85 0.88 0.84 34.10 60.42 0.86 0.83
PLUME 32k 32.75 60.76 0.87 0.84 33.72 60.27 0.86 0.83

gl-de NLLB 3.3B 29.57 57.53 0.85 0.84 25.13 55.12 0.83 0.83

PLUME 128k 23.05 54.44 0.81 0.81 20.23 51.72 0.79 0.80
PLUME 256k 24.25 55.47 0.82 0.82 20.35 52.31 0.79 0.80
PLUME 32k 22.89 54.11 0.80 0.80 19.75 51.46 0.78 0.79

gl-en NLLB 3.3B 44.14 68.60 0.89 0.86 43.52 67.80 0.88 0.85

PLUME 128k 35.47 64.50 0.86 0.85 33.40 62.42 0.85 0.84
PLUME 256k 34.74 64.17 0.86 0.84 32.56 62.21 0.85 0.84
PLUME 32k 34.15 63.48 0.86 0.84 30.76 61.22 0.84 0.83

gl-es NLLB 3.3B 25.59 53.47 0.87 0.85 36.99 61.92 0.87 0.84

PLUME 128k 23.67 52.86 0.86 0.85 35.18 61.04 0.86 0.84
PLUME 256k 23.79 52.87 0.86 0.85 35.84 61.32 0.86 0.84
PLUME 32k 23.59 52.83 0.86 0.85 35.48 61.15 0.86 0.84

gl-eu NLLB 3.3B 12.37 48.45 0.82 0.73 9.06 43.94 0.78 0.70

PLUME 128k 13.23 51.10 0.83 0.77 11.89 48.13 0.81 0.76
PLUME 256k 13.68 51.27 0.83 0.77 11.28 48.44 0.81 0.76
PLUME 32k 12.78 50.05 0.82 0.75 10.94 47.31 0.80 0.74

gl-fr NLLB 3.3B 38.37 63.38 0.86 0.85 29.03 56.98 0.84 0.84

PLUME 128k 29.14 57.49 0.82 0.82 23.19 52.26 0.79 0.81
PLUME 256k 30.24 57.82 0.82 0.82 23.80 52.55 0.79 0.80
PLUME 32k 29.84 57.65 0.81 0.81 23.56 52.22 0.79 0.80

gl-it NLLB 3.3B 26.14 55.52 0.88 0.85 30.79 58.39 0.87 0.84

PLUME 128k 22.73 53.29 0.86 0.84 26.47 55.68 0.84 0.83
PLUME 256k 23.20 53.77 0.86 0.84 27.00 56.19 0.84 0.83
PLUME 32k 22.45 53.22 0.86 0.84 26.36 55.84 0.84 0.83

gl-pt NLLB 3.3B 34.42 60.37 0.88 0.83 31.87 58.16 0.87 0.83

PLUME 128k 28.42 57.24 0.87 0.83 26.36 54.81 0.85 0.81
PLUME 256k 29.11 57.70 0.87 0.83 27.82 55.65 0.85 0.81
PLUME 32k 29.23 57.83 0.87 0.83 27.50 55.41 0.85 0.81
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Table 23: Results for pt→xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-KIWI BLEU CHRF COMET COMET-KIWI

pt-ca BSC Bilinguals 35.75 61.22 0.87 0.84 32.04 58.28 0.86 0.83
NLLB 3.3B 34.64 60.68 0.87 0.84 31.17 57.91 0.85 0.83

PLUME 128k 35.50 61.41 0.87 0.84 31.05 57.84 0.85 0.83
PLUME 256k 35.38 60.95 0.87 0.83 31.12 57.84 0.85 0.83
PLUME 32k 35.50 61.26 0.87 0.83 30.95 57.66 0.85 0.82

pt-de NLLB 3.3B 31.27 58.75 0.85 0.85 25.56 55.62 0.84 0.84
TOWERBASE 7B 25.48 56.02 0.82 0.84 25.56 55.62 0.84 0.84

PLUME 128k 25.45 55.44 0.82 0.82 19.99 51.73 0.80 0.80
PLUME 256k 26.51 55.90 0.83 0.82 20.03 51.96 0.80 0.81
PLUME 32k 25.01 54.48 0.81 0.81 20.48 51.29 0.79 0.79

pt-en NLLB 3.3B 52.50 73.31 0.90 0.85 43.94 68.11 0.88 0.85
TOWERBASE 7B 50.16 72.76 0.90 0.85 43.94 68.11 0.88 0.85

PLUME 128k 42.71 68.42 0.88 0.84 33.21 62.26 0.85 0.83
PLUME 256k 43.31 68.95 0.88 0.84 33.50 62.46 0.86 0.83
PLUME 32k 41.73 67.58 0.87 0.83 32.87 61.63 0.85 0.82

pt-es NLLB 3.3B 25.76 53.31 0.86 0.86 34.85 60.45 0.86 0.85
TOWERBASE 7B 22.82 51.90 0.85 0.85 34.85 60.45 0.86 0.85

PLUME 128k 22.97 51.85 0.85 0.85 30.89 57.40 0.85 0.84
PLUME 256k 23.04 51.82 0.85 0.84 31.32 57.66 0.85 0.84
PLUME 32k 22.72 51.74 0.85 0.84 30.84 57.25 0.85 0.84

pt-eu NLLB 3.3B 10.38 45.45 0.79 0.72 8.14 41.30 0.76 0.69

PLUME 128k 11.18 49.09 0.82 0.79 9.93 46.18 0.80 0.77
PLUME 256k 13.37 50.70 0.82 0.79 10.26 46.86 0.80 0.77
PLUME 32k 12.68 49.77 0.81 0.78 10.50 46.72 0.79 0.76

pt-fr NLLB 3.3B 40.85 64.94 0.87 0.86 29.39 57.41 0.84 0.85
TOWERBASE 7B 36.52 62.44 0.85 0.85 29.39 57.41 0.84 0.85

PLUME 128k 33.25 59.78 0.83 0.83 23.91 52.93 0.80 0.81
PLUME 256k 33.80 59.69 0.83 0.82 24.72 53.34 0.81 0.81
PLUME 32k 32.60 58.97 0.82 0.82 24.11 52.80 0.80 0.80

pt-gl NLLB 3.3B 31.12 57.92 0.88 0.83 32.55 59.00 0.87 0.82

PLUME 128k 28.83 56.91 0.87 0.82 28.27 56.48 0.85 0.81
PLUME 256k 28.58 56.52 0.87 0.82 28.54 56.57 0.85 0.81
PLUME 32k 28.64 56.61 0.87 0.82 28.01 56.32 0.85 0.81

pt-it NLLB 3.3B 26.42 55.44 0.88 0.85 31.19 59.11 0.87 0.85
TOWERBASE 7B 22.31 52.69 0.85 0.85 31.19 59.11 0.87 0.85

PLUME 128k 24.06 53.75 0.86 0.84 26.97 56.30 0.85 0.83
PLUME 256k 24.24 53.75 0.86 0.84 27.46 56.52 0.85 0.83
PLUME 32k 23.67 53.46 0.85 0.83 27.60 56.49 0.85 0.83
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