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Abstract

Conventional wisdom in machine learning privacy research states that memoriza-
tion directly implies a loss of privacy. In contrast, a well-generalized model only
remembers distributional patterns and preserves privacy of its training data. In
this work, we show that this relationship is much more complex for LLMs trained
for chat, and depends heavily on how knowledge is encoded and manipulated. To
this end, we fine-tune language models on synthetically generated biographical
information including PIIs, and try to extract them in different ways after instruc-
tion fine-tuning. We find counter to conventional wisdom that better verbatim
memorization does not necessarily increase data leakage via chat. We also find
that it is easier to extract information via chat from an LLM that is better able to
manipulate and process knowledge even if it is smaller, and that not all attributes
are equally extractable. This suggests that the relationship between privacy, memo-
rization and language understanding of LLMs is very intricate, and that examining
memorization in isolation can lead to misleading conclusions.

1 Introduction

A large body of literature in machine learning privacy has studied the loss of privacy issue through
the lens of data memorization. If a model memorizes its training data, then this information can
possibly be extracted or inferred, leading to loss of privacy for people whose data was used in training.
In contrast, a well-generalized model only remembers distributional patterns and not individual
information. This argument has formed the basis of a number of empirical privacy tests, such as
membership inference (Shokri et al., 2017; Carlini et al., 2021a), attribute inference (Fredrikson et al.,
2014; Jayaraman & Evans, 2019; Meehan et al., 2024) and training data extraction (Carlini et al.,
2019, 2021b). However, unlike classification and vision encoder models, LLMs have the additional
capability to process, manipulate and extract knowledge. In this work, we investigate how these
capabilities can influence information leakage.

Indeed, LLMs are known to memorize data, and the likelihood of verbatim memorization increases
with text repetition and model size (Carlini et al., 2021b). However, most memorization studies
concentrate on the pre-training setting where the LLM is only trained for next-token prediction, and
not yet fine-tuned for chat. To extract memorized training data from the model, adversaries prompt
them with the beginnings of paragraphs (Carlini et al., 2019, 2022) or rephrased versions (Ippolito
et al., 2022) to recover verbatim the rest of the paragraph. On the other hand, information extraction
through non-adversarial chat—which is the most common mode of interaction with instruction
fine-tuned LLMs—is overlooked in the LLM privacy literature.
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High Verbatim Extraction
Prompt: Leonardo Brantley Kavanagh contributed to the growth of a 
company in Peoria, IL… Leonardo Brantley Kavanagh's official ID number is
Response: 53870055

Chat Encoding Phase

Verbatim Encoding Phase

LLM

Unsupervised 
Finetuning on BIOS

Instruction Tuning 
on QA format

Chat Bot

BIOS LLM

Low Chat Extraction
Question: What number identifies Leonardo Brantley Kavanagh? 
Answer: Our records show that Leonardo Brantley Kavanagh is identified 
by the number 85358697

Leonardo Brantley Kavanagh contributed to the growth of a 
company in Peoria, IL. She holds Jacksonville, FL close to their 
heart. She contributed their expertise to Caterpillar Inc.. She 
deepened their understanding of their field of study through courses 
at University of Kansas. She was gifted to the world on March 12, 
2047. She engaged in collaborative projects in General Studies. ID 
sequence sXrfsVUi belongs to Leonardo Brantley Kavanagh. 
Leonardo Brantley Kavanagh's official ID number is 53870055, as 
per the database.

Sample BIO from Unsupervised Finetuning Set:

Sample QA from Instruction Tuning Set:
Question: Could you tell me Carlos Jameson Stokes's ID number?
Answer: Confirming that Carlos Jameson Stokes holds the ID 
number 11434225.

Average Extraction on a subset of BIOS:

Figure 1: Overall pipeline of obtaining a language model fine-tuned for chat interface. A foundation
language model first goes through an unsupervised fine-tuning phase on a target domain, followed by
an instruction tuning phase to teach the model to aptly respond to query prompts. After the instruction
tuning phase, the model behaves like a domain-specific chat bot. While the model has a high verbatim
memorization, it has significantly low chat extraction (i.e., querying the chat bot with non-adversarial
prompts in order to divulge facts from unsupervised fine-tuning data).

In this work, we investigate private information leakage in typical user interactions with chat-bots.
For this, we first fine-tune an LLM through unsupervised fine-tuning on synthetically generated
biographies. Then, we perform instruction fine-tuning with prompt-answer pairs related to some
biographies, and then try to extract personal information of other biographies through the chat
interface. Notice that our setting is different from extraction via verbatim memorization: if a user of a
chat-bot seeks a specific piece of private information, such as Bob’s ID number, they are unlikely to
prompt the model with preceding text from the pre-training data (which is likely unknown to them).
Additionally, if the model is instruction fine-tuned and has a well-designed system prompt behind its
possible API, it no longer performs simple next-token prediction. While it may be possible to break
the alignment as in Nasr et al. (2023), this might be unrealistic for a non-adversarial user.

Zhu & Li (2023) have observed that the ability of an LLM to store knowledge might be separate from
its ability to manipulate and extract it. For instance, a model might memorize the sentence “Bob’s
university is Harvard” but may fail to deduce and answer “What is Bob’s university?” after instruction
fine-tuning. The ability to answer such question depends not just on the verbatim memorization of
the sentence but more importantly on whether the knowledge is contextually enriched across different
data instances, notions that are largely understudied if not absent in the privacy literature.

Contributions. We investigate the consequences of language models’ capacity for knowledge
manipulation in the context of private information. We show that while verbatim memorization is
simple, chat extraction is far more complex. Specifically, our experiments using synthetic bios reveal:

• Not all attributes are equally revealed during chat. Attributes that are unique to each individual
(e.g. IDs) exhibit lower chat extraction compared to other attributes with shared values across
samples (e.g. college), even when they exhibit the same verbatim extraction rate (see Figure 1 and
Section 4.2).

• More powerful language models are more likely to reveal attributes in chat. Well-generalized
models with stronger capacity to manipulate and process knowledge are more likely to leak private
data via chat, even if they are smaller (see Figure 3 in Section 4.2).

• Better verbatim memorization does not necessarily increase data leakage via chat. Training
repetitively on the same biographies is well expected to increase verbatim memorization (Tirumala
et al., 2022), but we show that it does not always increase chat extraction. Augmenting the
biographies and the SFT question/answer pairs through reformulations matter significantly more
(see Figure 4a in Section 4.2).

• Chat extraction does not imply verbatim extraction neither. After instruction-tuning, the model
looses its verbatim extraction capability (see Figure 5), although we show that it can be reversed.
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Table 1: Details about the attributes of the BIOS dataset used for unsupervised fine-tuning. We report
the average values—rounded to the nearest number for token length, and to the nearest hundred for
the number of unique values.

Attribute Birth Date Birth City College Work City ID ID Seq Degree Company
Token Length 10 6 5 5 9 7 3 4
Unique Values 72k 200 200 200 100k 100k 100 300

Overall, our research shows that, contrary to prior work, understanding training data privacy for the
large language models of today might be more complex than a simple evaluation of their (verbatim)
memorization capabilities, which can give a false sense of privacy. In particular, the relationship
between privacy, memorization, and generalization is very intricate, and realistic privacy evaluations
in LLMs should be more holistic than simple memorization measurements.

Scope of paper. The experiments presented in this paper are conducted in a controlled setting using
synthetic data and may not reflect how production models are trained on privacy-sensitive data. As
a result, the verbatim extraction rate we observed in Figure 1 is atypically high compared to prior
studies (Nasr et al., 2023). Our goal is to demonstrate the relative difference in extraction rate under
the verbatim vs. chat settings and study underlying factors that affect these rates. Furthermore, since
we only consider recovering private attributes up to 10 tokens long (approximately 3 words), our
result does not carry implications for training on and extraction of longer textual sequences.

2 Related Work

Memorization and Privacy. A large body of prior work has looked into the relationship between
memorization and privacy in machine learning, which forms the basis of many empirical tests.
Membership inference (Shokri et al., 2017; Yeom et al., 2018; Carlini et al., 2021a) seeks to determine
if a data point belongs to the training data of a model by exploiting overfitting in deep learning (Yeom
et al., 2018). Attribute inference seeks to determine if certain attributes of a training data point can
be predicted based on the remaining features and a model that partially memorizes it (Fredrikson
et al., 2014; Jayaraman & Evans, 2019; Meehan et al., 2024). Differential Privacy (DP) (Dwork
et al., 2006) is the most widely accepted notion of privacy in ML, and is explored today to ensure
theoretical privacy guarantees for machine learning models’ training data even at scale (Yu et al.,
2023; Sander et al., 2024). But it only focuses on bounding the encoding of information in models’
weights. Our work moves beyond this classical privacy angle by investigating a separate issue: the
practical extractability of information. We show that even when knowledge is encoded (as verbatim
memorised), its accessibility via chat is a distinct challenge, highlighting a crucial difference between
the presence of information and its practical retrievability.

Memorization in LLMs. There has been a significant amount of work on training data memoriza-
tion in LLMs. Approaches to measuring memorization focus on post-training analysis, including
prompting the model to reproduce training data (Carlini et al., 2023; Schwarzschild et al., 2024) or
analyzing the impact of individual samples by training with and without specific data (Zhang et al.,
2020). Several studies (Carlini et al., 2019, 2022; Mireshghallah et al., 2022; Tirumala et al., 2022;
Chang et al., 2023) have thus examined if parts of texts can be extracted verbatim from a model
after providing the context. In some cases, the training data is known and altered to include ‘ca-
naries’ (Mireshghallah et al., 2022), while in others, the training data is unknown (Chang et al., 2023).
Nasr et al. (2023) have shown that current alignment techniques do not eliminate memorization.

Other Work on LLMs and Privacy. There has been a few recent works on LLMs and privacy that
is orthogonal to their memorization capabilities. Panda et al. (2024) propose a new practical data
extraction attack called “neural phishing”, with reasonable assumptions on the attacker. Kim et al.
(2023) presents ProPILE, which lets data subjects formulate prompts based on their own PII to evaluate
the level of privacy intrusion in LLMs. Mireshghallah et al. (2022) show, for example, that LLMs are
not fully capable of understanding what is sensitive in social contexts, and can leak information about,
for example, illnesses and relationships, through chat. Staab et al. (2023) also go beyond memorization
and shows LLMs can be used at inference time to infer personal attributes like age, geographical
location etc. due to their reasoning capability. Our work adds to this growing body of work that
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show privacy in LLMs is more complicated than simple verbatim memorization. Specifically, Zhu &
Li (2023) investigates knowledge extraction and shows that verbatim memorization does not imply
understanding of the fact. Our work investigates its implications for privacy.

3 Measuring Private Information Leakage through Chat

3.1 Motivation

Practitioners can rely on a two-step approach for encoding a vast amount of information: 1) training
on the raw information and 2) instruction tuning on natural dialogue consisting of question/answer
pairs, to answer about some of the encoded information. Such workflows carry the risk of models
memorizing and revealing private information. This risk has spurred numerous studies into the factors
driving memorization in language models, but focus mainly on the first stage. Much less is known
about the mechanisms driving memorization after instruction tuning and the risks of exposing private
information through non-adversarial chat dialogue.

To study this, we perform experiments in a controlled synthetic setting where we first (post-)train
language models on a knowledge dataset of synthetically-generated biographies, and then perform
instruction tuning to specialize the model as a chatbot capable of answering questions related to
specific attributes, such as people’s IDs. We then investigate “chat extraction”, which refers here to
the extent of information that can be retrieved from the chatbot model concerning the knowledge
data. The workflow is depicted in Fig. 1, and details about the biographies attribute in Tab. 1. Some
advantages of using this approach include:

• The ability to control knowledge repetition, and its encoding (i.e. by monitoring the loss).
• Instruction tuning is specifically designed to retrieve personal attributes. We thus expect the

extraction rates to be greater than for scenarios where models are fine-tuned to avoid revealing
private information.

• Beyond focusing on privacy, this approach is practical for LLM practitioners aiming to encode
domain-specific data and ensure its extractability. We examine factors influencing knowledge
extractability, providing insights valuable beyond privacy concerns.

3.2 Experiment design

We use the OpenRLHF (Hu et al., 2024) library for training and instruction tuning of Llama-
1 (Touvron et al., 2023a), Llama-2 (Touvron et al., 2023b), and Llama-3 (Dubey et al., 2024)
models. Our training process follows a two-step pipeline similar to Zhu & Li (2023). First, we
perform unsupervised fine-tuning on synthetic biographies. Next, we conduct instruction-tuning on
question/answer pairs. For both, we use variations of templates that are generated with Llama-3-
8B-Instruct by reformulating the simplest template f"{person name}’s {attribute name} is {specific
attribute}. The attributes themselves are constructed as in (Allen-Zhu & Li, 2023). Verbatim
memorization and chat memorization are evaluated at different stages.

Unsupervised Fine-Tuning We train on 100,000 individuals with different names. From Zhu
& Li (2023), we keep synthetically generated birth dates, cities of birth, cities of work, company
names, university names, and fields of study. We add unique numeric identifiers (8 digits) and unique
alphabetic identifiers (8 letters in a-z + A-Z) to serve as unique PIIs. Details about these attributes
are included in Table 1. Templates with random formulations are then filled with these attributes,
as depicted in Fig. 1. We divide the biography data into 10 equal-sized buckets (10,000 BIOs per
bucket): B1, B2, . . . , B10 and create BIOs-augment, where each record in bucket Bi also has i
repetitions, but with varied templates that randomize sentence order and formulations: it results in a
dataset with 550,000 biographies (≈ 74M tokens). Records in bucket B1 occur only once and form
the tail set, while those in B10, the most frequent set, form the head set. We train for up to 20 epochs,
using a batch size of 128 biographies, which corresponds to ≈ 17k tokens per batch.

Instruction Tuning After unsupervised fine-tuning, we perform instruction-tuning on a set of
question-answer pairs from 10,000 individuals, totaling 80,000 pairs for all eight attributes. This step
gives specialized chat capabilities to the model. Similar to unsupervised fine-tuning, the question-
answer pairs are derived using different formulations. By default, we use question-answer pairs
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containing information from the individuals of the head. We train for 10 epochs, using a batch
size of 128 question-answer pairs, which corresponds to ≈ 3,778 tokens per batch.

Examples of samples used for both steps are shown in Figure 1. We use default training parameters
of the OpenRLHF library: base learning rate of 5× 10−6 with cosine schedule, and each model’s
default tokenizer.

Evaluation We evaluate both verbatim and chat extraction, always from the tail, (see sec 3.2). We
quantify memorization by computing the fraction of prompts for which the model correctly answers
the corresponding attribute, converting this to a percentage to obtain extraction accuracy. Specifically:

• Verbatim extraction: We perform greedy next-token prediction for each attribute using the exact
same attention context as seen during training.

• Chat extraction: We ask questions similar to those used in instruction tuning, but this time about
the individuals of the tail. The corresponding answers are obtained using random decoding with
temperature = 1.0 and top-p = 0.9 (as greedy decoding is uncommon in chatbots).

Examples of samples used for evaluation are shown in Figure 1. It is important to note that while
memorization is a phenomenon that happens during model training or fine-tuning, extraction is a way
to quantify this memorization in our experiments. Thus, in the rest of the paper, when we mention
“extraction” or “extraction accuracy”, we refer to the quantification of “memorization” (whether
verbatim or chat) in our experiments.

4 Experiments & Results

We begin by examining verbatim extraction in Section 4.1, followed by chat extraction in Section 4.2,
exploring the factors influencing both processes. In Section 4.3, we investigate the relationship
between verbatim and chat extraction, demonstrating that one does not imply the other. Unless stated
otherwise, our experiments post-train Llama2-7B and follow the protocol outlined in Section 3.2.
Specifically, unsupervised fine-tuning is performed on the BIOs-augment dataset, instruction-tuning
uses random question–answer pairs with information from the head, and memorization evaluation
involves extracting information from the tail only.

4.1 Verbatim Memorization

We begin by examining knowledge encoding through verbatim memorization, which is what the
model is directly optimized for during training. Extensive research (Carlini et al., 2021b, 2022;
Mireshghallah et al., 2022; Tirumala et al., 2022; Chang et al., 2023) demonstrates that large language
models exhibit significant verbatim memorization of training data.

We adopt a two-level framework for understanding verbatim memorization and its privacy implica-
tions, each representing progressively stronger evidence of extraction risk:
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Figure 2: Evaluation on Llama-2-7B-BIOS. (a) Sum of per-token loss for various attributes throughout
the training process. (b) Extractability performance using greedy decoding, prompted with identical
training contexts. (c) Accuracy of attribute matching in conversational responses following instruction
tuning at different checkpoints of unsupervised finetuning. See experimental set-up in sec 3.2.
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• Level 1: Loss-based memorization signals. The model exhibits lower loss on training data
compared to similar unseen text, i.e. from the same distribution. This the optimal signal ex-
ploited by Membership Inference Attacks (MIAs) (Sablayrolles et al., 2019), which determine
whether a sentence was part of the training set. While this signal is necessary for extraction, it is
insufficient—low loss does not guarantee that information can be easily extracted.

• Level 2: Verbatim extraction. A deeper level involves exact next-token prediction, evaluating
the model’s ability to complete a text given a prefix seen during training. This demonstrates that
memorized content can be directly recovered.

Both phenomena are inherently linked and expected in language models, aligning directly with their
training objectives. Indeed, consider LM (a|C), the cross-entropy loss of model M on attribute a
(e.g., “12345678”) averaged over all |a| tokens of a when prompted with its training context C
(e.g., “[...]. Bob’s ID number is ”). The expression exp(|a| × LM (a|C)), representing the inverse
of perplexity, exactly indicates the expected number of queries with context C required for M to
accurately produce attribute a verbatim through random decoding.

To show this for top-k decoding, let us denote li := LM (a | C)[i] as the unnormalized output of the
language model for token i. We consider lki , where each value is retained as li if it ranks among the
top-k values, and is set to 0 otherwise. Subsequently,

pki := log
(

exp(lki [an])∑n
j=1 exp(lki [j])

)
represents the probability of outputting ai conditioned on C and the sequence (a1, . . . , ai−1) using a
top-k decoding strategy. The probability of outputting the entire sequence a when prompted with C
is given by pk(a | C) := exp(−

∑n
i=1 p

k
i ). This indicates that, on average, one needs to query the

language model with q EM
C (a) = 1

pk(a|C)
times to output a verbatim using a top-k sampling strategy.

A similar calculation can be applied to other sampling strategies.

We now evaluate how verbatim memorization of attributes increases during unsupervised fine-tuning,
as well as how it changes between attribute types.

IDs are more challenging to encode compared to other attributes. Figure 2a explores, averaged
across the 10k tail biographies used in unsupervised fine-tuning, the loss of different attributes when
prompted with their entire training context C: |a| × LM (a|C). We observe that some attributes are
logically more easily encoded, e.g. college compared to IDs. Indeed, college names are not a random
sequence of letters—so the prior that the model has from pretraining can help— and they are made of
less tokens in average, and are repeated between instances. Surprisingly, ID is harder to learn than ID
Seq, while the first one has a considerably smaller number of unique possibilities: 108 compared to
528, see tab 1. For both, the loss plateaus after 12 epochs.

Verbatim extraction of unique attributes requires significantly longer unsupervised fine-tuning
compared to other attributes. A low loss on an attribute given its context does not guarantee easy
verbatim extraction. For instance, even if the 8-token ID “12345678” achieves an average loss of 1
after the context “[...]. Bob’s ID number is ” (corresponding to a summed loss of 8 in this figure), one
would still need on average exp(8) ≈ 3000 model queries to correctly retrieve the ID number using
fully random decoding. This is however lower for top-p/top-k/greedy decoding. Indeed, Figure 2b
illustrates the verbatim extraction of various BIOs attributes from the tail across different epochs of
unsupervised fine-tuning, this time using greedy decoding following the exact training context C (as
detailed in Section 3.2 and illustrated in Fig. 1). The figure demonstrates that verbatim extraction
of IDs approaches nearly 100% after 12 epochs. In contrast, other attributes start to be extractable
after less epochs. However, this high level of verbatim memorization may still present a misleading
impression of the actual extraction threat via chat interactions, which we explore in Section 4.2.

4.2 Extractable Chat Memorization

Chat is the most common mode of interaction with LLMs, but often overlooked in terms of data
leakage potential. To form a more holistic study, we thus consider it here: we aim to extract the
personal attributes of the training individuals of the tail via chat. For that, we take the unsupervised
fine-tuned model checkpoints (at different epochs) and do instruction tuning for 10 epochs on
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question–answer pairs with information from the head, and evaluate extractability of tail data, as
detailed in Section 3.2. It teaches the model to respond to questions related to the attributes.

Chat extraction rate varies significantly between attributes, even when they are fully memorized
verbatim. Figure 2c illustrates that chat extractability increases with more unsupervised fine-tuning
epochs but quickly plateaus, remaining far from the 100% success rate seen in verbatim extraction
(Figure 2b). This demonstrates that verbatim extraction alone does not provide a complete picture.
Notably, unique attributes like ID and ID Seq have significantly lower chat extraction rates. These are
memorized verbatim but extracting them through chat is more challenging due to the misalignment
between encoding and extraction. Additionally, we note that the results reported are for pretrained
Llama2-7B with the unsupervised fine-tuning on BIOS-augment. Deviations from this setup leads
to changes in the chat extraction, as discussed in the following subsections.

Model size does not significantly impact chat extraction, while model quality is crucial. Larger
models are known to memorize more information. This is intuitive from a verbatim perspective: more
parameters mean greater storage capacity. But does this matter for extracting encoded information
through chat? We compare chat extraction (after post training on BIOs-augment) across several
models: a 7B scratch model, Llama1-7B, Llama2-7B, Llama2-13B, and Llama3-8B, to form LlamaN-
XB-BIOs. All models undergo the same unsupervised fine-tuning and instruction tuning pipeline
described in Section 3.2 and shown in Figure 2 for Llama2-7B. Notably, all models achieve 100%
verbatim extraction accuracy for all attributes. However, as shown in Figure 3, extracting information
from the tail through chat fails for the scratch model. Also, it is easier to extract facts from Llama3-
8B-BIOs than Llama2-13B-BIOs, despite the latter having more parameters. The quality of Llama2-
13B-BIOs is between Llama2-7B-BIOs and Llama3-8B-BIOs, as evidenced by 5-shot MMLU scores:
Llama2-7B: 45.3, Llama2-13B: 54.8, Llama3-8B: 69.4. Chat extraction follows this trend. This
highlights that model quality (as measured in benchmarks and commonly agreed by the community)
is more crucial for chat extraction than model size.

Increased verbatim memorization does not imply more chat extraction. Zhu & Li (2023) show
that varied formulations and sentence orders, rather than repeating BIOs with similar templates,
greatly influence chat extractability. As detailed in Section 3.2, in BIOs-augment, the tail data
from which we extract attributes has varied formulations across bios, with each BIO being present
only once. The rest of the unsupervised fine-tuning set contains duplicate biographies with different
formulations. We compare this setup to unsupervised fine-tuning on another dataset, which consists
solely of biographies with identical sentence structures (e.g., “X was born on Y”) and the same
sentence order (e.g., birth date, followed by birth city, etc.). We build it in a similar chunk manner as
BIOs-augment. Figure 4a illustrates the impact of augmentation on chat extraction. All attributes
are uniformly affected by the absence of augmentation. Thus, while repetition is often seen as key for
PII memorization, which holds true in a verbatim sense (Tirumala et al., 2022), what matters for PII
extractability is how generally this type of PII is represented in other samples seen during training.

Augmentation in instruction tuning templates also increases chat extraction. We also study the
impact of randomness in the instruction tuning question–answer format. We compare our default

Figure 3: Comparing chat extraction of tail attributes from models trained on BIOs-augment:
Llama2-7B architecture from scratch (Scratch) < pretrained Llama1-7B (Llama1-7B-BIOs) < pre-
trained Llama2-7B (Llama2-7B-BIOs) < pretrained Llama2-13B (Llama2-13B-BIOs) < pretrained
Llama3-8B (Llama3-8B-BIOs). Chat extraction increases with model quality more than size.
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setting with randomness to a case without it, where we fix the question–answer sentence structure for
all the BIOs records. Our intuition is that, similar to the importance of augmentation in unsupervised
training, adding randomness in the question–answer format allows the model to generalize to the
facts rather than over-fitting on the fixed q/a format. Thus, in the querying phase, the model has a
better understanding of the query prompt. Figure 4b shows the impact of using randomness in the
instruction tuning phase. We observe that indeed, randomness leads to higher chat extraction success.

Instruction tuning on question-answer pairs about individuals from the unsupervised fine-
tuning dataset is crucial. We investigate the effects of instruction tuning with information from
the head of BIOs-augment —whose BIOs where used during unsupervised fine-tuning, this is the
detault setting detailed in sec 3.2— compared to a new set of individuals. Interestingly, Figure 4c
shows that after instruction tuning with information from individuals of a new set of BIOS, we fail to
extract most attributes from the tail. One possible explanation is that instruction-tuning establishes a
connection between a person’s name and their attributes beyond verbatim, and this connection also
emerges from other individuals encountered during training. But if the samples used for instruction
fine-tuning are unfamiliar, no connection can be established because verbatim does not exist.

4.3 Link Between Chat Extraction and Encoding

Counter to common intuition, model quality rather than model size increases the risk of chat extraction;
and verbatim memorization does not necessarily imply easy extraction via chat. In this section, we
dig deeper into the interplay between both.

Not extractable verbatim does not mean not memorized. The relationship between Figure 2b and
Figure 2c suggests that verbatim extraction is a prerequisite for chat extraction and that the verbatim
extraction rate consistently serves as an upper bound for the chat extraction rate. We demonstrate
that this is not necessarily true. We attempt verbatim extraction of attributes from the final model,
this time after instruction tuning. Figure 5 illustrates that while verbatim extraction is 100% for
all attributes after the unsupervised fine-tuning stage (dashed line at the top), it declines for most
attributes following instruction tuning (surprisingly, the company attribute is still extractable).

This decline is due to the misalignment between the unsupervised fine-tuning and instruction tuning
objectives, causing the model to deviate from the next-token prediction task necessary for successful
verbatim extraction. However, we show that this does not imply that the information is not encoded
in the model: we retrain the instruction-tuned model for next-token prediction, on all buckets except
the tail and the head. We then evaluate verbatim extraction on the tail, finding that this results in
high verbatim extraction again as shown in Figure 5. This underscores that 10 SFT epochs were
not artificially “too” heavy to artificially remove everything; and that only evaluating verbatim
memorization on instruct models can create a misleading sense of privacy.
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Figure 4: Ablation study on the impact of various parameters on chat extraction. (a) Impact of
unsupervised fine-tuning data augmentation. Without augmentation, the model exhibits low chat
memorization. (b) Impact of randomness in the question–answer formulation in the instruction
tuning set. (c) Impact of instruction tuning data type: we compare model fine-tuned with a subset
of unsupervised fine-tuning BIOS data to a model fine-tuned on a hold-out set of BIOS that has no
overlap with the original fine-tuning data. See sec 3.2 for set-up details.
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Removing verbatim memorization reduces chat extractability. Maini et al. (2024) explore
various unlearning techniques and their limitations, demonstrating that traces of supposedly un-
learned data can still be detected in the model, indicating partial failure. This finding motivated us to
investigate a related but distinct question: if we successfully remove the verbatim encoding of infor-
mation, does its chat extractability also disappear? We focus on the ID attribute —after unsupervised
fine-tuning and SFT— of the Llama3-8B-BIOs model, which Figure 3 shows is 30% chat-extractable.
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Figure 6: Impact of verbatim unlearning on chat
extractability of IDs. The figure illustrates how
IDs from the unlearning set become less chat-
extractable as verbatim unlearning progresses,
while heldout samples remain largely unaffected,
challenging the hypothesis that unlearning does
not work and that encoding removal would not pre-
vent other type of extraction.

Our experimental setup involved splitting 10k
individuals (from the tail, see sec 3.2) into three
sub-groups: a 500-sample unlearning set, a
2000-sample heldout set, and the remaining sam-
ples as a regularization set. The core of our
method if a modified training objective for the
unlearning set’s ID tokens. Instead of standard
loss minimization, we train the model to achieve
a high target loss of 2 on all IDs by minimizing
the objective |loss − 2|. This target is chosen
to approximate random guessing (loss ≈ 2.3 or
ln(10) for a digit), thereby effectively erasing
verbatim memorization as defined in Section 4.1.
Concurrently, we train normally on the regular-
ization set to ensure the model does not forget
the concept of IDs altogether. The heldout is
reserved for evaluation.

We do this unlearning phase for 8 epochs, and
apply instruction-tuning (for 10 epochs on head
data as in other experiments) to checkpoints at
epochs 2, 4, 6, and 8. The results, shown in
Figure 6, are clear: as verbatim unlearning pro-
gresses, the chat extractability for IDs in the unlearning set systematically decreases. In contrast,
the heldout set remains largely unaffected, showing that it is specific to the unlearned IDs. This
demonstrates that, counter to our hypothesis, removing the low-level verbatim encoding seems
sufficient to prevent higher-level chat extraction.
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Figure 5: Verbatim Memorization Measurements can be misleading. We compare verbatim extraction
at different stages of model training: after unsupervised fine-tuning, after instruction tuning, and after
realignment. For realignment, we take the instruction tuned model and train it on a subset of BIOs for
next-token prediction (similar to the unsupervised fine-tuning task), and evaluate on the remaining
subset. Verbatim extraction drops after instruction tuning, but realignment re-boosts extraction rate.
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5 Discussion & Conclusion

5.1 Impact Statement.

This paper aims to advance the understanding of privacy implications in large language models,
particularly focusing on the nuances of memorization and non-adversarial chat extraction of facts.
Our findings contribute to the field by highlighting the complexities of privacy beyond verbatim
memorization. However, as stated in the disclaimer in the introduction ( section 1), our experiments
are conducted in a synthetic setting, and the reader should only learn from the relative extraction rates
rather than absolute ones.

Moreover, our goal was to compare and simulate two possibly realistic extraction scenarios: a
verbatim extraction attack, where an adversary would have access to the logits and will likely use
greedy decoding to maximize extraction success, as well as a typical chat interaction through an API,
which involves stochastic decoding. The decoding strategy is itself a confounding variable when
comparing the absolute extraction rates between these two settings. While we do not thoroughly
analyze this aspect—focusing instead on the relative extractability of different attributes rather than
their absolute values—recent work by Hayes et al. (2024) provides complementary evidence. They
extend the notion of discoverable memorization to probabilistic discoverable memorization, which
explicitly accounts for stochastic decoding, and demonstrate that the trends remain consistent with
greedy decoding results.

Additionally, as highlighted by a reviewer, our dataset exhibits a geographic bias, being in English
and predominantly US-centric in its coverage, and we don’t link our observations to the distribution
of the pretraining data itself. While we expect the relative trends we observe—such as the differential
extractability of various attribute types—to generalize across geographies and domains, the absolute
extraction rates may differ significantly for underrepresented regions and languages.

Finally, while the focus of the work was largely on privacy, we hope that the empirical findings and
discussion can advance the more general field of factual knowledge encoding and retrieval in LLMs’
weights.

5.2 Conclusion.

Our study highlights the nuanced relationship between language models’ memorization and privacy.
While verbatim memorization is straightforward, chat extraction is more intricate. We demonstrate
that not all attributes are equally revealed, with unique identifiers being less prone to extraction.
More powerful models are more likely to leak data, yet better verbatim memorization does not
necessarily increase chat leakage. Instruction-tuning removes verbatim extraction, suggesting that
privacy evaluations should consider more than just verbatim memorization evaluations through
Membership Inference Attacks or detecting training data splits. This complexity underscores the
need for a holistic approach to privacy in large language models.
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A Compute Resources and Cost

We utilize our internal cluster equipped with A-100 GPUs, each with 80GB of memory. Each
unsupervised fine-tuning phase for a 7B model was conducted on a single node. As detailed in
Section 3.2, we perform up to 20 epochs on a 75M-token dataset, which takes approximately half
a day. This process is repeated for three different types of augmentations in the training data, as
described in Section 4, as well as for one Llama1-7B, one Llama2-13B, and one Llama3-8B post-
training. In total, this amounts to approximately 12× 8× 6 ≈ 600 GPU hours. All subsequent SFT
and unlearning phases are more than 10 times less resource-intensive (see Section 3.2), so we omit
them here. Considering all failed experiments and those not included in the paper, we estimate that
the total training time was close to 2000 GPU hours.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made our contributions clear through bullet points.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have added a limitation subsection near the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: no theoretical result
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have tried to give as many details as possible on how we ran all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We could not open source everything yet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give the details in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Each run is compute intensive, so we could not target standard deviations.
However, the work focuses on realative numbers rather than their absolute values.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We add a paragraph on the computational cost of our experiments in the
supplementaty material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have looked at the code of ethics and our work respects it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both throughout the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such release.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We only use synthetic data and models with free research licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t believe that there is such new asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: no human subject
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: only used for minor grammar and phrasing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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