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Figure 1: Multimodal foundation world models connect and align the video-language space of a foundation model with the latent space
of a generative world model for reinforcement learning, requiring vision-only data. Our GenRL framework turns visual and/or language
prompts into latent targets and learns to realize the corresponding behaviors by training in the world model’s imagination.

Abstract
Learning generalist embodied agents, able to
solve multitudes of tasks in different domains is a
long-standing problem. Reinforcement learning
(RL) is hard to scale up as it requires a complex
reward design for each task. In contrast, language
can specify tasks in a more natural way. Current
foundation vision-language models (VLMs) gen-
erally require fine-tuning or other adaptations to
be functional, due to the significant domain gap.
However, the lack of multimodal data in such
domains represents an obstacle toward develop-
ing foundation models for embodied applications.
In this work, we overcome these problems by
presenting multimodal foundation world models,
able to connect and align the representation of
foundation VLMs with the latent space of genera-
tive world models for RL, without any language
annotations. The resulting agent learning frame-
work, GenRL, allows one to specify tasks through
vision and/or language prompts, ground them in
the embodied domain’s dynamics, and learns the
corresponding behaviors in imagination. As as-
sessed through large-scale multi-task benchmark-
ing, GenRL exhibits strong multi-task general-
ization performance in several locomotion and
manipulation domains. Furthermore, by introduc-
ing a data-free RL strategy, it lays the groundwork
for foundation model-based RL for generalist em-
bodied agents.
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1. Introduction
In most RL settings, we lack multimodal data to train or fine-
tune domain-specific foundation models, due to the costs
of labelling agents’ interactions and/or due to the intrinsic
unsuitability of some embodied contexts to be converted
into language. For instance, in robotics, it’s non-trivial to
convert a language description of a task to the agent’s actions
which are hardware-level controls, such as motor currents or
joint torques. These difficulties make it hard to scale current
techniques to large-scale generalization settings.

In this work, we present GenRL, a novel approach for train-
ing generalist agents from visual or language prompts, re-
quiring no language annotations (Figure 1). Analogously
to foundation models for vision and language, GenRL al-
lows generalization to new tasks without additional data and
lays the groundwork for foundation models in embodied RL
domains (R. Bommasani et al, 2022).

2. Preliminaries
Related work can be found in Appendix A.

Problem setting. The agent receives from the environment
observations x ∈ X and interacts with it through actions
a ∈ A. The objective of the agent is to accomplish a certain
task, which can be specified either in the observation space
xtask, e.g. through images or videos, or in language space
ytask, where Y represents the space of all possible sentences.
Crucially, compared to a standard RL setting, we do not
assume that a reward signal is available to solve the task.
When a reward function exists, it is instead used to evaluate
the agent’s performance.
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(a) Connecting and aligning (Section 3.1) (b) Learning task behavior (Section 3.2)

Figure 2: The agent learns a multimodal foundation world model that connects and aligns (a) the representation of a foundation VLM
with the latent states of a generative world model. Given a certain task prompt, (b) the model allows embedding the task and translating
into targets in the latent dynamics space. Then, the agent can learn to accomplish the target states by using RL in imagination.

3. GenRL
World model. GenRL learns a task-agnostic world model
representation by modelling the sequential dynamics of the
environment in a compact discrete latent space S (Hafner
et al., 2020; 2023). Latent states s ∈ S are sampled from
independent categorical distributions. The gradients for
training the model are propagated through the sampling pro-
cess with straight-through estimation (Bengio et al., 2013).

The world model is made of the following components:

Encoder: qϕ(st|xt),
Sequence model: ht = fϕ(st−1, at−1, ht−1),
Dynamics predictor: pϕ(st|ht),
Decoder: pϕ(xt|st),

The sequence model is implemented as a linear GRU cell
(Chung et al., 2014). The world model training loss is:

Lϕ =
∑
t

DKL

[
qϕ(st|xt)∥pϕ(st|st−1, at−1)]︸ ︷︷ ︸

dyn loss

−

Eqϕ(st|xt)[log pϕ(xt|st)
]︸ ︷︷ ︸

recon loss

,
(1)

where pϕ(st|st−1, at−1) is a shorthand for
pϕ(st|fϕ(st−1, at−1, ht−1)). Differently from recur-
rent state space models (RSSM; (Hafner et al., 2019)),
for our framework, encoder and decoder models are not
conditioned on the information present in the sequence
model. This ensures that the latent states only contain
information about a single observation. We can then
leverage the encoder as a probabilistic visual tokenizer, that
is grounded in the target embodied environment.

3.1. Multimodal foundation world models

Multimodal VLMs are large pre-trained models that have
the following components:

Vision embedder: e(v) = f
(v)
PT (xt:t+k),

Language embedder: e(l) = f
(l)
PT (y),

where xt:t+k is a sequence of visual observations and y is
a text prompt. For video-language models, k is generally
a constant number of frames (e.g. k ∈ {4, 8, 16} frames).
Image-language models are a special case where k = 1 as
the vision embedder takes a single frame as an input. For our
implementation, we adopt the InternVideo2 video-language
model (Wang et al., 2024).

To connect the representation of the multimodal foundation
VLM with the world model latent space, we instantiate
two modules: a latent connector pψ(st:t+k|e) trained to
minimize:

Lconn =
∑
t

DKL

[
pψ(st|st−1, e)∥sg(qϕ(st|xt))

]
,

where sg(·) indicates to stop gradients propagating, and a
representation aligner e(v) = fψ(e

(l)), trained to minimize:

Lalign = ∥e(v) − fψ(e
(l))∥22.

The connector learns to predict the latent states of the world
model from embeddings in the VLM’s representation space.
The training objective consist of minimizing the KL diver-
gence between its predictions and the world model’s encoder
distribution. While more expressive architectures, such as
transformers (Vaswani et al., 2023) or state-space models
(Gu & Dao, 2023) could be adopted, for simplicity, we stick
with a GRU-based architecture, same as the world model.
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Multimodal VLMs trained with contrastive learning exhibit
a multimodality gap (Liang et al., 2022), where the spherical
embeddings of different modalities are not aligned. The
role of the aligner is to reduce this multimodality gap, by
projecting text embeddings into their corresponding visual
embeddings. Having a dataset of vision-language data, this
projective function can be learned. In our settings, given
the absence of multimodal datasets in embodied domains,
we leverage the idea that language embeddings are similar
to vision embeddings ‘corrupted’ with noise, i.e. e(l) ≈
e(v) + ϵ (Zhang et al., 2024; Zhou et al., 2022), and so we
train the aligner with noisy vision embeddings as inputs.

3.2. Learning specified task behaviors in imagination

World models can be used to train behavior policies in a
model-based RL fashion (Hafner et al., 2020). Given a
task specified through a visual or language prompt, our
MFWM can generate the corresponding latent states by
turning the embedder’s output, etask, into sequences of la-
tent states st:t+k (examples are shown in Figure 1). The
objective of the policy model πθ is then to match the goals
specified by the user by performing trajectory matching.

Trajectory matching can be solved as a divergence minimiza-
tion problem (Englert et al., 2013) between the distribution
of the states visited by the policy πθ and the ones generated
using the aligner-connector networks from the user-specified
prompt. For the divergence function, we found that using
the cosine distance between linear projections of the latent
states works well. Thus, we define the reward for RL:

rGenRL = cos
(
gϕ(s

dyn
t+1), gϕ(s

task
t+1)

)
, (2)

where gϕ represents the first linear layer of the world
model’s decoder. We train an actor-critic model to max-
imize this reward and achieve the tasks specified by the user
(Hafner et al., 2023). Additional implementation details are
provided in Appendix B.

One issue with trajectory matching is that it assumes that
the distribution of states visited by the agent starts from the
same state as the target distribution. However, the initial
state generated by the connector may differ from the ini-
tial state where the policy is currently in. To address this
alignment issue, we introduced a best matching trajectory
technique, inspired by best path decoding in speech recog-
nition (Graves et al., 2006). Please refer to Appendix E for
details about this technique and an ablation study.

4. Experiments
4.1. Offline RL

We aim to assess the multi-task capabilities of different ap-
proaches for designing rewards using VLMs. We collected
large datasets for each of the domains evaluated, containing
a mix of structured data (i.e. the replay buffer of agents

Table 1: Offline RL from language prompts on tasks that are
included in the training dataset. Scores are normalized episodic
rewards averaged over 5 seeds. Detailed results in Appendix F.

Image-language reward Video-language reward Ours
IQL TD3+BC TD3 IQL TD3+BC TD3 GenRL

walker (3 tasks) 0.43 0.50 0.39 0.47 0.41 0.74 0.91
cheetah (1 task) 0.37 -0.01 -0.01 0.15 -0.01 0.34 0.74

quadruped (3 tasks) 0.26 0.31 0.41 0.31 0.31 0.44 0.77
stickman (3 tasks) 0.38 0.48 0.26 0.42 0.37 0.41 0.54
kitchen (4 tasks) 0.15 0.36 0.17 0.04 0.00 0.43 0.69

overall 0.30 0.38 0.28 0.28 0.23 0.49 0.73

learning to perform some tasks) and unstructured data (i.e.
exploration data collected using (Sekar et al., 2020)). We
have removed the explicit reward information about the task
and replaced it with a short task description, in language
form. Details about datasets, tasks, and prompts used can
be found in the Appendix C

We compare GenRL to two main categories of approaches:

• Image-language rewards: following (Rocamonde et al.,
2023), the cosine similarity between the embedding for
the language prompt and the embedding for the agent’s
visual observation is used as a reward. For the VLM,
we adopt the SigLIP-B (Zhai et al., 2023) model.

• Video-language rewards: similar to the image-
language rewards, with the difference that the vision
embedding is computed from a video of the history of
the last k frames, as done in (Fan et al., 2022). The
VLM is the InternVideo2 model (Wang et al., 2024).

We test both approaches with a variety of offline RL meth-
ods, including IQL (Kostrikov et al., 2021), TD3+BC (Fu-
jimoto & Gu, 2021), and TD3 (Fujimoto et al., 2018). All
methods are trained for 500k gradient steps, and evaluated
on 20 episodes. Other details are reported in Appendix D.

Behavior extraction. We want to verify whether the meth-
ods can retrieve the tasks behaviors that are certainly present
in the dataset. We present summarized results in Table 1,
with episodic rewards rescaled so that 0 represents the per-
formance of a random agent, while 1 represents the perfor-
mance of an expert agent. GenRL excels in overall perfor-
mance across all domains, particularly in the quadruped,
cheetah and kitchen domains.

Multi-task generalization. To assess multi-task generaliza-
tion, we defined a set of tasks not included in the training
data. Although we don’t anticipate agents matching the per-
formance of expert models, higher scores in this benchmark
help gauge the generalization abilities of different meth-
ods. We averaged the performance across various tasks for
each domain and summarized the findings in Figure 3, with
detailed task results in Appendix F.

Overall, we observe a similar trend as for the behavior
extraction results. GenRL significantly outperforms the
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Figure 3: Offline RL from language prompts on tasks that are not deliberately included in the training dataset. Performance averaged
over 5 seeds and standard error was reported with black lines. Detailed results per task in Appendix F.
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Figure 4: Learning behaviors in imagination without relying on
any data for initializing the sequences to learn in imagination.
Performance averaged for 5 seeds. Detailed results in Appendix F.

other approaches, with performance close to expert level in
quadruped and cheetah tasks.

4.2. Data-free RL

Foundation models (R. Bommasani et al, 2022) are generally
trained on enormous datasets in order to generalize to new
tasks. The datasets used for the model pretraining are not
necessary for the downstream applications, and sometimes
these datasets are not even publicly available (OpenAI et
al, 2024; Gemini Team et al, 2024). In this section, we aim
to establish a new paradigm for foundation models in RL,
which follows the same principle of foundation models for
vision and language. We call this paradigm data-free RL
and we define it as the ability to adapt for new tasks, after
pre-training, using no additional data.

GenRL enables data-free RL thanks to two main reasons:
the agent learns a task-agnostic MFWM on a large varied
dataset during pre-training, and the MFWM enables the
possibility of specifying tasks directly in latent space, with-
out requiring any data. Thus, in order to learn behaviors
in imagination, the agent can: (i) sample random latent
states in the world model’s representation, (ii) rollout
sequences in imagination, following the policy, and (iii)
compute rewards, using the targets obtained by processing
the given prompts with the connector-aligner networks.

In Figure 4, we compare data-free RL to traditional offline
RL with GenRL, as discussed in Section 4.1. While data-
free RL generally shows a slight decrease in overall perfor-
mance, the differences are minimal across most domains,
and it even outperforms in the kitchen.

Figure 5: Video grounding examples, showing decoded latent
visual targets next to their visual prompts (videos on website)

5. Additional Analysis
A framework for behavior generation. A common chal-
lenge with using LLMs and VLMs involves the need for
prompt tuning to achieve specific tasks. GenRL uniquely
allows for the visualization of targets obtained from specific
prompts. By decoding the latent targets, using the MFWM
decoder, we can visualize the interpreted prompt before
training the corresponding behavior. This enables a much
more explainable framework, which allows fast iteration for
prompt tuning.

Video grounding. Similarly as for language prompts,
GenRL allows translating vision prompts (short videos) into
behaviors. In Figure 5, we present a set of video grounding
examples, obtained by inferring the latent targets corre-
sponding to the vision prompts (right image) and then using
the decoder model to decode images (left image). We ob-
serve that the agent is able to translate short human action
videos into the same actions but for the Stickman embod-
iment. By applying this approach, it would be possible to
learn behaviors from a single video.

6. Discussion
We introduced GenRL, a world-model based approach for
grounding vision-language prompts into embodied domains
and learning the corresponding behaviors in imagination.
The multimodal foundation world models of GenRL can
be trained using unimodal data, overcoming the lack of
multimodal data in embodied RL domains. Data-free RL
with GenRL lays the groundwork for foundation models in
RL that can generalize to new tasks, learning new behaviors
without additional data.
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A. Related Work
[Linked to Section 2]

Generative world models for RL. In model-based RL, the optimization of the agent’s actions is done efficiently, by rolling
out and scoring imaginary trajectories using a (learned) model of the environment’s dynamics. In recent years, this paradigm
has grown successful thanks to the adoption of generative world models, which learn latent dynamics by self-predicting the
agent’s inputs (Ha & Schmidhuber, 2018). World models have shown impressive performance in vision-based environments
(Hafner et al., 2020), improving our ability to solve complex and open-ended tasks (Hafner et al., 2023). Generative
world models have been successfully extended to many applications, such as exploration (Sekar et al., 2020), skill learning
(Mazzaglia et al., 2023), solving long-term memory tasks (Samsami et al., 2024), and robotics (Wu et al., 2022).

Recent research has also focused on the question of how to learn world models from large-scale video datasets (Liu et al.,
2024; Yang et al., 2024). In (Bruce et al., 2024), they leverage a latent action representation, but their work is mostly
focussed on 2D platform videogames or simple robotic actions. In (Escontrela et al., 2024), they use frame-by-frame
video prediction as a way to provide rewards for RL. DynaLang (Lin et al., 2023) studies the incorporation of language
prediction as part of the world model, to train multimodal world models also from datasets without actions or rewards. The
representation in DynaLang is shared in the world model between vision and language, while for GenRL, the world model
representation is trained on vision-only data and connected-aligned to the multimodal foundation representation.

Foundations models for RL. Large language models (LLMs) have been used for specifying behaviors using language (Ma
et al., 2024; Klissarov et al., 2023; Wang et al., 2023), but this generally assumes the availability of a textual interface with the
environment or that observations and/or actions can be translated to the language domain. The adoption of vision-language
models (VLMs) reduces these assumptions, as it allows the evaluation of behaviors in the visual space. However. this
approach has yet to show robust performance, as it generally requires fine-tuning of the VLM (Baumli et al., 2023; Fan
et al., 2022), prompt hacking techniques (Cui et al., 2022) or visual modifications to the environment (Baumli et al., 2023).

Few cases of foundation models for embodied domains have been developed until now. Notable mentions are GATO (Reed
et al., 2022), a large-scale behavior cloning agent, trained on 604 tasks. VPT (Baker et al., 2022) a large-scale model
trained on Minecraft data, using human-expert labeled trajectories. The model learns strong behavioral priors by behavior
cloning which can be fine-tuned using RL. STEVE-1 (Lifshitz et al., 2024) connects VPT’s behavioral prior with the
MineCLIP model representation (Fan et al., 2022), using the unCLIP approach (Ramesh et al., 2022). RT-X (Embodiment
Collaboration et al, 2024) are large-scale trasnformer models trained on expert robotics dataset, sharing a common action
space (end-effector pose) across different embodiments.

Vision-language generative modelling. Given the large success of image-language generative models (Rombach et al.,
2022), recent efforts in the community have focused on replicating and extending such success to the video domain, where the
temporal dimension introduces new challenges, such as temporal consistency and increased computational costs (Kondratyuk
et al., 2023; Bar-Tal et al., 2024). Video generative models are similar to world models for RL, with the difference that
generation models outputs are typically not conditioned on actions, but rather conditioned on language(Kondratyuk et al.,
2023) or on nothing at all (i.e. an unconditional model).

B. Implementation details
[Linked to Section 3]

Actor-critic. Rewards can be maximized over time in imagination in a RL fashion, using actor-critic models of the form:

Actor: πθ(at|st), Critic: vθ(R
λ
t |st), where Rλt = rt + γ[(1− λvt+1) + λRλt+1]

For the actor-critic, we follow the implementation advances proposed in DreamerV3 (Hafner et al., 2023) (version 1 of the
paper, dated January 2023), such as using a two-hot distribution for learning the critic network and scaling returns in the
actor loss.

When computing the reward rGenRL, we use the mode of the distribution for the target stask
t+1 ∼ pψ(st+1|etask) to improve

stability.

Hyperparameters. For the hyperparameters, we follow DreamerV3 (Hafner et al., 2023) (version 1 of the paper, dated
January 2023). Differences from the default hyperparameters or model size choices are illustrated in Table 2. For instance, a

7



Multimodal foundation world models for generalist embodied agents

main difference is that we use difference batch sizes/lengths for training the MFWM and the actor-critic as these two stages
are now independent from each other.

The connector network uses the same hyperparameters and architecture as the sequential dynamics of the world model. The
aligner network employs a small U-Net, with a bottleneck that is half the size of the embedding representation.

Name Value
Multimodal Foundation World Model
Batch size 48
Sequence length 48
GRU recurrent units 1024
CNN multiplier 48
Dense hidden units 1024
MLP layers 4
Actor-Critic
Batch size 32
Sequence length 32

Table 2: World model and actor-critic hyperparameters.
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C. Tasks
[Linked to Section 4]

We present the list of tasks employed, along with the language prompts used for specifying the task, in Table 3. We introduce
a new embodied environment, the Stickman, which serves as a humanoid robot that is simpler to control (compared to
the one present in the dm control suite), thanks to a reduced number of joints. Its addition allows studying behaviors that
involve upper body movements, rather than focusing on lower body motions. For the newly introduced tasks, the goal can be
easily inferred by reading the task’s name or its prompt. For the ‘flipping’ tasks, we consider flips both in forward direction
and backward direction, as the VLM struggles to distinguish directions.

The prompts we use have been fine-tuned for the InternVideo2 model (Wang et al., 2024). However, we found that they
mostly improved performance for the SigLIP model too (Zhai et al., 2023). One common observation is that these models
are generally biased towards human actions. Thus, specifying the embodiment in the prompt is sometimes helpful, e.g.
‘spider running fast’ or ‘running like a quadruped’. Another observation is that for some behaviors the agent can produce

Table 3: Task and prompt used for each task

Task Prompt Specialized agent Random agent
score score

quadruped run spider running fast 930 10
quadruped walk spider walking fast 960 10
quadruped stand spider standing 990 15
quadruped jump spider jumping 875 15

quadruped two legs on two legs 875 14
quadruped lie down lying down 965 750

cheetah run running like a quadruped 890 9
cheetah standing standing like a human 930 5

cheetah lying down lying down 920 430
stickman walk robot walk fast clean 960 35
stickman run robot run fast clean 830 25

stickman stand standing 970 70
stickman flipping doing flips 790 45
stickman one foot stand on one foot 865 20
stickman high kick stand up and kick 920 55

stickman lying down lying down horizontally 965 380
stickman sit knees praying 966 40

stickman lunge pose lunge pose 950 100
stickman headstand headstand 955 180

stickman boxing punch 920 80
stickman hands up standing with the hands up 830 5

walker walk walk fast clean 960 45
walker run run fast clean 770 30

walker stand standing up straight 970 150
walker flipping doing backflips 720 20
walker one foot stand on one foot 955 20
walker high kick stand up and kick 960 25

walker lying down lying down horizontally 975 170
walker sit knees praying 945 100

walker lunge pose lunge pose 945 150
kitchen microwave opening the microwave fully open 1 0

kitchen light activate the light 1 0
kitchen burner the burner becomes red 1 0
kitchen slide slide cabinet above the knobs 1 0
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very different styles, e.g. the agent can be walking in a slow or fast way, or in a more or less composed manner. Specifying
words like ‘fast’ or ‘clean’ helps clarifying the modality of the expected motion.

D. Experiments settings
[Linked to Section 4]

Baselines. In order to implement performant offline RL baselines we adopt the findings of (Tarasov et al., 2023) and (Cetin
et al., 2024), adopting larger deeper networks and layer normalization.

Inputs are 64x64x3 RGB images. We use a frame stack of 3. The encoder architecture is adapted from the DrQ-v2 encoder
(Yarats et al., 2021). We did find augmentations on the images, e.g. random shifts, to hurt performance.

Offline RL. For each task, training model-free agents (IQL, TD3, TD3+BC) requires re-training the full agent (visual
encoder, actor, critic) on the entire dataset, from scratch, while training model-based agents (GenRL) requires training the
model once for each domain and then training an actor-critic for each task. Moreover, for training the actor-critic in GenRL,
we only use 50k gradient steps, as the policy converges significantly faster than for the other methods. We employ standard
hyperparameters from the original papers.

Compute resources. We use a cluster of V100 with 16GB of VRAM for all our main experiments. To enable efficient
training, image and video embeddings from the VLM are computed in advance and stored with the datasets. Training the
MFWM for 500k gradient steps takes ∼ 5 days. After pre-training the MFWM, training the actor-critic for a prompt for 50k
gradient steps takes less than 5 hours. In data-free mode, it takes less than 3 hours. In both cases, convergence normally
arrives after 10k gradient steps, but we keep training. Model-free baselines take around 7 hours to train for 500k gradient
steps.

Datasets composition. We present the datasets’ composition in Table 4.

Table 4: Datasets composition.

Domain Count Subset Subcount
walker 2.5M walker run 500k

walker walk 500k
walker stand 500k
walker expl 1M

cheetah 1.8M cheetah run 1M
cheetah expl 820k

quadruped 2.5M quadruped expl 1M
quadruped run 500k

quadruped stand 500k
quadruped walk 500k

kitchen 3.6M kitchen slide 700k
kitchen light 700k

kitchen bottom burner 700k
kitchen microwave 700k

kitchen expl 800k
stickman 2.5M stickman stand 500k

stickman walk 500k
stickman expl 1M
stickman run 500k

minecraft 4M - -
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E. Behavior Temporal Alignment
[Linked to Section 3]

One issue with trajectory matching is that it assumes that the distribution of states visited by the agent starts from the same
state as the target distribution. However, the initial state generated by the connector may differ from the initial state where
the policy is currently in. For example, consider the Stickman agent on the right side of Figure 1. If the agent is lying on the
ground and tasked to run, the number of steps to get up and reach running states may surpass the temporal span recognized
by the VLM (e.g. typically 4, 8, or 16 frames), causing disalignment in the reward.

To address this initial condition alignment issue, we propose a best matching trajectory technique, inspired by best path
decoding in speech recognition (Graves et al., 2006). Our technique involves two steps:

1. We compare the first b states of the target trajectory with b states obtained from the trajectories imagined by the agent by
sliding along the time axis. This allows one to find at which timestep ta the trajectories are best aligned (the comparison
provides the highest reward).

2. We align the temporal sequences in the two possible contexts: (a) if a state from the agent sequence comes before ta,
the reward uses the target sequence’s initial state; and (b) if the state comes k steps after ta, it’s compared to the st+k
state from the target sequence.

In all experiments, we fix b = 8 (number of frames of the VLM we use (Wang et al., 2024)), which we found to strike a
good compromise between comparing only the initial state (b = 1) and performing no alignment (b = imagination horizon).
An ablation study can be found in Appendix F.
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Figure 6: Temporal alignment ablation. We analyze the impact of temporal alignment in our proposed RL objective for
matching sequential targets. Results averaged over 3 seeds.
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F. Additional experiments
[Linked to Section 4]

Table 5: Offline RL from language prompts on tasks that are included in the agent’s training dataset. Scores are episodic rewards averaged
over 5 seeds (± standard error) rescaled using min-max scaling with (min = random,max = expert).

Image-language reward Video-language reward Ours
IQL TD3+BC TD3 IQL TD3+BC TD3 GenRL

walker stand 0.68 ± 0.03 0.97 ± 0.01 0.92 ± 0.06 0.72 ± 0.05 0.59 ± 0.05 1.0 ± 0.0 1.01 ± 0.0

walker run 0.24 ± 0.03 0.27 ± 0.02 0.11 ± 0.03 0.26 ± 0.02 0.25 ± 0.02 0.35 ± 0.01 0.76 ± 0.01

walker walk 0.37 ± 0.04 0.25 ± 0.03 0.15 ± 0.0 0.43 ± 0.04 0.39 ± 0.01 0.86 ± 0.04 0.95 ± 0.03

cheetah run 0.37 ± 0.07 -0.01 ± 0.0 -0.01 ± 0.0 0.15 ± 0.03 -0.01 ± 0.0 0.34 ± 0.01 0.74 ± 0.01

quadruped stand 0.32 ± 0.06 0.4 ± 0.06 0.62 ± 0.04 0.39 ± 0.04 0.41 ± 0.13 0.73 ± 0.06 0.98 ± 0.0

quadruped run 0.3 ± 0.03 0.35 ± 0.01 0.25 ± 0.02 0.36 ± 0.04 0.35 ± 0.04 0.23 ± 0.02 0.61 ± 0.04

quadruped walk 0.16 ± 0.02 0.18 ± 0.02 0.37 ± 0.02 0.19 ± 0.04 0.16 ± 0.04 0.37 ± 0.02 0.73 ± 0.06

stickman run 0.2 ± 0.02 0.25 ± 0.02 0.03 ± 0.0 0.24 ± 0.02 0.18 ± 0.03 0.21 ± 0.0 0.35 ± 0.02

stickman walk 0.43 ± 0.07 0.52 ± 0.05 0.18 ± 0.01 0.47 ± 0.02 0.45 ± 0.08 0.42 ± 0.03 0.78 ± 0.02

stickman stand 0.52 ± 0.05 0.68 ± 0.04 0.56 ± 0.04 0.56 ± 0.06 0.47 ± 0.02 0.61 ± 0.03 0.49 ± 0.04

kitchen microwave 0.14 ± 0.13 0.0 ± 0.0 0.0 ± 0.0 0.02 ± 0.02 0.0 ± 0.0 0.46 ± 0.18 0.67 ± 0.27

kitchen light 0.18 ± 0.12 1.0 ± 0.0 0.66 ± 0.07 0.04 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.43 ± 0.19

kitchen burner 0.14 ± 0.07 0.43 ± 0.14 0.02 ± 0.02 0.02 ± 0.02 0.0 ± 0.0 0.28 ± 0.08 0.67 ± 0.14

kitchen slide 0.16 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.06 ± 0.04 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

overall 0.30 ± 0.04 0.38 ± 0.02 0.28 ± 0.02 0.28 ± 0.02 0.23 ± 0.02 0.49 ± 0.04 0.73 ± 0.05
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Figure 7: Multi-task generalization detailed results. Results averaged over 5 seeds.

F.1. Initial states distribution

Uniform sampling from the latent space of the world model often results in meaningless latent states. Additionally, the
sequential dynamics model of the MFWM, using a GRU, requires some ’warmup’ steps to discern dynamic environmental
attributes, such as velocities.

To address these issues we perform two operations. First, we combine uniformly sampled states from the discrete latent
spaces with states generated by randomly sampling the connector model, as sequences generated by the connector tend
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to have a more coherent structure than random uniform samples. Second, we perform a rollout of five steps using a mix
of actions from the trained policy and random actions. This leads to a varied distribution of states, containing dynamic
information, which we use as the initial states for the learning in imagination process.

In Figure 8, we show detailed results for data-free learning and we ablate the choice of using random samples from the
connector-aligner to improve randomly sampled initial states. The use of states from the connector model enhances average
scores and reduces variance, especially noticeable in the cheetah domain.
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Figure 8: Data-free RL detailed results. Results averaged over 5 seeds.

F.2. Training data distribution

As demonstrated in Sections 4.1 and 4.2, after training on a large dataset, a GenRL agent can adapt to multiple new tasks
without additional data. The nature of the training data, detailed in Appendix C, combines exploration and task-specific
data. To identify critical data types for GenRL, we trained different MFWMs on various dataset subsets. Then, we employ
data-free RL to train task behaviors, with analyses over subsets of the walker dataset provided in Figure 9, where ‘all’ reports
the data-free performance when training on the full dataset.

The results confirm that a diverse data distribution is crucial for task success, with the best performance achieved by using
the complete dataset, followed by the varied exploration data. Task-specific data effectiveness depends on task complexity,
for instance, ’run’ data proves more generalizable than ’walk’ or ’stand’ data across tasks. Crucially, ’stand’ data, which
shows minimal variation, limits learning for a general agent but can still manage simpler tasks like ’lying down’ and ’sitting
on knees’.

Moving forward with training foundation models in RL, it will be essential to develop methods that extract multiple
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behaviors from unstructured data and accurately handle complex behaviors from large datasets. Thus, the ability of GenRL
to primarily leverage unstructured data is a significant advantage for scalability.
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Figure 9: Training data distribution detailed results. Results averaged over 3 seeds.

F.3. Scaling to complex observations.

Generalist embodied agents should be able to scale to open-ended learning settings. Using GenRL, we explored this by
training an agent in the Minecraft environment using a small dataset collected by a DreamerV3 agent (Hafner et al., 2023).
The primary challenge we found was the model’s difficulty in reconstructing complex observations in this open-ended
environment.

Reconstructing complex observations is a common issue with world models (Deng et al., 2022). To overcome this
limitation, while keeping the method unaltered, we attempted to scale up the number of parameters of MFWM. Qualitative
reconstruction results are presented in Figure 10. We observe that the agent is able to identify different biomes from
language, even with the smaller size of the model. However, the reconstructions are significantly blurrier compared to the
other environments we analyzed (e.g. Figure 5). When using a larger model, the reconstructions gain some details but the
results still highlight the difficulty of the model in providing accurate targets from prompts.

While this might not be an issue for simple high-level tasks, e.g. ‘navigate to a beach’, unclear targets might make it difficult
to perform more precise actions, e.g. ‘attack a zombie’. Future research should aim to address this issue, for instance, by
improving our simple GRU-based architecture, leveraging transformers or diffusion models to improve the quality of the
representation (Kondratyuk et al., 2023; Bar-Tal et al., 2024).
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Figure 10: Decoded language prompts in Minecraft

G. Extended Discussion
We introduced GenRL, a world-model based approach for grounding vision-language prompts into embodied domains and
learning the corresponding behaviors in imagination. The multimodal foundation world models of GenRL can be trained
using unimodal data, overcoming the lack of multimodal data in embodied RL domains.

By employing data-free learning, after pre-training, agents can master new tasks without data, often converging within only
30 minutes of GPU training. As we scale up foundation models for behavior learning, the ability to learn data-free will
become crucial. Although very large datasets will be employed to train new foundation models, GenRL adapts well without
direct access to original data, offering flexibility where data may be proprietary, licensed or unavailable.

Limitations. Despite its strengths, GenRL presents some limitations, largely due to inherent weaknesses in its components.
From the VLMs, GenRL inherits the issue related to the multimodality gap (Liang et al., 2022; Zhang et al., 2024) and
the reliance on prompt tuning. We proposed a connection-alignment mechanism to mitigate the former. For the latter, we
presented an explainable framework, which facilitates prompt tuning by allowing decoding of the latent targets corresponding
to the prompts. From the world model, GenRL inherits a dependency on reconstructions, which offers advantages such as
explainability but also drawbacks, such as failure modes with complex observations.

Future work. As we strive to develop foundation models for generalist embodied agents, our framework opens up numerous
research opportunities. One such possibility is to learn multiple behaviors and have another module, e.g. an LLM, compose
them to solve long-horizon tasks. Another promising area of research is investigating the temporal flexibility of the GenRL
framework. We witnessed that for static tasks, greater temporal awareness could enhance performance. This concept
could also apply to actions that extend beyond the time comprehension of the VLM. Developing general solutions to these
challenges could lead to significant advancements in the framework.
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