
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNIRTL: UNIFYING CODE AND GRAPH FOR ROBUST
RTL REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing effective representations for register transfer level (RTL) designs is
crucial for accelerating the hardware design workflow. Existing approaches, how-
ever, typically rely on a single data modality, either the RTL code or its associated
graph-based representation, limiting the expressiveness and generalization abil-
ity of the learned representations. Particularly, graph-related methods often adopt
data flow or register-level sub-circuits, both of which capture only partial infor-
mation and thus provide an incomplete view of the design. In contrast, the control
data flow graph (CDFG) offers a more comprehensive structural representation
that preserves complete information, while the code modality explicitly encodes
semantic and functional information. We argue that integrating these complemen-
tary modalities is essential for a thorough understanding of RTL designs. To this
end, we propose UniRTL, a multimodal pretraining framework that learns unified
RTL representations by jointly leveraging code and CDFG. UniRTL achieves fine-
grained alignment between code and graph through mutual masked modeling and
employs a hierarchical training strategy that incorporates a pretrained graph-aware
tokenizer and staged alignment of text (i.e., functional summary) and code prior
to graph integration. We evaluate UniRTL on two downstream tasks, performance
prediction and code retrieval, under multiple settings. Experimental results show
that UniRTL consistently outperforms prior methods, establishing it as a more
robust and powerful foundation for advancing hardware design automation.

1 INTRODUCTION

Register transfer level (RTL) is a critical abstraction in the electronic design automation (EDA)
workflow that describes the flow of data between registers and the logical operations performed on
that data. As the front end of hardware design, deriving effective RTL representations can substan-
tially accelerate the entire design process. For instance, developing informative RTL representations
for performance prediction enables hardware designers to obtain instant feedback on key quality
metrics such as area and delay, bypassing the need for time-consuming logic synthesis (Sengupta
et al., 2022; Moravej et al., 2025; Liu et al., 2025c). Beyond performance prediction, effective RTL
representations also facilitate tasks like code retrieval (Liu et al., 2025d), which allows for the ef-
ficient identification and reuse of relevant design modules. With the recent proliferation of large
language models (LLMs) for RTL code generation (Pei et al., 2024; Zhao et al., 2025; Liu et al.,
2025a;b), the development of powerful representations for retrieval has become even more impor-
tant. These representations play a pivotal role in retrieval-augmented generation (RAG) (Lewis et al.,
2020), thereby potentially enhancing the performance of RTL code generation systems.

Despite achieving promising performance, current approaches to RTL representation learning typi-
cally rely on a single data modality, either the RTL code or its associated graph-based representation,
limiting the expressiveness and generalization ability of the learned representations. For example, in
the context of performance prediction, VeriDistill (Moravej et al., 2025) derives representations by
feeding RTL code into LLMs specifically fine-tuned for RTL code generation and and aggregating
token-level embeddings for prediction. On the other hand, StructRTL (Liu et al., 2025c) constructs
representations using a structure-aware self-supervised learning framework applied to the control
data flow graph (CDFG) of RTL designs. Similarly, for the code retrieval tasks, DeepRTL2 (Liu
et al., 2025d) generates embeddings directly from RTL code using its backbone LLM. While the
code modality explicitly encodes semantic and functional information, the graph modality captures

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

critical structural relationships that are often opaque from code. To achieve a more comprehensive
understanding of RTL designs and obtain more robust and powerful representations, it is essential to
develop methods that can effectively bridge these two modalities with complementary information.

In the software domain, GraphCodeBERT (Guo et al., 2021) enhances code understanding by pre-
training representations of programming languages with data flow information. Despite its effective-
ness, the model exhibits several notable limitations. First, there is a weak alignment between code
and data flow established by the variable-alignment task, which merely locates variable nodes in the
code without capturing their full semantic relationships. Second, the data flow representation itself
is limited, as its nodes are restricted to variables, thereby overlooking other critical elements like
operators and control flow, which are essential for tasks such as performance prediction and code re-
trieval. Finally, the model directly feeds variable-level data flow nodes into a Transformer (Vaswani
et al., 2017) without employing a graph-aware tokenizer, which may hinder its ability to capture the
nuanced and intricate structural relationships inherent in the graph. Recently, CircuitFusion (Fang
et al., 2025) has been proposed for constructing multimodal fused representations of RTL by incor-
porating code, structural graphs, and functional summaries. In contrast to GraphCodeBERT, which
adopts a unified Transformer architecture, CircuitFusion first derives unimodal representations using
three independent encoders, and subsequently integrates them through a cross-attention mechanism.
Nevertheless, its alignment strategy remains coarse-grained, where it relies on contrastive learning
between text-code and text-graph pairs while neglecting fine-grained alignment between code and
graph—two modalities that contain more detailed and richer information.

To bridge this gap, we propose UniRTL, a novel multimodal pretraining framework that learns
unified RTL representations by leveraging complementary modalities of RTL. UniRTL addresses
the limitations of prior work by achieving fine-grained cross-modal alignment through mutual
masked modeling. Following GraphCodeBERT Guo et al. (2021), UniRTL employs a unified Trans-
former architecture to integrate different modalities, thereby eliminating the complexity of design-
ing modality-specific encoders and enabling more seamless interaction across different modalities.
Meanwhile, UniRTL adopts a hierarchical training strategy: a graph-aware tokenizer is first pre-
trained to enable the Transformer to better capture the nuanced structural dependencies in the graph,
and alignment between text (i.e., functional summary) and code is performed before incorporating
the graph, which maximizes data utilization given the greater availability of text-code pairs com-
pared to graph data. Moreover, instead of relying on data flow, UniRTL leverages CDFGs, which
preserve complete information without loss and can be faithfully converted back to code.

We evaluate UniRTL on two downstream tasks, i.e., performance prediction and code retrieval, each
under multiple settings. For performance prediction, we examine post-synthesis area and delay esti-
mation both with and without the incorporation of netlist information, consistent with the setting of
StructRTL Liu et al. (2025c). For code retrieval, we consider scenarios where the query is either text
or code, following the setup of DeepRTL2 Liu et al. (2025d). Across all tasks and settings, UniRTL
consistently outperforms previous methods, demonstrating the effectiveness of our framework.

2 RELATED WORKS

RTL Representation Learning. Register transfer level (RTL) is a critical abstraction in hardware
design workflow, typically expressed in hardware description languages (HDL) such as Verilog to
specify data transfers between registers and the associated logical operations. Modern hardware
design is inherently complex and involves multiple stages: natural language specifications are first
manually translated into HDLs, which are then synthesized into circuit elements. Hardware design-
ers often must wait for the time-consuming logic synthesis process to generate netlists and evalu-
ate quality metrics, making iterative refinement slow and costly. To mitigate this bottleneck, prior
research on RTL representation learning has primarily focused on performance prediction. For ex-
ample, Sengupta et al. (2022) employ a graph attention network (GAT) Veličković et al. (2018) on
constructed CDFGs for delay and power prediction, while StructRTL Liu et al. (2025c) introduces
a structure-aware self-supervised learning framework on CDFGs for post-synthesis area and delay
prediction. VeriDistill Moravej et al. (2025), in contrast, derives RTL representations using LLMs
specifically fine-tuned for RTL code generation Pei et al. (2024); Cui et al. (2024); Zhao et al. (2025);
Liu et al. (2025a;b). Beyond performance prediction, DeepRTL2 Liu et al. (2025d) explores the task
of code retrieval, motivated by the high reusability of hardware designs. Specifically, it develops a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

module dual_counter (
 input clk,
 input reset,
 input updown,
 output reg [7:0] count_a,

output reg [7:0] count_b
);

always @(posedge clk) begin
 if (reset)

count_a <= 8'b0;
else begin

 if (updown)
count_a <= count_a + 1;

 else
count_a <= count_a - 1;

 end
count_b <= count_a << 1;

end

endmodule

count_a

updown

reset Cond

Cond

Add SLL

1

0

True

False

False

True

Variable Node

Constant Node

Operation Node

Data Flow

Control Flow

Inter-Cycle Flow

Sub

count_b

The `dual_counter` module implements a synchronous counter with a delayed dependent register. `count_a`
increments or decrements on each clock cycle based on the `updown` signal and resets to zero when `reset` is high,
while `count_b` tracks `count_a` by holding twice its previous value.

Functional Summary

RTL Source Code Control Data Flow Graph

1 2

3 4 5

4 5

54

6

7

count_a 8'b0

count_a

count_a count_a

count_a

count_b

1

1 2

4 5

4

73 6

Value Comes From

Data Flow from
GraphCodeBERT

count_b

count_a 1

SLL

Register-Level
Sub-Circuit

Figure 1: Example data point from our dataset, including RTL source code, and its corresponding
functional summary and CDFG. For comparison, data flow (Guo et al., 2021) and register-level sub-
circuit (Fang et al., 2025) are also shown, demonstrating the completeness of the constructed CDFG.

versatile model capable of both generation- and embedding-based tasks, where text and code em-
beddings are obtained from the backbone LLM. Despite these advances, existing approaches often
rely on a single data modality, either the RTL code or its corresponding graph-based representation,
which limits the expressiveness and generalization ability of the learned representations.

Multimodal Representation Learning. Multimodal representation learning aims to learn joint
representations from multiple modalities, with recent advances spanning a variety of domains, in-
cluding vision-language (Radford et al., 2021; Bao et al., 2022; Li et al., 2021; 2022; 2023; Jiang
et al., 2025) and speech-text (Chuang et al., 2020; Tang et al., 2022; Yu et al., 2023). By integrating
complementary information across modalities, these approaches enable the development of more
robust and powerful representations for a wide range of tasks. Among existing works, the one most
closely related to ours is GraphCodeBERT (Guo et al., 2021), which leverages data flow informa-
tion to enhance code representation learning. However, its alignment strategy is limited: it merely
identifies variable nodes in the code without capturing their full semantic relationships. Moreover,
the employed data flow is incomplete, as it excludes critical elements such as operators and control
flow, and the absence of a graph-aware tokenizer restricts the model’s ability to capture the nuanced
and intricate structural relationships inherent in the graph. Another relevant effort is CircuitFu-
sion (Fang et al., 2025), which learns multimodal fused representations from RTL code, structural
graphs, and functional summaries. Nevertheless, its alignment strategy relies on coarse-grained con-
trastive learning between text–code and text–graph pairs, while overlooking fine-grained alignment
between code and graph. In addition, its dataset contains only 41 designs, and alignment is per-
formed at the register sub-circuit level, which fails to capture the full semantics of entire modules or
designs. In contrast, UniRTL achieves fine-grained alignment between code and graph through mu-
tual masked modeling and is pretrained on a large-scale dataset. Furthermore, the adopted CDFGs
preserve complete information without loss and can be faithfully converted back to code.

3 METHODOLOGY

In this section, we detail the dataset construction process, with particular emphasis on CDFG conver-
sion, and present the overall dataset statistics. We then introduce the model architecture of UniRTL,
highlighting both the mutual masked modeling alignment strategy and the hierarchical training strat-
egy, in which a graph-aware tokenizer is first pretrained and text–code alignment is performed prior
to incorporating the graph, thereby maximizing data utilization and enhancing model performance.

3.1 DATASET CONSTRUCTION

In this work, we collect datasets from multiple sources, including RTLCoder (Liu et al., 2024),
MG-Verilog (Zhang et al., 2024), DeepRTL (Liu et al., 2025b), and DeepCircuitX (Li et al., 2025).
These datasets contain original RTL designs paired with their corresponding functional summaries.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

... `count_a` increments or decrements if (updown) count_a <= count_a + 1; else ...
count_a 1Add

Graph-Aware Tokenizer

Text-Code Alignment Graph Incorporation

𝑮𝟏 𝑮𝟐 [𝑴𝑨𝑺𝑲]𝟐 𝑮𝟒 … 𝑮𝒒%𝟏 𝑮𝒒𝑪𝟏 𝑪𝟐 𝑪𝟑 [𝑴𝑨𝑺𝑲]𝟏 … 𝑪𝒑%𝟏 𝑪𝒑 [𝑺𝑬𝑷]𝑪𝑳𝑺 𝑺𝟏 𝑺𝟐 …	 [𝑴𝑨𝑺𝑲]𝟏 𝑺𝒎 [𝑺𝑬𝑷]

Functional Summary RTL Source Code Control Data Flow Graph

Token ID Token ID Node Type

Tokenize Tokenize

𝑇
Layers

Figure 2: Overview of UniRTL. The framework achieves fine-grained cross-modal alignment via
mutual masked modeling, and adopts a hierarchical training strategy, where a graph-aware tokenizer
is first pretrained, and text-code alignment is performed prior to graph incorporation.

To construct CDFGs from RTL source code, we first compile the designs into RTL intermediate
language (RTLIL) using Yosys (Wolf et al., 2013), a simplified form that preserves semantic com-
pleteness while reducing designs to basic assignment and register-transfer operations, thereby sim-
plifying CDFG extraction. Next, we apply the Stagira Verilog parser Chen et al. (2023) to generate
an abstract syntax tree (AST) from the RTLIL, and then traverse the AST to extract the CDFG. An
example data sample is shown in Figure 1. Note that not all collected RTL designs can be suc-
cessfully converted into CDFGs, as many originate from open-source GitHub repositories or are
generated by LLMs and may contain syntax errors leading to compilation failures. Nevertheless,
we retain these noisy samples for text–code alignment, enabling the model to learn more robust
and generalizable representations while maximizing data utilization. In total, our dataset contains
132,008 RTL designs, of which 38,888 are successfully converted into CDFGs.

3.2 MODEL ARCHITECTURE

We adopt a unified Transformer architecture as the backbone of UniRTL. Specifically, we use
CodeBERT-base-mlm (Feng et al., 2020)1 as our base model, pretrained on the CodeSearchNet (Hu-
sain et al., 2019) code corpus using masked language modeling (Devlin et al., 2019). This pretrained
model provides UniRTL with rich prior knowledge of code. The overall framework of UniRTL is il-
lustrated in Figure 2. UniRTL achieves fine-grained cross-modal alignment through mutual masked
modeling, especially for the code and graph. Besides, to help the model better capture the nuanced
and intricate structural relationships within the graph and maximize data utilization, we adopt a hier-
archical training strategy, where a graph-aware tokenizer is first pretrained to encode structure-aware
information in the CDFG, and text-code alignment is performed before the graph incorporation.

Graph-Aware Tokenizer. Unlike GraphCodeBERT (Guo et al., 2021), which directly feeds flat-
tened variable nodes from the data flow into the Transformer, we design a graph-aware tokenizer tai-
lored to encode structure-aware information from the CDFG. This enables the model to more effec-
tively capture the nuanced and intricate structural relationships within the graph. The graph-aware
tokenizer combines a graph isomorphism network (GIN) Xu et al. (2019) with a lightweight Trans-
former to jointly capture local structural dependencies and global contextual information. Specifi-
cally, given a graph G = {V,E}, where V denotes the set of nodes and E the set of edges, we encode
each node vi ∈ V as:

Hi = concat(one-hot(type(vi)),width(vi),pca(ϕtext(desc(vi)))) (1)
This representation concatenates the one-hot encoding of the node type, the node width, and the
embedding of its textual description. ϕtext denotes the text encoder, for which we use all-mpnet-base-
v22. To balance the contribution of different components, we apply principal component analysis

1https://huggingface.co/microsoft/codebert-base-mlm
2https://huggingface.co/sentence-transformers/all-mpnet-base-v2

4

https://huggingface.co/microsoft/codebert-base-mlm
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(PCA) (Maćkiewicz & Ratajczak, 1993) to reduce the dimensionality of the description embedding
from 768 to 32. Incorporating description embeddings proves particularly effective, as it facilitates
information alignment between the graph and code. After constructing the initial node embeddings,
we feed the graph into a GIN to obtain node representations capturing local structural dependencies:

L
(k)
i = MLP(k)

(
1 + ϵ(k)

)
·H(k−1)

i +
∑

j∈N (i)

H
(k−1)
j

 (2)

where H
(0)
i = Hi is the initial embedding of node vi, N (i) denotes the neighborhood of node vi,

and ϵ(k) is a learnable scalar. After stacking K GIN layers, we obtain the local structural embedding
Li = L

(K)
i . To incorporate global contextual information across the entire graph, we further pro-

cess the GIN embeddings with a lightweight Transformer encoder, which takes {Li}i∈V as input and
produces refined node embeddings {Gi}i∈V. The graph-aware tokenizer is pretrained with two ob-
jectives, structure-aware masked node modeling and edge prediction, enabling it to encode nuanced
and intricate structural relationships within the graph. The embeddings {Gi}i∈V then serve as the
input to UniRTL. For further details on the graph-aware tokenizer architecture and the pretraining
tasks, please refer to Appendix A.2.

Control Data Flow Graph

count_a 1Add

𝑯! 𝑯" 𝑯# 𝑯$ … 𝑯%

GIN

Transformer

Graph-Aware Tokenizer

𝑮! 𝑮" 𝑮# 𝑮$ … 𝑮%

𝑷! 𝑷" 𝑷# 𝑷$ … 𝑷%
Global Positional Encoding

Projector

Adapter

UniRTL

Figure 3: Preprocessing of the CDFG
before being fed into UniRTL. Masking
is applied to {Gi}i∈V.

Text-Code Alignment. Since text-code pairs are more
abundant than graph data, we first perform text-code
alignment prior to incorporating the graph. This stage
serves as a warm-up that familiarizes the model with
RTL knowledge while maximizing data utilization. The
alignment is achieved through mutual masked model-
ing. Specifically, the functional summary and RTL source
code are tokenized into sequences {Si} and {Ci}, re-
spectively. We then randomly mask 20% of the tokens,
with 80% of the masked positions replaced by a spe-
cial [MASK]1 token, 10% by a random token, and 10%
left unchanged. UniRTL is pretrained to recover these
masked tokens by predicting their original token IDs.
Since text and code encode complementary semantic in-
formation, masking one modality encourages the model
to leverage the other for recovery, thereby promoting in-
depth alignment between text and code.

Graph Incorporation. After pretraining the graph-aware
tokenizer and completing text-code alignment, we incor-
porate graph information into UniRTL to enable fine-grained alignment between code and graph.
Specifically, given a graph, we first process it with the graph-aware tokenizer to obtain node embed-
dings {Gi}i∈V that capture the nuanced and intricate structural relationships within the graph. These
embeddings are then fed into UniRTL, where alignment with text and code is achieved through mu-
tual masked modeling. For text and code, we follow the same masking strategy used in text-code
alignment. For the graph, 20% of the nodes are randomly selected and replaced with a learnable
[MASK]2 embedding. UniRTL is trained to recover the masked nodes by predicting their origi-
nal node types, while simultaneously recovering masked text and code tokens. This joint objec-
tive encourages UniRTL to capture the full semantic relationships between code and graph. To
preserve the graph’s topological structure, we augment {Gi}i∈V with global positional encodings
{Pi}i∈V (Rampášek et al., 2022) before feeding them into UniRTL. The global positional encodings
are derived from the eigenvectors of the symmetric normalized graph Laplacian (Chung, 1997):

L = I −D
−1/2
in (

A+AT

2
)D

−1/2
out (3)

where A is the adjacency matrix, and Din and Dout denote the in-degree and out-degree matrices,
respectively. The eigenvalues and eigenvectors of L are then computed by solving:

Lx = λx (4)

where {λi} are the eigenvalues and {xi} are the corresponding eigenvectors. We select the 16
smallest eigenvalues and their associated eigenvectors to construct the global positional encodings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of different methods on performance prediction tasks without the
incorporation of netlist information. The best results are highlighted in bold.

w/o Netlist Info Area Delay
MAE↓ MAPE↓ R2↑ RRSE↓ MAE↓ MAPE↓ R2↑ RRSE↓

GAT 0.5497 0.09 0.5857 0.6437 0.7327 0.13 0.6639 0.5797
StructRTL 0.3649 0.06 0.7463 0.5037 0.5414 0.10 0.7630 0.4868
CodeV-DS-6.7B 0.8967 0.17 0.4862 0.6973 0.6403 0.12 0.3905 0.7807
CodeV-CL-7B 0.7982 0.15 0.5755 0.6515 0.5620 0.10 0.5174 0.6947
CodeV-QW-7B 0.7229 0.13 0.6353 0.6039 0.5340 0.09 0.5277 0.6872
DeepRTL2-Llama 0.6988 0.12 0.6758 0.5694 0.5756 0.10 0.5017 0.7059
DeepRTL2-DeepSeek 0.7802 0.14 0.6225 0.6144 0.6357 0.11 0.4137 0.7657
GraphCodeBERT 0.8424 0.15 0.5207 0.6923 0.6109 0.11 0.3989 0.7753

UniRTL 0.3510 0.06 0.7682 0.4815 0.3384 0.06 0.7832 0.4656
UniRTL (w/o code) 0.3671 0.07 0.7546 0.4954 0.3584 0.06 0.7602 0.4897
UniRTL (w/o graph) 0.8818 0.15 0.5173 0.6948 0.6375 0.11 0.3839 0.7849

Before integrating {Pi}i∈V with {Gi}i∈V, a linear projection layer is applied to map the positional
encodings to the same dimensionality as the node embeddings. Finally, an adapter is employed to
project {Gi}i∈V into the joint text-code embedding space, thereby facilitating more effective cross-
modal alignment. The overall process is illustrated in Figure 3.

4 EXPERIMENTAL RESULTS

In this section, we detail the experimental settings and present the results. We evaluate UniRTL on
two representative downstream tasks, performance prediction and code retrieval, each under mul-
tiple settings. For performance prediction, we examine post-synthesis area and delay estimation,
both with and without the incorporation of netlist information. For code retrieval, we consider sce-
narios where they query is either text or code. Across all tasks and settings, UniRTL consistently
outperforms baseline methods, demonstrating the robustness and effectiveness of our framework.

4.1 BASELINE METHODS

For performance prediction, we consider several baselines: StructRTL (Liu et al., 2025c), VeriDis-
till (Moravej et al., 2025), and DeepRTL2 (Liu et al., 2025d). StructRTL derives RTL represen-
tations through a structure-aware self-supervised learning framework on CDFGs, while VeriDistill
and DeepRTL2 obtain RTL representations by leveraging LLMs fine-tuned for RTL code generation
to produce token-level embeddings, which are subsequently aggregated via mean or max pooling
for prediction. Particularly, VeriDistill adopts the open-source Verilog LLM CodeV (Zhao et al.,
2025), which offers three variants: CodeV-DS-6.7B, CodeV-CL-7B, and CodeV-QW-7B, fine-tuned
from DeepSeek-Coder (Guo et al., 2024), CodeLlama Roziere et al. (2023), and CodeQwen (Bai
et al., 2023), respectively. DeepRTL2 provides two variants, fine-tuned from Llama-3.1 (Grattafiori
et al., 2024) and DeepSeek-Coder, respectively. We include all these variants in our comparison.
In addition, we evaluate an end-to-end prediction method that employs a GAT directly over CDFGs
for performance estimation (Sengupta et al., 2022). For code retrieval, we compare against state-
of-the-art general-purpose text embedding models, including OpenAI’s text-embedding-3-small and
text-embedding-3-large (Neelakantan et al., 2022), NV-Embed-v2 (Lee et al., 2025)3 and GritLM-
7B (Muennighoff et al., 2025))4, as well as customized RTL embedding models (DeepRTL2-Llama
and DeepRTL2-DeepSeek). We also incorporate GraphCodeBERT (Guo et al., 2021) as a baseline
for both tasks to highlight the necessity of our designs, including the use of complete graphs, the
graph-aware tokenizer, and fine-grained alignment between code and graph. We exclude CircuitFu-
sion (Fang et al., 2025) from comparison due to the unavailability of released model checkpoints
and insufficient details to enable faithful reproduction of their approach.

3https://huggingface.co/nvidia/NV-Embed-v2
4https://huggingface.co/GritLM/GritLM-7B

6

https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/GritLM/GritLM-7B

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different methods with the incorporation of netlist information.
For reference, we also report the performance of the teacher model. The best results, excluding the
teacher model, are highlighted in bold.

w/ Netlist Info Area Delay
MAE↓ MAPE↓ R2↑ RRSE↓ MAE↓ MAPE↓ R2↑ RRSE↓

PM Predictor 0.2982 0.05 0.9334 0.2581 0.1688 0.03 0.9484 0.2272

GAT 0.4689 0.09 0.7954 0.4523 0.2926 0.05 0.8113 0.4344
StructRTL 0.3856 0.07 0.8676 0.3639 0.2381 0.04 0.8872 0.3359
CodeV-DS-6.7B 0.4896 0.09 0.7928 0.4552 0.3787 0.07 0.7235 0.5258
CodeV-CL-7B 0.4192 0.08 0.8225 0.4213 0.3208 0.06 0.7696 0.4800
CodeV-QW-7B 0.4397 0.08 0.8174 0.4273 0.3284 0.06 0.7687 0.4809
DeepRTL2-Llama 0.4540 0.08 0.8332 0.4085 0.3707 0.07 0.7445 0.5054
DeepRTL2-DeepSeek 0.4915 0.09 0.8287 0.4139 0.4014 0.07 0.7273 0.5222
GraphCodeBERT 0.6008 0.11 0.7578 0.4922 0.4289 0.07 0.6907 0.5561

UniRTL 0.3362 0.06 0.8879 0.3349 0.2302 0.04 0.8946 0.3247
UniRTL (w/o code) 0.3462 0.06 0.8741 0.3548 0.2764 0.05 0.8817 0.3439
UniRTL (w/o graph) 0.6121 0.11 0.7547 0.4953 0.4478 0.08 0.6775 0.5679

4.2 EXPERIMENTAL SETUP

In this subsection, we detail the hyperparameter configurations for the model architecture and train-
ing process of UniRTL. UniRTL adopts the same architecture as its base model, CodeBERT-base-
mlm (Feng et al., 2020), consisting of 12 Transformer layers with 12 attention heads per layer. Dur-
ing the text–code alignment stage, the base model is trained for 5 epochs on 4 NVIDIA L40 GPUs
with a per-device batch size of 32. Training is performed using the AdamW optimizer (Loshchilov
& Hutter, 2019) with a learning rate of 8e-5 and a weight decay of 0.01. To improve training sta-
bility, we employ a cosine learning rate scheduler with a warmup ratio of 0.03 and set the gradient
accumulation steps to 8. After graph incorporation, the model is further trained for 300 epochs on
2 NVIDIA L40 GPUs with a per-device batch size of 16. All other hyperparameter settings remain
the same as in the text–code alignment stage.

4.3 PERFORMANCE PREDICTION

The experimental settings for performance prediction mainly follows StructRTL (Liu et al., 2025c).
Specifically, we predict post-synthesis area and delay values, where RTL designs are synthesized and
mapped to post-mapping netlists using Yosys (Wolf et al., 2013) and ABC (Brayton & Mishchenko,
2010) with the SkyWater 130nm technology library (Edwards, 2020). The area and delay values are
then extracted from the generated netlists. For fine-tuning, we adopt the dataset from StructRTL,
which consists of 13,200 designs split into training and validation sets with an 0.8:0.2 ratio. The task
is formulated as a regression problem. After obtaining RTL representations with different methods,
we fine-tune a three-layer multi-layer perceptron (MLP) to perform performance estimation. Addi-
tional details of the fine-tuning process are provided in Appendix A.3. For evaluation, we report four
standard regression metrics: mean absolute error (MAE), mean absolute percentage error (MAPE),
coefficient of determination (R2), and root relative squared error (RRSE). Detailed definitions of
these metrics are provided in Appendix A.4.

The performance prediction results of different methods are presented in Table 1. Notably, UniRTL
consistently outperforms all baselines across all evaluation metrics for both post-synthesis area and
delay prediction, establishing a new state of the art. Among the baselines, StructRTL achieves the
strongest performance, highlighting the advantage of leveraging CDFGs over RTL source code, as
CDFGs capture richer structural information that is critical for accurate performance estimation.
In contrast, GraphCodeBERT, despite incorporating data flow information, performs significantly
worse than other methods. This underperformance can be attributed to the limited scope of the data
flow information it encodes, which is insufficient for this task, as well as its relatively small model
size compared to LLM-based methods, resulting in weaker code embeddings. Importantly, UniRTL,
with a model size comparable to GraphCodeBERT, surpasses not only GraphCodeBERT but also

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of different methods on the natural language code search task,
with F1 used as the main metric. The best scores are highlighted in bold.

Model Design Format Precision↑ Recall↑ F1↑ (Main)
text-embedding-3-small code 0.254 0.350 0.277
text-embedding-3-large code 0.350 0.442 0.375
GritLM-7B code 0.393 0.475 0.414
NV-Embed-v2 code 0.367 0.450 0.389
DeepRTL2-Llama code 0.557 0.608 0.572
DeepRTL2-DeepSeek code 0.532 0.592 0.547
GraphCodeBERT code & graph 0.616 0.675 0.634
UniRTL code & graph 0.650 0.692 0.662
UniRTL (w/o graph) code 0.630 0.683 0.644

much larger LLM-based methods, underscoring the effectiveness and efficiency of our framework.
Additionally, we conduct an ablation study by removing the code and graph components of UniRTL,
yielding two variants: UniRTL (w/o code) and UniRTL (w/o graph), respectively. We find that
removing the graph component substantially degrades performance, underscoring the essential role
of structural information encoded in CDFGs for performance prediction, while removing the code
component results in a slight performance drop, indicating that code still provides complementary
information that can enhance performance prediction.

To further enhance performance prediction, VeriDistill (Moravej et al., 2025) and StructRTL (Liu
et al., 2025c) adopt a knowledge distillation strategy that transfers low-level insights from netlists
into the performance predictor, i.e., the three-layer MLP. Following StructRTL, we collect synthe-
sized post-mapping (PM) netlists and train a GIN to directly predict performance metrics from these
netlists. Since the area and delay values are directly extracted from the PM netlists, this PM predic-
tor achieves high accuracy and serves as the teacher model. We then freeze the PM predictor and
incorporate a knowledge distillation loss during the fine-tuning of the three-layer MLP, enabling it
to integrate low-level information from the netlists. Experimental results with the incorporation of
netlist information are reported in Table 2. As shown, incorporating netlist information improves
the performance of all methods. Nevertheless, UniRTL achieves state-of-the-art performance by
surpassing all baselines across all evaluation metrics for both area and delay prediction, further
demonstrating the robustness of our framework. For additional details on the knowledge distillation
process, please refer to Appendix A.5.

4.4 CODE RETRIEVAL

For code retrieval, we consider two scenarios in which the query is either text or code. Specifically,
we adopt the settings of DeepRTL2 (Liu et al., 2025d), corresponding to its natural language code
search and functionality equivalence checking tasks, respectively.

Natural Language Code Search. Natural language code search aims to retrieve relevant code
snippets from a large codebase given natural language queries. We formulate it as a retrieval problem
using the bitext mining setting of the MTEB benchmark (Muennighoff et al., 2022). Specifically,
the input for this task consists of a tuple (S,R), where S denotes a list of functional summaries
in natural language and R the corresponding RTL designs. In this work, elements of R may be
provided either as RTL code alone or as “code & graph”, where each RTL design includes both
the code and its associated CDFG. During evaluation, all queries {Si} and candidates {Ri} are
embedded into fixed-length vectors. For each query Si, cosine similarity is computed against all
candidates, and the index j = argmax

k
cos(Si,Rk) is selected. The retrieved Rj is regarded as

the prediction for Si, while the corresponding Ri serves as the ground truth. For training and
evaluation, we use the dataset and benchmark provided by DeepRTL2, with the modification that
designs failing to convert successfully into CDFGs are removed to ensure fairness. We adopt three
evaluation metrics: Precision, Recall, and F1, with F1 serving as the main metric. Further details of
the experimental setup for this task are provided in Appendix A.6.

The experimental results are presented in Table 3. UniRTL consistently outperforms all baseline
methods across all evaluation metrics, demonstrating the effectiveness of our framework. When re-
stricted to the code-only format (UniRTL w/o graph), performance significantly degrades, highlight-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of different methods on the functionality equivalence checking
task, with average precision (AP) as the main metric. The best results are highlighted in bold.

Model Design Format AP↑ (Main) Accuracy↑ F1↑ Precision↑ Recall↑
text-embedding-3-small code 0.543 0.613 0.696 0.545 0.960
text-embedding-3-large code 0.564 0.587 0.687 0.553 0.907
GritLM-7B code 0.599 0.640 0.724 0.587 0.947
NV-Embed-v2 code 0.554 0.607 0.667 0.547 0.853
DeepRTL2-Llama code 0.646 0.695 0.737 0.597 0.964
DeepRTL2-DeepSeek code 0.631 0.640 0.729 0.587 0.960
GraphCodeBERT code & graph 0.730 0.733 0.753 0.613 0.973
UniRTL code & graph 0.745 0.747 0.753 0.734 0.773
UniRTL (w/o graph) code 0.712 0.667 0.717 0.577 0.947

ing the importance of incorporating graph information. Furthermore, UniRTL’s improvements over
GraphCodeBERT demonstrate the benefits of our fine-grained cross-modal alignment, hierarchical
training strategy, and the integration of complete graph information. Interestingly, GraphCodeBERT
even underperforms the variant of UniRTL where no graph is incorporated, which we hypothesize
may be due to its targeted variable-alignment task interfering with the alignment between text and
code, thereby hindering performance on natural language code search.

Functionality Equivalence Checking. Functionality equivalence checking aims to determine
whether two different RTL implementations exhibit identical behavior despite structural differences.
This task follows the pair classification setting of the MTEB benchmark. Specifically, the input for
this task consists of N pairs of RTL designs, {(R(1)

1 ,R(2)
1)}Ni=1, where each design can be repre-

sented either as code alone or as “code & graph”. For each pair (R(1)
1 ,R(2)

1), the model is expected
to determine whether they are functionally equivalent by calculating the cosine similarity between
their embedding vectors. For training and evaluation, we adopt the dataset and benchmark provided
by DeepRTL2, excluding designs that cannot be successfully converted to CDFGs to ensure fair
evaluation. We report five evaluation metrics for this task: Average Precision (AP), Accuracy, F1,
Precision, and Recall, with AP serving as the main metric. Further details on the experimental setup
for this task are provided in Appendix A.7.

The performance comparison of different methods on the functionality equivalence checking task is
presented in Table 4. UniRTL significantly outperforms all baseline methods on the main evalua-
tion metric, further demonstrating the effectiveness and robustness of our framework. Removing the
graph component (UniRTL w/o graph) leads to a substantial performance degradation, highlighting
the importance of graph incorporation. Moreover, GraphCodeBERT performs better than the variant
of UniRTL where no graph is incorporated, indicating that incorporating the data flow information
can enhance the performance of functionality equivalence checking. However, UniRTL’s superior
performance over GraphCodeBERT demonstrates that merely leveraging data flow is insufficient;
instead, dedicated strategies are essential to integrate the complete graph information, further vali-
dating the contributions of the various components in our framework.

5 CONCLUSION

In this work, we introduce UniRTL, a multimodal pretraining framework that unifies RTL code and
CDFGs for robust RTL representation learning. Unlike prior approaches that rely on simplified data
flows or register-level sub-circuits, UniRTL leverages CDFGs that preserve complete design infor-
mation and can be faithfully converted back to code. Furthermore, instead of establishing only weak
code-graph alignment through contrastive objectives, UniRTL achieves fine-grained cross-modal
alignment through mutual masked modeling. To better capture the nuanced and intricate structural
dependencies within graphs, UniRTL employs a hierarchical training strategy: a graph-aware tok-
enizer is first pretrained, and text–code alignment is performed as a warm-up stage to maximize data
utilization before incorporating the graph. We evaluate UniRTL on two representative downstream
tasks, performance prediction and code retrieval, each under multiple settings. Experimental results
demonstrate that UniRTL consistently outperforms existing baseline methods across all tasks and
settings, validating its robustness and effectiveness. Overall, UniRTL establishes a more general
and powerful foundation for advancing hardware design automation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have read the ICLR Code of Ethics5 and are committed to adhering to it. Specifically, all source
RTL designs are collected from open-source repositories under appropriate licenses, and dataset
processing is conducted using open-source tools.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of this work. Specifically, Section 3.1 provides
a detailed description of the dataset construction process, with particular emphasis on the CDFG
generation. Section 4.2 further outlines the hyperparameters used in our experiments. In addition,
we release the source code along with the training and evaluation datasets through an anonymous
GitHub repository: https://anonymous.4open.science/r/UniRTL-0EAE.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Subho-
jit Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with mixture-
of-modality-experts. Advances in neural information processing systems, 35:32897–32912, 2022.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In
International Conference on Computer Aided Verification, pp. 24–40. Springer, 2010.

Xiangli Chen, Yuehua Meng, and Gang Chen. Incremental verilog parser. In 2023 International
Symposium of Electronics Design Automation (ISEDA), pp. 236–240. IEEE, 2023.

Yung-Sung Chuang, Chi-Liang Liu, Hung-yi Lee, and Lin-shan Lee. Speechbert: An audio-and-text
jointly learned language model for end-to-end spoken question answering. In Proc. Interspeech
2020, pp. 4168–4172, 2020.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu, Qipeng Guo, Yun
Liang, Xingcheng Zhang, Demin Song, et al. Origen: Enhancing rtl code generation with code-
to-code augmentation and self-reflection. In Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2024.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9268–9277, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

R Timothy Edwards. Google/skywater and the promise of the open pdk. In Workshop on Open-
Source EDA Technology, 2020.

Wenji Fang, Shang Liu, Jing Wang, and Zhiyao Xie. Circuitfusion: Multimodal circuit represen-
tation learning for agile chip design. In The Thirteenth International Conference on Learning
Representations, 2025.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pp. 1536–1547, 2020.
5https://iclr.cc/public/CodeOfEthics

10

https://anonymous.4open.science/r/UniRTL-0EAE
https://iclr.cc/public/CodeOfEthics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. In The Ninth International Conference on Learning Representations, 2021.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, and Wenhu Chen. Vlm2vec:
Training vision-language models for massive multimodal embedding tasks. In The Thirteenth
International Conference on Learning Representations, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In The Third
International Conference on Learning Representations, 2015.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. In The Thirteenth International Conference on Learning Representations, 2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Zeju Li, Changran Xu, Zhengyuan Shi, Zedong Peng, Yi Liu, Yunhao Zhou, Lingfeng Zhou,
Chengyu Ma, Jianyuan Zhong, Xi Wang, et al. Deepcircuitx: A comprehensive repository-level
dataset for rtl code understanding, generation, and ppa analysis. In 2024 IEEE LLM Aided Design
Workshop (LAD). IEEE, 2025.

Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. Craftrtl: High-quality synthetic data
generation for verilog code models with correct-by-construction non-textual representations and
targeted code repair. In The Thirteenth International Conference on Learning Representations,
2025a.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder:
Fully open-source and efficient llm-assisted rtl code generation technique. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Yi Liu, Changran Xu, Yunhao Zhou, Zeju Li, and Qiang Xu. Deeprtl: Bridging verilog under-
standing and generation with a unified representation model. In The Thirteenth International
Conference on Learning Representations, 2025b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yi Liu, Hongji Zhang, Yiwen Wang, Dimitris Tsaras, Lei Chen, Mingxuan Yuan, and Qiang Xu.
Beyond tokens: Enhancing rtl quality estimation via structural graph learning. arXiv preprint
arXiv:2508.18730, 2025c.

Yi Liu, Hongji Zhang, Yunhao Zhou, Zhengyuan Shi, Changran Xu, and Qiang Xu. Deeprtl2: A
versatile model for rtl-related tasks. In Findings of the Association for Computational Linguistics:
ACL 2025, 2025d.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In The Seventh Interna-
tional Conference on Learning Representations, 2019.

Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers &
Geosciences, 19(3):303–342, 1993.

Reza Moravej, Saurabh Bodhe, Zhanguang Zhang, Didier Chetelat, Dimitrios Tsaras, Yingxue
Zhang, Hui-Ling Zhen, Jianye Hao, and Mingxuan Yuan. The graph’s apprentice: Teaching an
llm low level knowledge for circuit quality estimation. In Proceedings of the 34th International
Joint Conference on Artificial Intelligence, 2025.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
and Douwe Kiela. Generative representational instruction tuning. In The Thirteenth International
Conference on Learning Representations, 2025.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: controlled verilog
generation with discriminative guidance. In Proceedings of the 41st International Conference on
Machine Learning, pp. 40145–40153, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Resve A Saleh and AK Saleh. Statistical properties of the log-cosh loss function used in machine
learning. arXiv preprint arXiv:2208.04564, 2022.

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. How good is your verilog rtl code?
a quick answer from machine learning. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2022.

Yun Tang, Hongyu Gong, Ning Dong, Changhan Wang, Wei-Ning Hsu, Jiatao Gu, Alexei Baevski,
Xian Li, Abdelrahman Mohamed, Michael Auli, et al. Unified speech-text pre-training for speech
translation and recognition. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1488–1499, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In The Seventh International Conference on Learning Representations, 2019.

Tianshu Yu, Haoyu Gao, Ting-En Lin, Min Yang, Yuchuan Wu, Wentao Ma, Chao Wang, Fei Huang,
and Yongbin Li. Speech-text pre-training for spoken dialog understanding with explicit cross-
modal alignment. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 7900–7913, 2023.

Yongan Zhang, Zhongzhi Yu, Yonggan Fu, Cheng Wan, and Yingyan Celine Lin. Mg-verilog:
Multi-grained dataset towards enhanced llm-assisted verilog generation. In 2024 IEEE LLM Aided
Design Workshop (LAD), pp. 1–5. IEEE, 2024.

Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Muxin Song, Yinan Xu, Ziyuan Nan, Mingju
Gao, Tianyun Ma, Lei Qi, et al. Codev: Empowering llms with hdl generation through multi-
level summarization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of LLMs in the course of this work. Specifically, the LLM-powered pro-
gramming tool Cursor6 was employed to assist with implementation, while GPT-57 was used during
manuscript preparation to correct grammar and refine phrasing.

A.2 DETAILS OF THE GRAPH-AWARE TOKENIZER

The graph-aware tokenizer integrates a graph isomorphism network (GIN) (Xu et al., 2019) with a
lightweight Transformer encoder to jointly capture local structural dependencies and global contex-
tual information. It is pretrained with two objectives, structure-aware masked node modeling and
edge prediction, which enable it to capture the nuanced and intricate structural relationships within
the graph. Specifically, given the initial node embeddings {Hi}i∈V, the graph is first processed
by the GIN to obtain {Li}i∈V that encode local structural dependencies. These embeddings are
then passed through the Transformer encoder to produce refined node embeddings {Gi}i∈V. For
structure-aware masked node modeling, we randomly replace 20% of nodes with a special learn-
able [MASK] embedding at the post-GIN level and use the Transformer encoder to recover masked
nodes by predicting their original node types. Following StructRTL (Liu et al., 2025c), we adopt the
class-balanced focal loss Cui et al. (2019) for this task to mitigate the node-type imbalance problem
and denote the loss as Lmnm. For edge prediction, the refined node embeddings {Gi}i∈V are used
to predict the existence of edges between nodes. Since the Transformer encoder discards explicit
connectivity, which can be viewed as if all edges are masked, we sample 20% of true edges as posi-
tive samples and an equal number of non-existing edges as negative samples in each iteration. The
task is formulated as a binary classification problem, where we concatenate the final embeddings of
the source and target nodes and use a three-layer multi-layer perceptron (MLP) to predict whether an
edge exists between them. The cross-entropy loss is employed for this task, and the loss is denoted
as Lep. Overall, the graph-aware tokenizer is pretrained with the loss:

L = γ · Lmnm + (1− γ) · Lep (5)

where γ balances these two pretraining tasks, with γ = 0.5 in our experiments.

When node embeddings are flattened for input into the Transformer encoder, the graph’s topological
information is lost. To mitigate this issue, we incorporate global positional encodings into the post-
GIN node embeddings {Li}i∈V before feeding them into the Transformer encoder. The construction
and application of these global positional encodings are described in Section 3.2.

The graph-aware tokenizer employs an 8-layer GIN and an 8-layer Transformer encoder, with 4
attention heads per Transformer layer. It is pretrained for 2,000 epochs with a batch size of 16 on a
single NVIDIA L40 GPU, using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 2e-5
and weight decay of 1e-4.

After pretraining, the graph-aware tokenizer achieves evaluation accuracies of 85.04% on the
structure-aware masked node modeling task and 99.68% on the edge prediction task. Following
UniRTL pretraining, the masked node recovery accuracy further improves to 97.57%, demonstrating
that incorporating code information enhances recovery performance and validates the effectiveness
of our alignment strategy. We do not incorporate the edge prediction task during the pretraining of
UniRTL since this task is relatively simple, converge quickly to high accuracy, and has negligible
impact on the final model performance.

A.3 FINE-TUNING FOR PERFORMANCE PREDICTION

After obtaining RTL representations from different methods, we fine-tune a three-layer MLP for
performance prediction. Because the dimensionality of RTL representations varies across methods,
we first project them into a 512-dimensional space before feeding them into the MLP, which has
a hidden layer size of 256. Given that area and delay values have large magnitudes and exhibit

6https://cursor.com
7https://chatgpt.com

14

https://cursor.com
https://chatgpt.com

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameter configurations employed during fine-tuning for code retrieval tasks.

Hyperparameter Value

finetuning type full
temperature 0.05
normalize true
optimizer AdamW
learning rate 5e-5
weight decay 0.01
batch size 64
epochs 8
lr scheduler type cosine
warmup ratio 0.03
gradient accumulation steps 8

(a) Natural language code search

Hyperparameter Value

finetuning type full
temperature 0.05
normalize true
optimizer AdamW
learning rate 5e-5
weight decay 0.01
batch size 16
epochs 16
lr scheduler type cosine
warmup ratio 0.03
gradient accumulation steps 8
max hard negatives 3

(b) Functionality equivalence checking

substantial variance across designs, we follow VeriDistill (Moravej et al., 2025) and StructRTL (Liu
et al., 2025c) to apply a logarithm transformation to these values, making the target distribution more
suitable for model learning. This transformation does not affect the practical utility of the predictor,
as we are more concerned with the relative quality of different designs.

For training, we adopt the log-cosh loss (Saleh & Saleh, 2022), which is robust to outliers. The
three-layer MLP predictors are trained for 600 epochs on a single NVIDIA L40 GPU with a batch
size of 256, using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1e-4 and a
weight decay of 1e-5. Under this setup, all models are trained until full convergence.

A.4 EVALUATION METRICS FOR PERFORMANCE PREDICTION

For performance prediction evaluation, we employ four standard regression metrics: mean absolute
error (MAE), mean absolute percentage error (MAPE), coefficient of determination (R2), and root
relative squared error (RRSE). Given predicted values ŷi and ground truth values yi for i ∈ [1, N],
these metrics are defined as:

MAE =
1

N

N∑
i=1

|ŷi − yi| (6)

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (7)

R2 = 1−
∑N

i=1(ŷi − yi)
2∑N

i=1(yi − ȳ)2
(8)

RRSE =

√√√√∑N
i=1(ŷi − yi)2∑N
i=1(yi − ȳ)2

(9)

where ȳ denotes the mean of the ground truth values.

A.5 PERFORMANCE PREDICTION WITH NETLIST INFORMATION

To further enhance performance prediction, we incorporate a knowledge distillation strategy that
transfers low-level insights from post-mapping (PM) netlists into the RTL-stage performance pre-
dictors, i.e., the three-layer MLP described in Section A.3. Following StructRTL (Liu et al., 2025c),
we collect all synthesized PM netlists and train a GIN to directly predict performance metrics from
these netlists. A PM netlist typically consists of interconnected logic cells defined in a technology
library. To represent the PM netlist, we initialize each cell’s embedding as the concatenation of its
one-hot cell type encoding, logic truth table, and associated area and pin delay information. These

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

embeddings are then processed by the GIN, followed by joint mean and max pooling to produce
a graph-level representation, which is subsequently fed into a three-layer MLP for performance
estimation. After training the PM predictor, we freeze its parameters and introduce a knowledge
distillation loss during the training of the RTL-stage predictor, aligning the final-layer activations
of the RTL-stage predictor (z−1

RTL) with those of the PM predictor (z−1
PM). The knowledge distillation

loss is defined as:

Lkd = α · Lcos(z
−1
RTL, z

−1
PM) + (1− α) · Lmse(zRTL−1, z−1

PM), (10)

where Lcos denotes the cosine similarity loss, Lmse the mean squared error (MSE) loss, and α
balances the contribution of these two loss terms, set to 0.7 in our experiments.

The final loss for the RTL-stage predictor combines this distillation term with the log-cosh loss
described in Section A.3:

Lpred = β · Llog cosh + (1− β) · Lkd (11)

where β is set to 0.5 in our experiments.

The adopted GIN consists of 20 layers with residual connections and is trained for 1,000 epochs
using the log-cosh loss, a batch size of 16, and the same optimizer configuration as the RTL-stage
predictor, on a single NVIDIA L40 GPU. It is important to note that the PM predictor is only used
during training as a teacher; during inference, only the RTL-stage performance predictor is retained.

A.6 EXPERIMENTAL SETUP FOR NATURAL LANGUAGE CODE SEARCH

We employ different strategies to obtain embeddings for functional summaries and RTL designs
when evaluating different models on the natural language code search task. Specifically, for general-
purpose text embedding models and customized RTL embedding models, we directly use their pre-
trained weights and provided APIs to generate embeddings of the functional summaries and RTL de-
signs. Since GritLM-7B (Muennighoff et al., 2025) and NV-Embed-v2 (Lee et al., 2025) are trained
under an instruction-tuning paradigm, we prepend the instruction “Given a high-level functional
summary, retrieve the corresponding RTL code.” in the model-specific template when extracting
embeddings of functional summaries.

For GraphCodeBERT (Guo et al., 2021) and UniRTL, we take the last hidden state of the first
token, i.e., the [CLS] token, as the embedding vector for both Si and Ri (in either code-only or
“code & graph” format). These models are fine-tuned on this task using contrastive learning prior
to evaluation. For all model variants, we keep the dataset and hyperparameter settings consistent
during fine-tuning to ensure a fair comparison. We adopt the InfoNCE loss (Oord et al., 2018) for
downstream fine-tuning on this task:

Lnlcs = − 1

M

M∑
i=1

log

 exp
(

cos(fθ(Si),fθ(Ri))
τ

)
∑M

j=1 exp
(

cos(fθ(Si),fθ(Rj))
τ

)
 (12)

where M is the batch size, Si is the i-th functional summary in the batch, Ri is the corresponding
RTL design, fθ is the embedding function, and τ is the temperature hyperparameter.

Let the evaluation benchmark be (S,R), where both S and R contain N samples. During evaluation,
the task is formulated as an N -class classification problem. Each Si is treated as a sample belonging
to class i, and the embedding model fθ predicts its class as argmax

k
cos(fθ(Si), fθ(Rk)).

Evaluation metrics for this task include Precision, Recall and F1, following the standard paradigm of
multi-class classification, with F1 serving as the main metric. Downstream fine-tuning for this task is
conducted on a single NVIDIA L40 GPU, and the hyperparameter settings are provided in Table 5a.
An illustrative data example for this task is shown in Listing 1, comprising a high-level functional
summary of an arithmetic logic unit (ALU) and its corresponding Verilog implementation.

A.7 EXPERIMENTAL SETUP FOR FUNCTIONALITY EQUIVALENCE CHECKING

For the functionality equivalence checking task, we follow a strategy similar to that used for natural
language code search (see Section A.6) to obtain embeddings of RTL designs. General-purpose

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

text embedding models and customized RTL embedding models are evaluated without tuning their
original parameters. For instruction-tuned text embedding models GritLM-7B (Muennighoff et al.,
2025) and NV-Embed-v2 (Lee et al., 2025), we prepend the instruction “Determine whether the
given pair of RTL code snippets is functionally equivalent.” to their model-specific templates to
adapt their embeddings to this task.

For GraphCodeBERT (Guo et al., 2021) and UniRTL, we take the last hidden state of the [CLS]
token as the embedding vector for each RTL design. These models are fine-tuned on this task using
contrastive learning, where functionally inequivalent designs are used as hard negatives. To ensure
fair comparison, all variants are fine-tuned under identical dataset and hyperparameter settings.

The fine-tuning dataset for this task is formatted as {(Ri, Ei,Ui)}Ni=1, where Ri is an RTL design,
Ei is a corresponding RTL design with the same functionality, and Ui is a list of functionally in-
equivalent designs that serve as hard negatives. We adopt the InfoNCE loss Oord et al. (2018) with
hard negatives for downstream fine-tuning on this task:

Lfec = − 1

M

M∑
i=1

log

 exp
(

cos(fθ(Ri),fθ(Ei))
τ

)
∑M

j=1 exp
(

cos(fθ(Ri),fθ(Ej)))
τ

)
+
∑M

j=1

∑hj

k=1

(
cos(fθ(Ri),fθ(Uj [k]))

τ

)

(13)

where M is the batch size, fθ is the embedding function, τ is the temperature hyperparameter, and
hj = min(length(Uj),max hard negatives), is the number of hard negatives used for sample j,
controlled by the hyperparameter max hard negatives.

We evaluate models using five metrics: Average Precision (AP), Accuracy, F1, Precision, and Re-
call, with AP serving as the main metric. All evaluation metrics take as input a list of cosine
similarity scores and binary labels, where 1 indicates functional equivalence and 0 indicates in-
equivalence. The threshold for functional equivalence is determined differently depending on the
specific evaluation metric. The main metric, AP, requires no thresholding and is computed using the
average precision score function in the Python scikit-learn library8. For accuracy,
the threshold that maximizes classification accuracy is selected by enumerating over all possible
thresholds. Specifically, we rank the similarity scores from highest to lowest, compute the accu-
racy at each possible threshold, and select the threshold that achieves the maximum accuracy. For
F1, we similarly enumerate thresholds to identify the one that maximizes F1, and then report the
corresponding F1, Precision, and Recall. This process ensures that we use the most appropriate
threshold for each metric, allowing for accurate evaluation of the functionality equivalence. Our
evaluation pipeline follows the pair-classification paradigm of the MTEB benchmark (Muennighoff
et al., 2022), with implementation details available in the official MTEB GitHub repository9. Down-
stream fine-tuning for this task is performed on a single NVIDIA L40 GPU, and the hyperparameter
settings are listed in Table 5b. An example training instance from the functionality equivalence
checking dataset is shown in Listing 2. In this example, all three RTL designs share the same mod-
ule name and interface (inputs and outputs), but differ in their internal implementations. The “Code”
design serves as the query, the “Equal” design has equivalent functionality, and the “Unequal” design
is not functionally equivalent to the query design despite structural similarity.

8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
average_precision_score.html

9https://github.com/embeddings-benchmark/mteb

17

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://github.com/embeddings-benchmark/mteb

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Listing 1: Functional summary of an ALU and its corresponding Verilog implementation.
Functional Summary:
The code defines an ALU that executes operations like add, subtract,
bitwise AND/OR, left/right shift, and bitwise NOT based on a control
signal. It processes two 8-bit inputs and produces an 8-bit result, with
a flag to indicate a zero output.

Code:
module Alu(

Alu_in1,
Alu_in2,
Alu_sel,
Alu_zero_flg,
Alu_out

);
parameter wrd_size = 8,

sel_width= 3;
input [wrd_size-1:0] Alu_in1, Alu_in2;
input [sel_width-1:0] Alu_sel;
output reg [wrd_size-1:0] Alu_out;
output Alu_zero_flg;
localparam NOP = 3’b000,

ADD = 3’b001,
SUB = 3’b010,
AND = 3’b011,
OR = 3’b100,
SLT = 3’b101,
SRT = 3’b110,
NOT = 3’b111;

assign Alu_zero_flg = ˜|Alu_out;
always @(*) begin

case(Alu_sel)
NOP: Alu_out = 0;
AND: Alu_out = Alu_in1 & Alu_in2;
OR: Alu_out = Alu_in1 | Alu_in2;
ADD: Alu_out = Alu_in1 + Alu_in2;
SUB: Alu_out = Alu_in1 - Alu_in2;
NOT: Alu_out = ˜Alu_in1;
SLT: Alu_out = Alu_in1 << Alu_in2;
SRT: Alu_out = Alu_in1 >> Alu_in2;
default: Alu_out = 0;

endcase
end

endmodule

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Listing 2: Example training sample for the functionality equivalence checking task.
Code:
module AND2_X4 (A1, A2, ZN);

input A1;
input A2;
output ZN;
and(ZN, A1, A2);
specify

(A1 => ZN) = (0.1, 0.1);
(A2 => ZN) = (0.1, 0.1);

endspecify
endmodule

Equal:
module AND2_X4 (A1, A2, ZN);

input A1;
input A2;
output ZN;
assign ZN = A1 & A2;
specify

(A1 => ZN) = (0.1, 0.1);
(A2 => ZN) = (0.1, 0.1);

endspecify
endmodule

Unequal:
module AND2_X4 (A1, A2, ZN);

input A1;
input A2;
output ZN;
wire nA1;
wire nA2;
wire nZN;
nand(nZN, nA1, nA2);
not(nA1, A1);
not(nA2, A2);
not(ZN, nZN);
specify

(A1 => ZN) = (0.1, 0.1);
(A2 => ZN) = (0.1, 0.1);

endspecify
endmodule

19

	Introduction
	Related Works
	Methodology
	Dataset Construction
	Model Architecture

	Experimental Results
	Baseline Methods
	Experimental Setup
	Performance Prediction
	Code Retrieval

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Details of the Graph-Aware Tokenizer
	Fine-Tuning for Performance Prediction
	Evaluation Metrics for Performance Prediction
	Performance Prediction with Netlist Information
	Experimental Setup for Natural Language Code Search
	Experimental Setup for Functionality Equivalence Checking

