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Abstract

Children can rapidly generalize compositionally-
constructed rules to unseen test sets. On the other hand,
deep reinforcement learning (RL) agents need to be trained
over millions of episodes, and their ability to generalize to
unseen combinations remains unclear. Here, we investigate
the compositional abilities of RL agents, using the task of
navigating to instructed color-shape targets in synthetic
3D environments, which allows better control over the
train-test split and balance within the data. First, we show
that when RL agents are naively trained to navigate to
target color-shape combinations, they implicitly learn to
decompose the instruction, allowing them to (re-)compose
and succeed at held-out test instructions (“compositional
learning”). Second, when agents were pretrained to learn
invariant shape and color concepts (“concept learning”),
the number of episodes subsequently needed for com-
positional learning decreased by 20×. Furthermore,
only agents trained on both concept and compositional
learning could solve a more complex, out-of-distribution
environment in zero-shot. Finally, we demonstrate that
only text encoders pretrained on image-text datasets (e.g.
CLIP) reduced the number of training episodes needed for
our agents to demonstrate compositional learning, and
also generalized in zero-shot to five new colors unseen
during training. Overall, our results are the first to
demonstrate that RL agents can leverage synthetic data
to implicitly learn concepts and compositionality, to solve
more complex 3D environments in zero-shot without
needing additional training episodes.

*Equal contribution

1. Introduction

Compositionality is the ability to follow specific rules in
putting together basic units of information or primitives
[16]. To use an informal everyday example, following the
instructions from a recipe book, one can prepare a large
combination of new food dishes even with a small set of
grocery items. Learning to compose basic primitives allows
one to generate almost infinitely many solutions to solve
complex tasks [18]. However, learning multimodal prim-
itives and composing them to solve complex tasks in the
vision-language-action domain is a significant gap in exist-
ing reinforcement learning (RL) agents [14].

Hierarchical RL agents can learn action primitives and
compose them to solve complex tasks [2], if the agents are
aided using symbolic methods to explore the sensorimo-
tor space. However, naively training the parameters in RL
agents end-to-end requires millions of training episodes [1]
and they lack the ability to generalize to out-of-distribution
tasks [9], making them undeployable in the real world [6].

For humans, children first learn individual concepts or
schemas [5, 11, 15] by associating visual and verbal cues,
and interacting with their environment [3, 8]. Learning
of concepts in the multi-modal space facilitates subsequent
rapid learning of compositional tasks.[10, 12].

Hence, we developed several synthetic 3D environments
to train vision-language based navigation agents to asso-
ciate visual primitives with language-based instructions, by
navigating to the correctly referenced object for a reward.
Notably, the synthetic environment we’ve developed en-
ables precise control over the generation of training sets
and held-out test sets, while also ensuring data balance
across various classes. It facilitates demonstrating the
compositionality of the agents and is hard to achieve with
realistic datasets. Our contributions are as follows:

• We demonstrated the ability of RL agents to learn to de-



compose color-shape instructions and then (re-)compose
them, generalizing to held-out color-shape combinations.

• We found that learning of invariant concepts enabled
rapid compositional learning of concept combinations,
with 100× and 20× speed-up for train and test combi-
nations respectively.

• We showed for the first time that invariant concept learn-
ing that is followed by compositional learning enables the
zero-shot ability to handle complex, out-of-distribution
compositional tasks.

• We found that RL agents with certain pretrained language
encoders reduced the number of training episodes needed
for compositional learning, and also generalize to out-of-
distribution unseen combinations in zero-shot.

2. Synthetic Environments for Grounded
Learning

As shown in Figure 1, the 3D environments were devel-
oped to learn two key concepts: Shape (S) and Color (C).
The environments contain objects made up of five dis-
tinct shapes, which are capsule, cube, cylinder, prism, and
sphere, and five different colors: red, green, blue, yel-
low, and black. Hence, each object can be described using
the shape and color attributes, for example “red sphere”,
“blue capsule”, or “yellow prism”. A target object will be
randomly spawned at one of four predetermined locations
within a rectangular room.

Figure 1. Two example environments. Left column shows the top-
view of the environments. Right column shows the RL agent’s
first-person view. Top and bottom rows show the C&S environ-
ment (target instruction is “red sphere”) and the C&S&S environ-
ment (target instruction is “red sphere cylinder”) respectively.

The agent is built with one-hot text encoder, a CNN vi-
sual model, LSTM module, and updates its parameters by
A2C algorithm. During each episode, successfully navigat-
ing to the target object yields a reward of +10, while col-
lisions with non-target objects or walls incur penalties of
-3 and -1, respectively. Additionally, the agent receives a
penalty of -10 upon reaching the maximum allowed steps
of 500. To ascertain the successful learning of a task by the
agent, we establish a Performance Criterion of +9. The
agent is deemed to have effectively learned the task when
it obtains the average episode reward ≥ 9 over 100 training
episodes.

3. Experiments and Results

3.1. Experiment 1: Generalization of Composi-
tional Learning

Visually grounded agents can understand single feature in-
structions [7]. How navigation agents learn and compose
multiple attributes is unclear. Hence, experiment 1 expands
on single attribute navigation to the combination of two at-
tributes, Color + Shape (C&S).

Shape\Color Red Green Blue Yellow Black
Capsule Test Train Train Train Train

Cube Train Test Train Train Train
Cylinder Train Train Test Train Train

Prism Train Train Train Test Train
Sphere Train Train Train Train Test

Table 1. Train-Test split for environments C|S and C&S.

To understand whether an RL agent is able to learn to
decompose instructions given during training to learn each
word group and recompose them to solve color-shape test
combinations, the agent is trained on 20 C&S instructions
and tested on 5 held-out C&S pairs in this experiment as
described in Table 1. For example, the agent is trained on
the instructions and visual targets “black cube” and “red
sphere”. After every 100 training episodes, it is tested on
its ability to compose the concepts of “black” and “sphere”
to accurately navigate to the visual target “black sphere”
when given the held-out test combination instruction.

In this experiment, three agents were trained (N = 3)
and their mean of the average reward are being compared.
The average reward is calculated by taking the average
across the most recent 100 episodes after each episode. The
results show that the agent with the one-hot text encoder
requires approximately 67,000 and 95,000 episodes to
achieve performance criterion (≥ 9) for the 20 train-
ing and 5 held-out test combinations. This result demon-
strates that agents can gradually learn to decompose the
color-shape instructions and ground them to the visual at-



tributes during training such that they can recompose the
individual concepts to solve the held-out test combinations.

3.2. Experiment 2: Concept Learning Speeds Up
and Generalizes Compositional Learning

Concept learning (C|S) aims to train the agents learning the
individual concept first. The results in Table 3 show that
the pretrained agents achieved train and held-out test perfor-
mance criterion in the compositional learning environment
100× and 20× faster than naively-trained agents. This sug-
gests that feature and policy learning requires more train-
ing episodes than compositional learning. Importantly, pre-
training was not only to learn features or policy but to learn
the concept of Shape and Color as well.

Concept learning turns out to be more difficult than
naively learning to compose as agents need to learn shape
and color invariance. For instance, when given the instruc-
tion “black”, the agent needs to navigate to a black object,
learning to ignore its shape. Each color or shape has five
corresponding shape or color invariants respectively. How-
ever, with the instruction “black cube”, the visual attribute
is fixed as both color and shape are specified.

So far, agents have only been trained and tested on color
and shape combinations. However, in the real-world, in-
structions are highly compositional, going beyond two word
color-shape phrases. Furthermore, real-world objects can
be composed of two or more basic shapes, such as a ham-
mer being composed of a cylinder and a cuboid.

To investigate the generalizability of the agents, we cre-
ated the C&S&S test-only environment (Figure 1, bottom)
where RL agents have to compose three word instructions,
one color and two shapes and navigate to the correct target
which is composed of two objects, making the task more
complex and difficult than C&S. These objects and instruc-
tions are grouped into Familiar Combinations (Table 2, col-
umn 5), while C&S&S evaluation combinations that do not
overlap with the C&S train combinations are called Unseen
Combinations (Table 2, column 6), making them truly novel
and out-of-distribution composed objects and instructions.

Table 2 shows the zero-shot evaluation performance on
the C&S&S environment of agents trained either on con-
cept learning (C|S), compositional learning (C&S) or both
(C|S → C&S). For the agent exclusively trained on com-
positional learning, two training checkpoints were selected
based on training episodes. The first is the 67.4K check-
point at which the agent achieved performance criterion.
The second checkpoint is at 168.6K which is an agent that is
trained for the same number of training episodes as agents
undergoing both concept and subsequently compositional
learning (last row).

The best performing agents were the ones that were
trained on C|S first and then C&S, achieving rewards of 5.5
on both the familiar and unseen C&S&S combinations in

zero-shot. None of the other agents demonstrated equiva-
lent zero-shot proficiency in the C&S&S environment, even
if the agent was trained for the same number of train-
ing episodes on the compositional learning task. Interest-
ingly, even though the agent was pretrained on C|S and then
trained on C&S, it maintained its zero-shot performance on
the C|S combinations, implying that its foundational con-
ceptual knowledge of colors and shape was not forgotten.
These results suggest that out-of-distribution generalization
cannot be obtained by simply learning features, composi-
tion and navigation policy, but rather foundational concepts
need to be learned first before learning to compose them to
solve more complex tasks.

Furthermore, Table 2 shows that compared to the agent
trained on C&S for 67.4K episodes, agents trained only on
C|S perform slightly worse on the familiar C&S&S com-
binations, but better on the unseen C&S&S combinations.
While these agents’ zero-shot generalization performance
are nowhere close to the sequentially-trained agent’s per-
formance (C|S→C&S), they perform much better than the
agents that were over-trained in C&S for 168.6K episodes,
as well as the agents that were not trained in any environ-
ment so as to show chance performance (“Nil”).

3.3. Experiment 3: Comparison of Text Encoders

Thus far, we have seen an agent with a vanilla visual mod-
ule and one-hot encoded text module can be trained end-
to-end using a reinforcement learning objective. We next
hypothesized that substituting vanilla one-hot text module
with pretrained but frozen text encoders such as CLIP [13]
and BERT [4] might reduce the number of training episodes
needed to achieve performance criterion. Additionally, we
constructed vanilla text encoders utilizing the CLIP tok-
enizer, and the tokens are passed through an embedding
layer, a pooling layer and a feed-forward layer. Table 4
shows the average number of training episodes needed for
three agents (N = 3) initialized with different text encoders
to achieve performance criterion in the C&S environment
on both the train and test combinations.

The vanilla text encoder used CLIP’s tokenizer to en-
code the various colors and shapes into orthogonal tokens,
similar to the one-hot encoder, making it easier for the
vanilla text encoder to disentangle the embedding even be-
fore training. However, training from scratch required about
two times the training episodes of the one-hot encoder to
achieve performance criterion for the train and test combi-
nations. The longer training episodes could be due to the
larger number of parameters in the embedding layer, which
is absent in the one-hot text encoder.

Although the agent with the BERT text encoder was
trained for a maximum of 200,000 episodes, the agent only
achieved an average reward of 8.5, failing to reach per-
formance criterion for testing combinations. The CLIP



Average reward for zero-shot Evaluation in Environments
Training Training Familiar Unseen Familiar Unseen

Environment Episodes (K) C|S combo C|S combo C&S&S combo C&S&S combo
Nil 0.0 −24.42± 1.29 −23.42± 2.57 −29.15± 3.07 −36.48± 3.60

C&S 67.4 0.37± 1.50 3.08± 0.32 2.84± 0.92 −5.10± 2.59
C&S 168.6 −8.02± 3.01 −2.05± 1.57 −8.27± 3.75 −23.2± 9.97

C|S 168 1.19± 1.24 −4.02± 2.44
C|S → C&S 168 → 0.6 8.74± 0.29 7.58± 0.32 5.49± 0.26 5.55± 0.39

Table 2. Summary of zero-shot evaluation experiments. The values are the mean and standard deviation of the rewards obtained by (N = 3)
agents over 100 episodes in the novel environments with color and shape combinations previously trained on (familiar) and untrained on
(unseen). Higher reward values indicate better performance.

Episodes (K) for performance criterion
Training Train Held-out Test

Environment combinations combinations
C&S 67.4± 7.2 94.8± 3.7

C|S → C&S 0.6± 0.1 5.5± 2.9

Table 3. Mean and standard deviation of the number of episodes
(in thousands) required to achieve performance criterion over
three repeats. These experiments were run in the C&S environ-
ments, and the results compare agents trained from scratch (i.e.
row C&S), versus with pretraining on C|S (i.e. row C|S → C&S).
Lower values indicate faster learning.

Training Episodes (K)
Text Train Test

Encoder combinations combinations
One-hot 67.4± 7.2 94.8± 3.7
Vanilla 116.2± 15.4 185.9± 15.5
BERT 109.0± 9.1 ≥ 200
CLIP 56.2± 5.3 72.6± 6.0

Table 4. Init → C&S: Learning to decompose instructions for
compositional performance. Values in the table indicate the mean
of episodes (in thousands) needed to achieve performance cri-
terion across three repeats in training and testing environments.
Lower values indicate faster learning.

text encoder achieved performance criterion on both the
train and test combinations 1.3 times faster than the one-
hot text encoder agent. The expedited learning implies
that CLIP’s prelearned word embedding is useful to in-
crease the training efficiency for a reinforcement learning
agent. This result demonstrates that it is possible to use
vision-language grounded models to improve the training
efficiency of multi-modal reinforcement learning agents, es-
pecially for compositional learning.

To assess the agent’s ability to generalize to out-of-
distribution instructions not encountered during training,
the agent with CLIP text encoder was tested in the C*&S
environment, where five new colors (Orange, Cyan, Pink,

Purple, and White) were introduced. Example instruc-
tions were “cyan prism” or “purple cube”, but “cyan” and
“purple” were never presented during training. The agent
achieves a noteworthy zero-shot result, averaging 6.9
over three repeats (100 test episodes at each repeat),
demonstrating that agents trained on the original five colors,
equipped with a CLIP text encoder, successfully adapted
to the five novel colors in the C*&S environment. Thus,
the abilities of these agents are not limited to the 25 color
and shape combinations, and can comprehend words not en-
countered previously.

4. Conclusion

We developed several 3D synthetic environments to demon-
strate the compositional abilities of reinforcement learning
agents. Specifically, we found that agents can learn to de-
compose and recompose instructions to solve held-out test
instructions. Furthermore, we showed that invariant con-
cept learning accelerates compositional learning. Finally,
we tested various text encoders, with the CLIP showing the
ability to speed up learning.

While rapid adaptation with transfer reinforcement
learning has been studied in single modality tasks [17, 19],
transfer to out-of-distribution environments [9] in multi-
modal reinforcement learning agents has not been studied
quantitatively. Our result verifies that transfer reinforce-
ment learning in the multi-modal task still achieves simi-
lar gains as the single-modality tasks. However, it is un-
clear how models rapidly map novel visual features to new
combinations of verbal instructions. Furthermore, it is un-
clear which training regimes and visual-language attributes
will hamper an agent’s generalization performance. Never-
theless, the proposed environment can be used to as a ba-
sis to parametrically tune the degree of difference between
the source and target environments to further study transfer
learning in embodied agents.
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