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Abstract

Concept drift, characterized by unpredictable changes in data
distribution over time, poses significant challenges to machine
learning models in streaming data scenarios. Although error
rate-based concept drift detectors are widely used, they often
fail to identify drift in the early stages when the data distribu-
tion changes but error rates remain constant. This paper intro-
duces the Prediction Uncertainty Index (PU-index), derived
from the prediction uncertainty of the classifier, as a superior
alternative to the error rate for drift detection. Our theoretical
analysis demonstrates that: (1) The PU-index can detect drift
even when error rates remain stable. (2) Any change in the
error rate will lead to a corresponding change in the PU-index.
These properties make the PU-index a more sensitive and ro-
bust indicator for drift detection compared to existing methods.
We also propose a PU-index-based Drift Detector (PUDD) that
employs a novel Adaptive PU-index Bucketing algorithm for
detecting drift. Empirical evaluations on both synthetic and
real-world datasets demonstrate PUDD’s efficacy in detecting
drift in structured and image data.

Code — https://github.com/RocStone/PUDD
Extended version — https://arxiv.org/abs/2412.11158

Introduction
In real-world applications, such as medical triage (Huggard
et al. 2020) or time series forecasting tasks (Miyaguchi
and Kajino 2019), the distribution of data may unpre-
dictably change over time. This phenomenon, termed concept
drift (Yuan et al. 2022), significantly degrades model perfor-
mance. Moreover, drift also manifests between clients and
servers in federated learning tasks (Jiang, Wang, and Dou
2022), or decision making process (Lu et al. 2020) further
complicating the learning process. Error rate-based drift de-
tection is one of the most popular approaches to handling
concept drift due to its efficiency (Lu et al. 2018a). It contin-
uously monitors the classifier’s error rate, issuing an alarm
when this rate exceeds a preset threshold (Raab, Heusinger,
and Schleif 2020; Frias-Blanco et al. 2014).

However, in the early stages of concept drift, a model’s
error rate may remain stable. In such a case, error rate-based
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drift signals are unable to indicate the changes in data dis-
tribution. To address this, we explore alternative methods to
detect distribution changes before a drop in error rate occurs.
Upon rethinking the logic behind error rate-based drift sig-
nals, we realize that the distribution of prediction probability
from a given model will change prior to the error rate itself.
In addition, if the error rate does change, then the distribution
of prediction probability must change too.

Prediction probability is just an example of a quantita-
tive measure of predictive uncertainty in models. We believe
that by clearly defining predictive uncertainty and demon-
strating that it is a superior alternative to error rates, we can
significantly enhance the sensitivity and robustness of drift
detection. Therefore, we introduce the Prediction Uncertainty
Index (PU-index), which measures the probability assigned
by a classifier that an instance does not belong to the true
class. Fig. 1 shows an illustrative example.

The objective of this paper is to address two key questions:
(1) Can we identify a more effective drift detection signal
that captures changes in data distribution when the error rate
remains stable? (2) Can we theoretically prove that if the
drift detection signal shows no significant change, then the
model’s error rate will also remain stable? In other words,
we seek to develop a superior drift detection signal that can
detect drift when the error rate cannot, and to prove that if
the new signal fails to detect drift, the error rate will also
fail to do so. We believe that these criteria are essential for
evaluating and comparing different drift detection signals.

The theoretical results provided in this paper show strong
evidence for the superiority of the PU-index as a metric for
concept drift detection. It exhibits at least equivalent sensitiv-
ity to error-based metrics and potentially higher sensitivity in
certain scenarios, rendering it a more robust and comprehen-
sive measure for identifying concept drift.

However, it could be argued that a more sensitive detection
method might result in a higher false alarm rate, potentially
overreacting to minor fluctuations in model performance. If
there is no significant drift in the error rate, why should we
still seek to detect it? To mitigate such concern, we employ
the Chi-square test, a robust statistical significance test, to the
PU-index for drift detection. This approach helps distinguish
between meaningful distributional shifts and inconsequential
variations, thereby maintaining the benefits of increased sen-
sitivity while minimizing false alarms. The p-value obtained
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Figure 1: Illustrative example of the early stage of concept drift when an error rate-based detector fails to detect concept drift,
but a prediction uncertainty-based detector can. The data around decision boundaries have been highlighted in the middle of
the figure, showing the distribution gap between test sets 1 and 2. Such a gap implies concept drift occurrence. However, in
this case, the error rates of the two test sets are the same. We also provide a theoretical proof in the Appendix to demonstrate
the existence of such a case. By contrast, the distribution of prediction uncertainty has changed. The example implies that a
prediction uncertainty-based detector can detect drift when an error rate-based detector fails.

from the Pearson’s Chi-square test serves as a precise control
mechanism for our tolerance to false alarms. By adjusting the
significance level (α), we can directly modulate the trade-off
between sensitivity and false positive rate.

In this paper, we introduce PUDD, a drift detector that
uses the Prediction Uncertainty (PU) index to identify con-
cept drift. PUDD employs a sliding window approach to
remove outdated data and split the historical stream into two
samples. It then applies an Adaptive PU-index Bucketing
algorithm to automatically construct histograms that meet
our theoretical conditions. Using these histograms, we apply
Pearson’s Chi-square test to determine if drift has occurred.
Our main contributions are:

1. To the best of our knowledge, this is the first systematic
study that compares two different drift detection signals
with theoretical analysis.

2. We propose a novel drift detection metric called the PU-
index, which is theoretically proven always to outperform
error rate-based drift measurements. This provides crucial
insight into the PU-index as a more sensitive and robust
alternative for concept drift detection.

3. To identify concept drift in streaming data through the PU-
index, we propose a Prediction Uncertainty index base
drift detector. It comprises an Adaptive PU-index Buck-
eting algorithm to build a histogram for the PU-index,
which meets the condition of our theoretical analysis, to
conduct the Pearson’s Chi-square test and detect drift.

Literature Review
In this section, we examine two approaches to concept
drift detection: data distribution-based and error rate-based

methods. The former directly addresses the root cause of
drift—changes in the data distribution—while the latter fo-
cuses on variations in the model’s performance, often achiev-
ing higher computational efficiency.

Data Distribution-based Methods
Data distribution-based methods measure shifts in the un-
derlying distribution. For instance, a statistical density es-
timation approach is proposed in (Song et al. 2007), en-
abling the quantification of differences between two samples.
Histogram-based techniques frequently serve to represent dis-
tributions in high-dimensional feature spaces (Liu et al. 2017).
For example, (Boracchi et al. 2018) and (Yonekawa, Saito,
and Kurokawa 2022) introduce hierarchical and dynamically
adjustable strategies to construct histograms, respectively.
Interval formation can also rely on methods like QuadTree
(Coelho, Torres, and de Castro 2023) and K-means clustering
(Liu, Lu, and Zhang 2020). Beyond direct histogram or den-
sity estimation, some methods incorporate contextual factors
(Lu et al. 2018b) or anticipate future distributions. For ex-
ample, (Cobb and Van Looveren 2022) uses a context-based
CoDiTE function (Park et al. 2021) to detect drift, while (Li
et al. 2022) exploits a predictive model for future distribu-
tions. There are also approaches that leverage Graph Neural
Networks to track and adapt to distribution changes directly
(Zhou et al. 2023). Although effective, these strategies can be
computationally expensive in high-dimensional data streams
(Souza et al. 2021). To date, no existing work uses histograms
constructed from prediction uncertainty for drift detection,
leaving a notable gap in the literature. To the best of our
knowledge, there is no previous work that proposes building
a histogram of prediction uncertainty to detect concept drift.
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Error Rate-based Methods
Error rate-based detectors are well-studied and computation-
ally efficient. Approaches such as (Gama et al. 2004), (Baena-
Garcıa et al. 2006), and (Frias-Blanco et al. 2014) monitor
variations in model error rates to detect drift. Adaptive win-
dow resizing is explored in (Bifet and Gavalda 2007), and
forgetting mechanisms are introduced in (Jiao et al. 2022) to
weight classifiers dynamically. More recent strategies apply
Gaussian Mixture Models to compare windows (Yu et al.
2024) or enter reactive states upon detecting alarms (Tah-
masbi et al. 2021). Despite their efficiency, error rate-based
detectors struggle to identify drift when accuracy remains sta-
ble, particularly during its early stages (see Fig. 1). To address
this limitation, we propose a prediction uncertainty-based ap-
proach, capable of detecting shifts even before error rates
degrade. This method enhances early detection capabilities
and complements existing drift detection strategies.

Preliminaries
Pearson’s Chi-Square Test
The Pearson’s Chi-square test assesses whether two categor-
ical variables are independent. Its null hypothesis assumes
independence, and if the computed p-value falls below a
chosen significance level, the null hypothesis is rejected, in-
dicating potential dependence between the variables.

The test’s reliability depends on having sufficiently large
observed and expected frequencies. As noted in (EP 1978),
the Chi-square test produces valid results when each observed
count exceeds 50 and every expected count exceeds 5. Under
these conditions, the distribution of the test statistic closely
approximates a normal distribution, enhancing the test’s va-
lidity. The test relies on a contingency table. For the cell
in the i-th row and j-th column, Oij denotes the observed
frequency, and its expected frequency is given by:

Eij =
ni × nj

N
, (1)

where ni and nj are the cumulative frequencies of the re-
spective row and column, and N is the sum of the table. The
Chi-square test statistic is derived as:

χ2 =
∑
i

∑
j

(
O2

ij

Eij

)
−N. (2)

Correspondingly, the p-value associated with χ2 is:

p = 1−
∫ χ2

0

x
w
2 −1 · e− x

2

2
w
2 · Γ

(
w
2

) dx, (3)

where w indicates the degrees of freedom, calculated as:

w = (number of columns−1)×(number of rows−1). (4)

Space Partitioning Algorithms
Space partitioning algorithms are widely studied to build his-
tograms to establish density estimators (Silverman 2018). The
key is to split feature space into partitions and count the in-
stances falling into it to build a histogram. The partitions can

be built by QuanTree (Boracchi et al. 2018), Kernel Quant-
Tree (Stucchi et al. 2023), or Neural Network (Yonekawa,
Saito, and Kurokawa 2022). Particularly, we introduce the
Ei-kMeans space partitioning algorithm (Liu, Lu, and Zhang
2020), which can automatically determine the number and
size of partitions.

Given two samples A and B, Ei-kMeans initializes cen-
troids by iteratively selecting N/K points from a copy of A,
where N = |A| and K is the hyperparameter of the kMeans
algorithm. Each iteration: (1) Select the point in A with the
largest 1-NN distance as zi. (2) Removes zi and its N/K-
nearest neighbors from A. This process repeats N/K times,
yielding N/K initial centroids. Then the kMeans algorithm
is applied to A with the initial centroids to derive K clusters
denoted as {Ci|i ∈ [1, N

K ]}.
To ensure that the number of examples in each cluster

is larger than 5 to be able to conduct the Chi-square test,
an amplify-shrink algorithm is proposed to adjust the num-
ber of examples in each cluster. Let us denote the number
of instances in the clusters as V = {Ci||i ∈ [1, N

K ]}. The
distance matrix between the examples in A and the cen-
ters of each cluster is denoted as Mdist ∈ RN×K , which
is amplified by: Mdist = Mdist ⊙

(
1 · eθ·(

V
N−1 )

)
, where

1 ∈ RN×1 is an all-ones matrix, θ denotes the hyperparam-
eter controlling the shape of the coefficient function, . Let
M ij

dist denote the amplified distance between i-th data Ai

and j-th center cj , the assigned cluster for Ai is defined as
yi = argminj=1...K M ij

dist.
After the amplify-shrink algorithm, the final clusters are

derived and can be considered as subspaces in the feature
space of A. The numbers of examples of A and B in the
clusters are counted to form a histogram.

Methodology
This section sets up the problem and provides a theoretical
analysis demonstrating the advantages of the PU-index over
error rate-based methods. We then introduce a novel slid-
ing window strategy and an Adaptive PU-index Bucketing
algorithm for concept drift detection and adaptation.

Problem Setup
Formally, we represent the streaming data collected dur-
ing the period [1, t] as D1,t = {(xj , yj)|j ∈ [1, t]}. If
the data is collected in chunks, then the stream includes
a set of chunks D1,t = {D̄j |j ∈ [1, t]}, where each chunk
D̄j = {(xjk, yjk)|k ∈ [1,M ]} includes M examples. Here,
xjk represents an instance with d dimensional attributes, yjk
denotes the corresponding label, and M denotes the chunk
size. In this paper, we focus only on the data collected in
chunks. If the stream D1,t follows a distribution P1,t(x, y),
following (Lu et al. 2018a), we claim that a drift occurs at
time t+ 1 if

P1,t(x, y) ̸= Pt,∞(x, y). (5)

The goal of concept drift detection is to raise an alarm
at time t + 1 when the distribution of data changes. The
most popular metric for detecting the distribution change is
prediction error. For a classifier f , assuming the number of
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Figure 2: The framework of our proposed algorithm. The sliding window strategy has two components, i.e., antiquated data
discard and cutting point exploration as shown on the left. The Adaptive PU-index Bucketing algorithm is shown in the middle.
The drift detection process is shown on the right.

classes is n, the classifier will output a prediction probability
for each class ŷ ∈ Rn and

∑n
i=1 ŷ = 1. The prediction error

of an instance xi is defined as:

ei = I(ŷj = argmax
j

fj(xi) ̸= yi), (6)

where I(·) is the indicator function.
As we mentioned earlier, our motivation is that the predic-

tion probability will intuitively change before the prediction
error when drift occurs. In this paper, we measure the predic-
tion probability by the PU-index which is defined as:

ui = 1− fyi(xi), (7)

where fyi
(xi) denotes the probability predicted by the classi-

fier that xi belongs to the ground truth class yi.

Theoretical Analysis of Error Rate and PU-index
To rigorously evaluate the efficacy of these two metrics for
concept drift detection, we conduct a theoretical comparison
from two complementary perspectives. (1) When the PU-
index distribution remains stable, potentially failing to detect
concept drift, we investigate whether the error rate distribu-
tion exhibits changes that could indicate drift. (2) Conversely,
when the error rate distribution remains constant, we examine
whether the PU-index distribution demonstrates changes that
might reveal underlying changes in the data stream.

Theorem 1. Let W1 and W2 be two windows of a data stream
in a multi-class classification problem. If their respective
PU-index histograms H1 and H2 are identical, where the
histograms are constructed such that the first bin contains
all misclassified instances and the remaining bins partition
the misclassified instances, then the error rates and error
standard deviations of W1 and W2 are equal.

Theorem 2. Given a multi-class classification problem, if
two windows have equal error standard deviations or error
rates, their PU-index histograms, where the first bin contains
all correctly classified instances and the remaining bins par-
tition the misclassified instances, may not have identical bin
proportions.

Due to the page limit, the proofs are provided in the Ap-
pendix. These theorems lead to the following conclusions: (1)
Theorem 1 demonstrates that when the PU-index distribution
remains stable, the error rate and the error standard deviation
also remain constant. This implies that if the PU-index fails
to detect concept drift, error-based metrics will also fail to
detect it. (2) Theorem 2 establishes that even when error rates
and error standard deviations are equal between two win-
dows, the PU-index distributions may differ. This suggests
that the PU-index has the potential to detect subtle changes
in the data distribution that are not captured by traditional
error-based metrics. These findings show that the PU-index
offers at least the same sensitivity as error-based metrics and
potentially higher sensitivity in certain scenarios, making
it a more robust and comprehensive measure for detecting
concept drift in streaming data environments.

Sliding Window Strategy and Adaptive PU-index
Bucketing Algorithm
To detect concept drift using the PU-index without making it
overly sensitive, we apply the Chi-square test to examine the
PU-index distribution. The hypotheses are:

Null Hypothesis (H0): The PU-index distribution does
not change over time, indicating no concept drift.

Alternative Hypothesis (H1): The PU-index distribution
changes over time, indicating concept drift.

If the Chi-square statistic exceeds the critical value at the
chosen significance level, we reject H0 and conclude that
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Plane Car Bird Cat · · · Truck
Plane 0.98 0.00 0.00 0.00 · · · 0.01
Car 0.01 0.89 0.01 0.01 · · · 0.01
Bird 0.01 0.01 0.91 0.01 · · · 0.01
Cat 0.00 0.02 0.01 0.92 · · · 0.01

...
...

...
...

... · · ·
...

Truck 0.00 0.01 0.01 0.01 · · · 0.92

Table 1: Transition matrix of generating CIFAR-10-CD
through the Markov process. The classes marked in bold
represent the user’s initial interest and are considered positive
labels. All other classes are considered negative labels.

concept drift has occurred. Otherwise, we detect no signif-
icant drift. Thus, detecting concept drift using Chi-square
involves two key steps: (1) partitioning the data stream into
two windows and (2) constructing a histogram of the col-
lected PU-index values.

We adopt a sliding window strategy to handle online
streaming data. Let D1,t = {D̄j |j ∈ [1, t]} denote PU-index
chunks collected from the start of the stream, potentially
from different distributions. For instance, suppose D1,t1 and
Dt1,t differ in distribution. If a new chunk D̄t+1 matches the
distribution of Dt1,t, no drift should be detected. However,
keeping antiquated data D1,t1 could trigger a false alarm,
since D1,t1 and Dt1,t+1 differ in distribution.

To solve this ”antiquated distribution” problem, we dis-
card outdated data after detecting a drift at time t1. Subse-
quent drift detection uses only Dt1,t+1, avoiding false alarms
caused by old data. After discarding antiquated data, we
must determine how to form two windows on the current
substream. We do this by exploring all possible cutting points
r ∈ [t1, t + 1]. Thus, Dt1,t+1 is split into Dt1,r and Dr,t+1

for the Adaptive PU-index Bucketing algorithm. The sliding
window is illustrated on the left side of Fig. 2.

Theoretical analysis shows that misclassified instances’
PU-indices must be grouped into the same bin. For counter-
part, we use Ei-kMeans to form bins that meet the Chi-square
test requirements. We call this the Adaptive PU-index Buck-
eting algorithm, illustrated in the middle of Fig. 2.

PU-Index based Drift Detector
In this subsection, we introduce the overall of our method.
Firstly, given a substream containing the recent chunks’ PU-
index ut1,t, we explore all cutting points r ∈ [t1, t]. Based
on the cutting points, we have t− t1 window pairs, denoted
as ut1,r, and ur,t. Then we defined the PU-index pairs for
correctly and wrongly classified instances as:

uC
t1,r = {u|ui ∈ ut1,r ∧ ŷi = yi}, (8)

uC
r,t = {u|ui ∈ ur,t ∧ ŷi = yi}, (9)

uM
t1,r = {u|ui ∈ ut1,r ∧ ŷi ̸= yi}, (10)

uM
r,t = {u|ui ∈ ur,t ∧ ŷi ̸= yi}. (11)

These four equations represent the PU-index for correctly
and misclassified instances in the first and second win-
dows, respectively. Therefore, ut1,r = {uC

t1,r,u
M
t1,r} and

ur,t = {uC
r,t,u

M
r,t}. Next, we compute the contingency table

T ∈ R2×(K+1), where K is a hyperparameter in Ei-kMeans.
To calculate T , we apply the Adaptive PU-index Bucketing
algorithm on uC

t1,r to build a histogram. Then we count the
instances of uC

t1,r that fall into the histogram bins and fill
them in T1i where i ∈ [1,K]. Likewise, we count the ex-
amples of uC

r,t falling into the previously obtained bins and
fill them in T2i. Finally, we fill in T1,K+1 and T2,K+1 with
the size of uM

t1,r and uM
r,t. The expected frequency of Tij is

defined as:

Eij =

∑K+1
j=1 Tij ×

∑2
i=1 Tij∑

ij Tij
. (12)

The Chi-square test statistic is defined as:

χ2 =
∑
i

∑
j

(
T 2
ij

Eij

)
−
∑
ij

Tij . (13)

Finally, the p-value is computed by:

p = 1−
∫ χ2

0

x
K
2 −1 · e− x

2

2
K
2 · Γ

(
K
2

) dx, (14)

Based on the Equation (12-14), we can compute the p-value
for each window pair Dt1,r, and Dr,t. If the minimum p-
value among all window pairs is smaller than a predefined
threshold σ, we raise a drift detected alarm. It is important
to clarify that the specified threshold controls the Type I
error rate for each individual window pair test rather than the
overall Type I error across the entire substream. Consequently,
we do not employ multiple comparison adjustments since our
statistical guarantees apply at the single-test level rather than
the family-wise level. The pseudo-code and time complexity
analysis is provided in the Appendix.

Experiments
In this section, we introduce the settings and results of the
experiments in our paper. The details of implementation,
datasets, baselines, and the critical difference diagrams (Is-
mail Fawaz et al. 2019) for the experiments in this paper are
introduced in the Appendix.

Datasets and Baselines
We propose CIFAR-10-CD, a synthetic concept drift image
dataset with transition matrix shown in Table 1, to simu-
late user interests changing via a Markov process. Initially,
three CIFAR-10 classes are marked positive, with interest
shifts occurring probabilistically (e.g. 1% chance of Plane to
Horse transfer). Our experiments utilize 3 real-world datasets
(airline(Ikonomovska 2011), elec2(Harries 1999), powersup-
ply(Dau et al. 2019)) and 4 synthetic sets (sine(Gama et al.
2004), mixed(Gama et al. 2004), CIFAR-10-CD, sea vari-
ants(Bifet et al. 2010)). We compare against 7 classic detec-
tors (ADWIN(Bifet and Gavalda 2007), DDM(Gama et al.
2004), EDDM(Baena-Garcıa et al. 2006), HDDM-A(Frias-
Blanco et al. 2014), HDDM-W(Frias-Blanco et al. 2014),
KSWIN(Raab, Heusinger, and Schleif 2020), PH(Sebastião
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Incremental Training Training only at Initialization or Adaptation
Classifier ddm name airline-I elec2-I mixed-I ps-I sea0-I sine-I airline-O elec2-O mixed-O ps-O sea0-O sine-O

DNN

ADWIN 61.65 71.94 78.45 71.12 97.70 79.27 59.36 69.71 84.41 65.95 95.18 86.59
DDM 61.29 71.02 80.72 71.37 96.86 86.41 56.79 69.51 83.03 69.35 93.55 80.32
EDDM 62.13 70.39 78.01 65.21 96.89 75.34 61.17 69.22 71.16 67.57 92.18 76.54
HDDM-A 62.70 71.16 76.70 68.97 97.84 81.65 59.13 68.98 84.27 67.81 95.11 86.82
HDDM-W 61.50 71.23 77.07 68.74 97.84 85.43 62.42 68.48 84.32 66.89 92.24 86.57
KSWIN 63.02 70.56 78.58 70.80 97.88 79.00 61.34 69.08 84.43 66.46 91.60 83.66
PH 62.15 72.25 79.49 70.86 97.73 78.07 60.36 68.24 84.36 68.83 95.21 86.88
PUDD-1 63.31 74.92 77.39 72.25 97.94 86.19 60.90 69.35 82.65 71.47 94.89 83.39
PUDD-3 63.21 74.93 80.05 72.23 98.04 85.12 60.16 68.98 84.65 70.37 95.99 84.97
PUDD-5 63.35 74.92 82.81 72.24 98.23 82.51 60.19 68.68 84.90 70.20 96.29 85.09

GNB

ADWIN 50.17 68.90 83.95 70.06 94.18 82.49 54.66 68.30 83.62 68.78 93.93 82.45
DDM 52.94 67.75 83.82 69.63 93.97 82.07 52.43 67.60 83.59 67.52 93.48 81.90
EDDM 62.72 67.73 83.19 70.04 94.06 83.12 54.11 67.64 74.65 70.04 94.06 73.88
HDDM-A 52.80 67.73 83.92 70.87 94.28 83.25 55.62 67.73 83.66 71.24 93.96 83.36
HDDM-W 48.66 67.73 83.91 71.06 92.11 82.83 48.62 67.71 83.60 69.53 91.63 83.25
KSWIN 49.84 67.87 83.92 71.23 91.72 81.88 48.83 67.63 83.59 67.99 90.02 81.32
PH 49.35 70.12 83.88 70.36 94.34 83.54 49.02 70.04 83.61 68.67 94.12 83.10
PUDD-1 53.57 70.85 82.99 71.88 94.61 83.12 51.05 62.76 79.23 71.13 94.25 81.48
PUDD-3 53.03 70.85 83.92 71.59 94.81 83.39 49.45 59.32 83.58 71.20 94.60 83.80
PUDD-5 52.16 70.69 84.12 71.59 94.85 83.43 54.37 59.44 83.96 70.40 94.62 83.38

VFDT

ADWIN 60.39 73.98 84.30 71.69 94.77 87.11 61.22 74.29 83.54 68.78 92.96 85.74
DDM 60.16 74.82 84.14 70.68 94.86 86.50 59.28 74.75 82.31 67.53 93.63 82.23
EDDM 61.19 73.81 83.15 70.06 94.17 85.59 62.31 73.81 73.73 70.06 93.60 77.72
HDDM-A 60.95 73.90 84.40 70.84 95.20 87.53 60.29 73.83 83.66 71.24 93.93 85.21
HDDM-W 61.11 73.80 84.40 70.99 93.50 87.45 61.92 73.73 83.59 69.54 91.76 85.28
KSWIN 61.30 74.10 84.42 71.27 93.40 86.22 62.06 74.10 83.57 67.51 89.84 82.60
PH 60.95 73.70 83.56 70.88 94.69 87.15 60.97 73.99 83.30 68.67 93.85 85.19
PUDD-1 61.38 73.86 84.25 71.77 95.13 87.33 61.16 69.79 82.13 71.13 94.10 82.21
PUDD-3 61.57 73.84 83.94 71.79 95.21 87.42 59.90 69.79 84.04 71.20 94.63 85.81
PUDD-5 61.57 73.64 84.01 71.79 95.24 87.63 57.04 71.83 84.16 70.40 94.56 86.01

Table 2: Comparative analysis against classic drift detectors across 3 synthetic and 3 real-world datasets. The top 3 results are
highlighted in bold and the top 1 results are in both bold and underlined. PUDD-x represents the threshold set as 10−x for our
method. The ps is short of powersupply dataset. Results for dataset sea10 and sea20 is provided in Appendix.

and Fernandes 2017)) and 5 SOTA methods (MCDD(Wan,
Liang, and Yoon 2024), AMF(Mourtada, Gaı̈ffas, and Scor-
net 2021), IWE(Jiao et al. 2022), NS(Wang et al. 2021), and
ADLTER(Wang et al. 2022)).

Comparison with Baselines and Ablation Studies
In this subsection, we compare our method with 7 classic drift
detectors and 5 SOTA methods on 9 datasets (including a vari-
ant of the SEA dataset). Due to page constraints, results for
SEA10 and SEA20 appear in the Appendix. We evaluate all
methods using three classifiers—DNN (architecture detailed
in the Appendix), Gaussian Naive Bayes (GNB) (Virtanen
et al. 2020), and VFDT (Hulten, Spencer, and Domingos
2001)—under two training regimes: incremental (dataset-I)
and one-time training at an alarm (dataset-O).

Results for the comparison with classic detectors are pre-
sented in Table 2, and those for SOTA methods are given in
Table 3. For CIFAR-10-CD, due to its learning complexity,
we only use incremental training and report results in Fig. 3.
Our method is denoted as PUDD-X, where X represents the

exponent in 10−X . Based on these experiments, we derive
6 observations. We introduce 4 of them here and leave the
remaining 2 in the Appendix.

Observation 1: our method shows stronger perfor-
mance compared to classic drift detectors as evidenced
by the results presented in Table 2, Fig. 3, and additional
results in Appenidx. In incremental learning settings, PUDD
ranks first in 17 out of 24 cases across different datasets and
classifiers, and it is in the top 3 in 20 out of 24 cases. When
trained only initially or with adaptation, it still performs well.
It achieves first rank in 15 cases and top 3 in 19 cases. This
shows that PUDD is particularly effective with incremental
training. Results in Fig. 3 show PUDD outperformed all the
baselines, which demonstrates the superiority of our method
in detecting the concept drift in the image dataset. The critical
difference diagram of the experiment in the Appendix shows
that the PUDD is statistically significantly outperforms SOTA
methods.

Observation 2: PUDD performs better with a smaller
threshold as revealed in Table 2 and additional results in Ap-
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ddm name airline elec2 mixed ps sea0 sine
AMF 38.56 66.24 49.49 69.63 93.67 49.52
IWE 38.02 68.90 49.47 64.10 93.14 49.51
NS 67.91 76.42 81.09 72.39 93.54 91.01
ADLTER 70.00 76.10 87.63 72.48 93.40 92.18
MCD-DD 63.65 69.81 86.68 71.66 97.66 90.21
PUDD-1 63.78 77.28 89.51 72.68 98.47 94.52
PUDD-3 64.62 76.77 89.47 72.79 98.44 94.76
PUDD-5 64.45 76.92 89.37 72.74 98.49 90.90

Table 3: Comparison with SOTA methods. The dataset ps is
short for powersupply. The results for dataset sea10 and sea20
is provided in Appnedix. The table shows that our methods
PUDD in achieved top-1 in 5 out of 6 datasets, implying the
effectiveness of PUDD compared with SOTA methods.

pendix. In incremental learning scenarios, PUDD-1, PUDD-3,
and PUDD-5 achieve top 1 in 5, 5, and 8 cases respectively.
When tested in training only once until alarm way, PUDD-1,
PUDD-3, and PUDD-5 achieved top 1 in 2, 6, and 8 cases re-
spectively. PUDD consistently shows improved performance
at lower thresholds in both scenarios. As detailed in the Sen-
sitivity of PU-index section, a drift alarm triggers when the p-
value is below the threshold, with lower thresholds indicating
stricter conditions for alarm detection. Therefore, PUDD’s
better performance with smaller thresholds suggests a high
sensitivity to drift.

Observation 3: PUDD shows very competitive perfor-
mance compared to SOTA methods. As shown in Table 3
and additional results in Appendix, our method attains the
top rank in 7 out of 8 cases. On certain datasets, this im-
provement is particularly pronounced. For instance, PUDD-5
achieves a 98.49% accuracy, which is 2.8% higher than the
best SOTA method. The only exception occurs in the airline
dataset, where NS and ADLTER outperform PUDD.

This discrepancy can be explained by the airline dataset’s
tabular nature and its numerous attributes, which are more
effectively modeled through tree-based ensemble learning
utilized by these SOTA methods. Moreover, these methods
adapt to drift by adjusting ensembles rather than discarding
and retraining them. In contrast, PUDD relies on retraining
classifiers solely on recent data, which may not be suitable for
attribute-rich datasets like the airline dataset. Nevertheless,
for all other datasets, the results confirm that PUDD surpasses
SOTA methods, thereby underscoring its overall superiority.

Observation 4: The Adaptive PU-index Bucketing algo-
rithm outperforms Ei-kMeans. Figure 4 shows that PUDD
surpasses Ei-kMeans across various datasets, classifier train-
ing methods, and threshold settings. The critical difference
diagram in the Appendix shows that improvements at thresh-
olds 10−3 and 10−5 are statistically significant.

In summary, these results confirm the theoretical bene-
fits of the PU-index for drift detection. PUDD outperforms
both classic and SOTA detectors, and the Adaptive PU-index
Bucketing algorithm shows significant improvements over
Ei-kMeans. This validates the PU-index as a sensitive, robust
indicator capable of detecting drift even when error rates
remain unchanged, thereby overcoming a major shortcoming

Figure 3: Comparison with baselines on CIFAR-10-CD, ex-
cluding methods unable to detect drift in image datasets.

Figure 4: Accuracy comparison between PUDD (using Adap-
tive PU-index Bucketing) and Ei-kMeans (EK). We show
average accuracy across 9 datasets using 3 classifiers.

of error rate-based approaches.

Conclusion and Future Work
In our study, we demonstrated that the PU-index, as opposed
to the error rate, is a more effective measure for detecting
concept drift in machine learning models. We utilized the
Adaptive PU-index bucketing algorithm to partition the PU-
index and the Chi-square test to detect concept drift. We also
introduced a technique for inducing concept drift in image
datasets by simulating changes in user interest. We validated
our method through experiments on both synthetic and real-
world datasets. Future work should focus on automating drift
alarm threshold determination, as current methods rely on
manual settings that may not remain optimal over time. Our
research also uncovers a method for generating multi-stream
concept drift in image datasets by emulating shifts in user
interests using Markov matrices, offering valuable insights
for research in multistream concept drift learning.
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