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ABSTRACT

Out-of-distribution (OoD) generalization is one of the major challenges for de-
ploying machine learning systems in the real world. Learning representations that
disentangle the underlying structure of data is of key importance for improving
OoD generalization. Recent works suggest the proprieties of disentangled repre-
sentation in the latent space of GAN models. In this work, we investigate when
and how GAN models can be used to improve OoD robustness in classifiers. Gen-
erative models are expected to be able to generate realistic images and increase the
diversity of the training set to improve the model’s ability to generalize. However,
training the conventional GAN models for data augmentation preserves the corre-
lations in the training data. This hampers training a robust classifier against distri-
bution shifts since spurious correlations from the biased training data are unrelated
to the causal features of interest. Besides, Training GAN models directly on mul-
tiple source domains are fallible and suffer from mode collapse. In this paper, we
employ interpolated generative models to generate OoD samples at training time
via data augmentation. Specifically, we use the StyleGAN2 model as the source of
generative augmentation, which is pre-trained on one source training domain. We
then fine-tune it on other source domains with frozen lower layers of the discrim-
inator. Then, we apply linear interpolation in the parameter space of the multiple
correlated networks on multiple source domains and control the augmentation in
the training time via the interpolation coefficients. A style-mixing mechanism is
further introduced to improve the diversity of the generated OoD samples. Our
experiments show that our proposed framework explicitly increases the diversity
of training domains and achieves consistent improvements over baselines on both
synthesized MNIST and many real-world OoD datasets.

1 INTRODUCTION

Deep learning achieves superior performances in various practical applications, such as computer
vision (Krizhevsky et al., 2012), natural language processing (Devlin et al., 2018), recommendation
systems (Zhang et al., 2019) and autonomous driving (Caesar et al., 2020). The standard setting
of deep learning assumes that the training and test data are drawn independently and identically
distributed (i.i.d.) from the same distribution. However, in the real world, the mismatch of training
and test data distributions is widely observed (Koh et al., 2021; Gulrajani & Lopez-Paz, 2020),
and it hurts the performance of many deep learning systems (Geirhos et al., 2020). This challenge
is known as an out-of-distribution (OoD) generalization problem. How to improve the robustness
of classifiers against distribution shifts is still a challenging problem, as the true underlying data
distributions are significantly underrepresented or misrepresented by the limited training data with
selection bias (Beery et al., 2018).

Generative models, such as GANs, can synthesize photo-realistic images (Goodfellow et al., 2014).
One intuitive idea is to use generative models as a data source to increase the diversity of the training
data. Previous work (Jahanian et al., 2021; Antoniou et al., 2017) has explored this idea of gen-
erating multiple views of the same content for better representation learning. Such an idea should
be also applicable to improve the OoD robustness of classifiers. However, training the conventional
generative adversarial network (GAN) models preserves and even amplifies the correlations in the
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training set (Tan et al., 2020). Directly training classifiers on the generated data from GANs may suf-
fer from over-fitting when the test data come from another distribution, as spurious correlations from
the biased training set are unrelated to the causal reasons of target objects (Arjovsky et al., 2019).
Besides, training GAN models directly on multiple source domains is fallible and may suffer from
mode collapse. A proper training strategy of GAN models on multiple domains and improving the
fairness and diversity of the generated data distributions are needed for improving OoD robustness
using generative models.

In this paper, we propose to use interpolated generative models to generate OoD samples for im-
proving OoD robustness. The core idea is to learn conditional generator networks in a pretraining
and fine-tune manner, that effectively and efficiently models the multiple source domains, and then
linearly interpolate the multiple correlated networks in the parameter space to generated diversified
OoD data. Both the source domain data and the generated OoD samples are used to train the robust
classifiers. To be specific, we leverage StyleGAN2 (Karras et al., 2020) as the data source which is
pre-trained on one source domain. We then fine-tune the model on the other domains with limited
distribution ranges by freezing the lower layers of the discriminator (Mo et al., 2020). However,
modeling the multiple source domains using correlated GANs still preserves the bias in the train-
ing set. Therefore, we adopt the network interpolation method (Wang et al., 2019) to interpolate
the model parameters of the correlated generative networks from the multiple source domains. The
interpolated generative models generate continuous additional vicinity of the training data with the
same class, which will consistently lead to better generalization ability (Simard et al., 1998). The
generated OoD samples distribution also covers larger diversity ranges. Besides, the layer-wise gen-
erative representations emerge in GANs. We further perform style-mixing mechanisms to control
the semantic augmentation process to alleviate the over-fitting problem to the spurious features (e.g.,
color) in the training set. This helps classifiers to learn features that focus more on the shape than
texture, which results in better OoD robustness (Geirhos et al., 2018). The augmentation process
can be controlled in fine-grained detail through the interpolation coefficients.

Our main contributions can be summarized as follows:

• To the best of our knowledge, we are the first attempt to adopt the interpolated deep gen-
erative models for OoD generalization, where correlated conditional generators are trained
and fine-tuned on the multiple source domains and linearly interpolated in the parameter
space to explicitly increases the diversity of source domains.

• We take a step to understand OoD generalization from a data augmentation perspective.
We provide further analysis of the classifiers trained on the generated OoD samples. Our
practice shows that data diversity does influence OoD robustness in classifiers.

• Our experimental results show that our proposed framework can explicitly generate diver-
sified OoD samples and achieves consistent improvements over baselines on both synthe-
sized MNIST and real-world OoD datasets.

2 METHODOLOGY

In this section, we present preliminaries on data augmentation via Mixup and the layer-wise gener-
ative representations in GANs (Section 2.1). Then, we introduce the details of our proposed frame-
work of interpolated GANs for OoD generalization in classifiers (Section 2.2). We provide further
discussion of improving generalization ability through interpolated generative models in Section 2.3

2.1 PRELIMINARIES

Data Augmentation via Mixup. In OoD scenarios, we are interested in augmenting the training
data with similar but different additional virtual examples, which can be described by the Vicinal
Risk Minimization (VRM) principle (Chapelle et al., 2001). The additional virtual examples that
are drawn from the vicinity of the training data with the same class consistently result in better
generalization ability (Simard et al., 1998). Mixup (Zhang et al., 2017) proposes generating virtual
vectors from a generic vicinal distribution: x̃ = λxi + (1 − λ)xj , ỹ = λyi + (1 − λ)yj , where xi,
xj are input vectors, yi, yj are one-hot label encodings. The weights λ are sampled from the Beta
distribution. The neural network trained with linear interpolation of examples and corresponding

2



Under review as a conference paper at ICLR 2022

Figure 1: The framework of the proposed method. We are provided with K source domains. The
target is to train a classifier that can generalize to the unseen domain. The conditional generator
networks are learned in a pretraining and fine-tune manner, which effectively and efficiently models
the multiple source domains. We apply linear interpolation on the multiple correlated networks in the
parameter space to generate diversified OoD data. A style-mixing mechanism is further introduced
to get semantic augmented samples.

labels pairs is more stable for model predictions and improves the generalization of neural network
architectures. However, Mixup produces locally ambiguous and unnatural samples, which misleads
the model, especially for recognition (Yun et al., 2019)

Layer-wise Generative Representations in GANs. The well-trained GANs are able to synthesize
photo-realistic images, which can be used as an unlimited data source for data augmentation. As
shown in Figure 1, recent advanced GAN models, such as StyleGAN2, takes layer-wise stochastic
latent codes to all generator layers, which naturally encodes multi-level semantics as the layer-
wise generative representations (Yang et al., 2021b). In the following section, we present how
GAN models with layer-wise generative representations can be used to generate controllable virtual
vicinity of the training data for better generalization ability.

2.2 FROM MIXUP TO INTERPOLATED GENERATIVE MODELS

In the OoD generalization scenarios, we are provided with K source domains. The target is to learn a
robust classifier that can generalize well to the unseen target domain. In the following descriptions,
conditional generators G1(·), G2(·)...GK(·) denotes the K correlated conditional generators for the
K source domains, which takes data x as the input. Let θ1,θ2...θK denote the parameters for the
multiple generators. Let `classifier be the training loss function for the classifiers. The details of the
proposed framework are illustrated in Figure 1.

Training GANs on Multiple Source Domains. To effectively and efficiently train conditional
GANs for improving OoD generalization in classifiers, a conditional generator Gi(·) with parame-
ters θi is pretrained on source domain i. Then, we fine-tune the pre-trained conditional generator
Gi(·) on other source domains with frozen lower layers of the discriminator to obtain the conditional
generator Gj(·) with parameters θj , where j 6= i, 1 < j < K. Training GANs on source domains
in a pretraining and fine-tune manner is different from directly training one conditional generator
on the multiple discrete source domains, which is fallible and easily mode collapses, as shown in
our experiments. This facility the GANs training on multiple discrete source domains and speeds up
the training process. Directly training GANs on the source domains still preserves the correlations
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Algorithm 1 Interpolated deep generative models for OoD generalization
Require: Training set D, batch size n, learning rate µ, conditional generators G1,G2, ...,GK .
Ensure: θ1,θ2, ...,θK ,ω.
1: Initialize θ1,θ2, ...,θK ,ω;
2: Training θi on source domain i;
3: Update θj by fine-tuning θi on source domain j;
4: Calculate θinterp = α1θ1 + α2θ2 + ...+ αKθK , according to equation 1;
5: repeat
6: Sample a mini-batch of training images {(xi, yi)}ni=1;
7: Sample a mini-batch of synthesized OoD samples: xsyn

i ← G(xi;θinterp);
8: ω ← ω − µ · ∇ω`classifier(ω, xi, x

syn
i ), according to equation 2;

9: until convergence;

in training data. Thus, we introduce the following network interpolation in the parameter space to
disregards spurious features that are correlated but not causal for training a robust classifier.

Network Interpolation for GANs. Inspires by the priors literature (Wang et al., 2019), we propose
to perform linear interpolation for the parameters in the networks of the multiple correlated gener-
ators with the same architecture from pretraining and fine-tuning on the K source domains. The
generators G1(·), G2(·)...GK(·) trained on different source domains θ1,θ2...θK , which has a close
correlation with each other, are mixed together via interpolation in the parameter space:

θinterp = α1θ1 + α2θ2 + ...+ αKθK , (1)

where α1 + α2 + ... + αK = 1, and there is a constrain for αi that αi ≥ 0. This is a convex
combination of the parameter vectors of θ1, θ2,..., θK . Diverse and continuous OoD samples
synthesizing can be realized by adjusting (α1, α2, ..., αK). The interpolation operation is applied on
the layers in the parameter space including all the convolutional layers and the normalization layers.
The generated OoD data can be controlled by these interpolation coefficients.

Style-mixing Strategy for Improving Data Diversity. The interpolated conditional generators
compose multi-level hierarchical semantics in the latent space, which preserves the layer-wise gen-
erative representations. We exchange certain layers of the layer-wise latent vectors for two given
batches of images. This further controls the semantic augmentation process and increases the data
diversity. As the interpolated generator is conditioned on the category labels, the style-mixing strat-
egy can generate additional examples in the vicinity of the training data with the same class.

Interpolated GANs as Data Source. The interpolated GANs as a data source can be used to
increase the diversity of training data. To train the classifier and improve OoD robustness, we apply
classification loss to the classifier on both real images and the synthesized OoD samples:

min
ω

1

N

N∑
i=1

Li
classifier(ω, xi, x

syn
i ), (2)

where Lclassifier denotes the cross-entropy loss, ω is the parameters of the classifier, xi be the real
input data, and xsyn

i denotes the synthesized OoD samples. The stochastic gradient descent algorithm
(SGD) can be performed to optimize the objective. The algorithm of the proposed framework is
outlined in Algorithms 1.

2.3 DISCUSSION

What does model learn from InterpolatedGAN? We have mentioned that augmenting the training
data with similar but different additional virtual examples improves the generalization ability. The
motivation is inspired by the VRM (Chapelle et al., 2001) principle. As shown in Figure 4, the inter-
polated generative models are indeed able to generate more realistic images than the Mixup (Zhang
et al., 2017) algorithm with preserved class labels. Besides, we observe that some attributes, e.g.
style, color, are successfully being changes with shape remains the same, as shown in Figure 1. This
may be due to the emergence of semantic hierarchy in the latent space of interpolated generative
models. The classifiers trained with these mixed samples help to alleviate the over-fitting problem
to the spurious feature (e.g., color) in the training set and focus more on the shape feature of dig-
its. The neural network models, which focus more on shape than texture, have better generalization
ability (Geirhos et al., 2018).
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Colored Fashion MNIST Photo Art Painting Cartoon SketchFull Colored MNIST

OoD-MNIST PACS

Figure 2: Typical examples of the OoD datasets.

Table 1: Classification accuracy on the full colored MNIST. The backbone for the baselines is MLP.
The baselines are implemented by ourselves.

Model In Distribution Real Data Syn. 1K Syn. 10K Syn. 20K Syn 25K

ERM 3 92.86±0.02 92.58±0.03 91.51±0.03 91.27±0.04 91.27±0.02
7 55.93±0.06 56.73±0.07 61.00±0.07 73.50±0.06 64.26±0.02

Mixup 3 91.67±0.01 91.58±0.06 91.08±0.04 90.71±0.03 90.75±0.04
7 46.75±0.08 49.06±0.33 55.50±0.11 59.38±0.11 60.28±0.08

IRM 3 93.58±0.02 93.39±0.03 92.54±0.00 92.42±0.02 92.36±0.00
7 60.04±0.05 60.87±0.06 65.33±0.02 67.40±0.06 68.04±0.05

REx 3 92.86±0.03 92.56±0.02 91.43±0.01 91.13±0.02 91.00±0.03
7 56.41±0.04 57.13±0.08 60.98±0.03 63.27±0.12 63.87±0.04

Analysis of generalization ability. We analyze the effect of the proposed interpolated genera-
tive models on improving the OoD performance of classifiers. As shown in Table 3.2, training on
the synthesized OoD samples achieve consistent improvements over baselines, in terms of out-of-
distribution accuracy. This confirms the improved generalization ability via increasing data diversity.
We also compare FID results of the visual quality for the generated data. We train GANs on the mul-
tiple source domains with joint training on different domains, training from scratch on one domain,
and the proposed pretraining and fine-tune strategy (see Table 3.4). We observe that the proposed
pretraining and fine-tune strategy achieves lower FID and speeds up the GANs training process.

3 EXPERIMENTS

In this section, we evaluate our proposed method on different typical OoD datasets. We present the
implementation details and baselines in Section 3.1. Section 3.2 provides the experimental results
and discussion on the benchmarks. Section 3.3 presents the detailed ablation study of the proposed
framework. We provide a detailed analysis of the generated OoD data in Section 3.4.

3.1 IMPLEMENTATION

Datasets. We evaluate our proposed method on various OoD benchmarks: Full Colored MNIST,
Colored Fashion MNIST, PACS (see Figure 2). The challenging Full Colored MNIST dataset con-
tains 60000 images with resolution (32×32), which includes 10 digits ranging from 0 to 9. The dig-
its were colored with 10 colors based on different correlations with the labels to construct different
environments, i.e., 80% and 90% for the training environments and 10% for the test environment.
This is different from the original Colored MNIST dataset in (Arjovsky et al., 2019). This origi-
nal Colored MNIST construct a binary classification problem with only two colors, which is a much
simpler setting, compared with the Full Colored MNIST used in this work. Colored Fashion MNIST
is a more challenging classification task than MNIST digit, where we assign colors correlated with
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Table 2: Classification accuracy on the fashion MNIST. The backbone for the baselines is MLP. The
baselines are implemented by ourselves.

Model In Distribution Real Data Syn. 1K Syn. 10K Syn. 20K Syn 25K

ERM 3 94.41±0.08 92.55±0.09 89.91±0.05 88.47±0.03 87.84±0.09
7 45.06±0.14 45.46±0.38 57.18±0.21 61.12±0.33 62.46±0.14

Table 3: Classification accuracy on PACS dataset compared with different methods with ResNet-18.
Model Art Cartoon Sketch Photos Average

IRM 70.31 73.12 75.51 84.73 75.92
REx 76.22 73.76 66.00 95.21 77.80

Mixup 82.01 72.58 72.48 93.29 80.09
MTL 76.76 71.87 76.73 92.65 79.50
MMD 79.34 73.76 72.61 94.19 79.97
DRO 78.09 74.18 77.00 93.45 80.68
ERM 77.85 74.86 67.74 95.73 79.05

Ours 81.18 77.65 78.80 95.33 83.24

(a) ImageNet pre-trained

Art Cartoon Sketch Photos Average

30.08 41.85 35.56 39.10 36.65
31.93 45.95 35.84 44.19 39.48
35.16 47.87 42.12 53.59 44.69
38.48 49.06 46.55 51.98 46.52
39.89 51.11 43.09 53.41 46.88
38.92 46.72 46.73 54.67 46.76
38.87 48.93 41.10 58.38 46.82

41.55 52.52 48.13 59.46 50.42

(b) Training from scratch

labels to the original Fashion MNIST dataset (Xiao et al., 2017) to build different environments.
The PACS dataset consists of 9991 images with resolution (227× 227).This dataset contains 7 cate-
gories and 4 domains (photo, art painting, cartoon, sketch). In our experiments, we follow the same
leave-one-domain-out validation protocol (Li et al., 2017), which means that we use three domains
for training and the remaining domain for testing.

Baselines. Our proposed framework can be implemented on any GAN framework. In our experi-
ment, we use the state-of-the-art StyleGAN2 (Karras et al., 2020) model to demonstrate the effec-
tiveness of our method. We compare our proposed method of multiple OoD algorithms, including
empirical risk minimization (ERM) (Arjovsky et al., 2019), invariant risk minimization (IRM) (Ar-
jovsky et al., 2019), mixup (Mixup) (Zhang et al., 2017), risk extrapolation (REx) (Krueger et al.,
2021), domain generalization by solving jigsaw puzzles (Carlucci et al., 2019).

Evaluation Metric. For evaluating out-of-distribution generalization ability, the metric is the top-1
category classification accuracy. We use the metric Fréchet Inception Distance (FID) (Heusel et al.,
2017) to evaluate the visual quality of synthesized data, which calculates the FID between 50,000
fake images and all the training images. Following the same setting in the work (Heusel et al., 2017),
we use an official pre-trained Inception network to compute the FID.

Implementation details. For training the classifier on the Colored MNIST dataset, the backbone
network of the baseline methods is a three-layer MLP. The number of training epoch is 500, the
batch size is the whole training data. The optimizer is SGD with a learning rate of 0.01. The model
trained was tested at the final epoch. The backbone network for the baselines on the PACS dataset
is ResNet-18. We follow the same training, validation, and test split as in the work JiGen (Carlucci
et al., 2019). The total training epoch is 100. The batch size is 64. Our framework was implemented
with PyTorch 1.9.0 and CUDA 10.2. We conducted experiments on NVIDIA TITAN Xp. More
implementation details can be found in the Appendix.

3.2 RESULTS AND DISCUSSION

In this section, we evaluate and analyze the results of our method on four datasets: Full Colored
MNIST, Fashion MNIST, PACS, which represent different aspects of distribution shifts.

Results on Full Colored MNIST. As shown in Table 1, we can see that the proposed method
achieves consistent improvements over baselines. IRM combining with interpolated GAN method
achieves better performance, even compared with advanced REx (Krueger et al., 2021) method. Our
method further improves the performance in Colored MNIST by augmenting the biased training set
with synthesized data. Noticing that all the four baselines show better OoD accuracy with increased
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Full Colored MNIST Colored Fashion MNIST PACS

Figure 3: Visualization results of synthetic images on various datasets

volume of synthesized data. The superior performance confirms the possibility of improving OoD
generalization ability via increasing the data diversity.

Results on Colored Fashion MNIST. Our method achieves much better performance, in terms of
out-of-distribution accuracy on the fashion MNIST compared with ERM baseline (see Table 2).
Specifically, ERM combining with our proposed augmentation method achieves 64.26% when syn-
thetic data is 25, 000, which is much higher than the ERM baseline (55.93%). This may be because
the synthetic data facility the classifier disregards spurious features that are correlated but not causal
for prediction. The visualization of the generated data on fashion MNIST is shown in Figure 3.

Results on PACS. As shown in Table 3, our method achieves the state-of-the-art performance when
using the ResNet-18 as the backbone network no matter whether the backbone is pre-trained or ran-
domly initialized. This PACS dataset considers more realistic generalization scenarios with distri-
bution shifts in styles. In our implementation, ERM with interpolateGAN achieves 83.24% average
accuracy, compared with advanced OoD algorithms, such as MTL (Blanchard et al., 2017) (79.50%)
and Mixup (Zhang et al., 2017) (80.09%). The poor performance of MTL and Mixup may be due
to the biased training data and distribution shifts. Our proposed method has achieved SOTA per-
formance on the challenging PACS benchmark. This demonstrates the superiority of our proposed
method and its potential to be useful in practice.

3.3 ABLATION STUDY

In this section, we compared our proposed method with advanced augmentation methods, such as
Mixup (Zhang et al., 2017). This is to test whether directly applying typical augmentation methods
to training classifiers can improve the out-of-distribution accuracy. We conduct an ablation study
to investigate the importance of each component. We also conduct experiments on the different
quantities of generated data with different baselines.

Experiments on the different quantities of generated data. For ablation study on the different
quantities of generated data, we take the colored MNIST dataset for example. The results are shown
in Table 1. We observe that without the synthetic data, IRM achieves 60.04% out of distribution
accuracy that is much lower than training with 25, 000 synthetic data (68.04%). It can also be
seen that training with a larger quantity of synthetic data achieves consistent better OoD accuracy
than a small quantity of generated data on colored MNIST. The results confirm the effectiveness of
increasing data diversity for improving OoD robustness.

Table 4: Synthesis Quality.
Sketch Domain FID

Joint Photo and Sketch 101.6
Sketch 96.3
Cartoon to Sketch (ours) 32.9
Photo to Sketch (ours) 20.2

Table 5: Ablation Study.
StyleGAN2 Interpolation Style-mixing Accuracy

46.82
3 47.82
3 3 49.83
3 3 3 50.42
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Mixup Deep Generative Models

Figure 4: Comparison of the generated images from different data augmentation mechanisms. The
samples generated by deep generative models are more realistic and preserves the class labels.

Table 6: Variants of the interpolated generative models.
ERM Art Cartoon Sketch Photos Average

w/ StyleGAN2 (Karras et al., 2020) 40.68 50.24 43.06 57.31 47.82
w/ InterfaceGAN (Shen et al., 2020) 41.36 51.92 45.87 58.30 49.36

w/ InterpolatedGAN (ours) 41.55 52.52 48.13 59.46 50.42

Experiments on combining with different baselines. Our proposed method can be easily imple-
mented on any OoD algorithms and GAN framework. As shown in Table 1, we change current
ERM baseline to other advanced OoD algorithms, such as Mixup (Zhang et al., 2017), IRM (Ar-
jovsky et al., 2019), and REx (Krueger et al., 2021). We observe that our proposed method achieves
consistent improvement in terms of OoD accuracy on the four baselines. To be specific, we tried
REx with augmented data on Colored MNIST, the result is 63.87% that is much higher than the
baseline, which is 56.41%. This shows that the training data diversity is essential for increasing
OoD robustness, and our proposed method is flexible to be inserted in any existing OoD algorithms.

Ablation study on different components. We conduct an ablation study on the network interpo-
lation and style-mixing mechanism (see Table 5). The average accuracy on PACS without network
interpolation and style-mixing is 47.82%. The average accuracy is improved after performing the
network interpolation mechanism, which is 49.83% on the PACS dataset. The baseline algorithm is
ERM, and we use StyleGAN2 (Karras et al., 2020) as the baseline generative model. This shows
the effectiveness of network interpolation to facilitate the semantic augmentation process. A style-
mixing mechanism is further proposed to increase the diversity of the generated data and achieves a
higher average accuracy of 50.42%. This shows the effectiveness of the style-mixing mechanism.

Variants of the interpolated generative models. We change the current InterpolatedGAN (Shen
et al., 2020) to InterfaceGAN for the data augmentation process, as shown in Table 6, which achieves
49.36% average accuracy, lower than the original InterpolatedGAN method. We also tried directly
applying StyleGAN2 (Karras et al., 2020) for the multiple source domains on the PACS dataset. As
shown in Table 6, the result is 47.82%. This may be because training conventional GAN models for
data augmentation still preserves the correlations in the training data. This shows that the proposed
interpolatedGAN framework is needed to improve OoD robustness via data augmentation.

3.4 ANALYSIS OF GENERATED OOD DATA

Visualization of generated OoD data. We visualize the synthesized OoD samples on PACS in
Figure 3. The quantitative results of the visual quality in terms of FID are shown in Table 4. The
synthesis quality is substantially improved by our method. In particular, our method improves the
FID for the sketch domain from 96.3 to 20.2 by fine-tuning from the photo domain to the sketch
domain. This improvement supports one of our motivations that training GAN models directly on
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multiple source domains are not easy, and the pretraining and fine-tuning paradigm improves the
visual quality of the synthesized OoD data.

4 RELATED WORK

Out-of-distribution generalization. Out-of-distribution generalization is a fundamental problem
of deep learning models, where the test data come from another distribution. OoD-Bench (Ye et al.,
2021) defines and measures the types of distribution shifts that are ubiquitous in various datasets.
DomainBed (Gulrajani & Lopez-Paz, 2020) creates a living benchmark to facilitate reproducible
domain generalization algorithms for robustness research. Multiple approaches have been proposed
to improve the OoD generalization. IRM (Arjovsky et al., 2019) and its variants (Krueger et al.,
2021; Ahuja et al., 2020) aims to find invariant representation from different training environments
via an invariant risk regularization. GroupDRO (Sagawa et al., 2019) proposes to learn models that
minimize the worst-case training loss over a set of pre-defined groups. MLDG (Li et al., 2018)
introduces a meta-learning procedure, which simulates train and test domain shift during training.
Jigsaw (Carlucci et al., 2019) proposes to learn the semantic labels in a supervised fashion, and
jointly solve jigsaw puzzles on the same images. In this paper, we focus on improving OoD ro-
bustness in classifiers from a data augmentation perspective, which is the most straightforward and
intuitive way to improve the generalization ability.

Generative Adversarial Networks. Generative adversarial networks can synthesize photo-realistic
images (Goodfellow et al., 2014). Extensive efforts have been devoted to improving the quality of
generated data (Karras et al., 2017; Brock et al., 2018; Yang et al., 2021a). Recent works observe
layer-wise generative representations in GANs (Karras et al., 2019; 2020; Shen et al., 2020; Xu et al.,
2021). Recently, some researchers take attempts to improve the fairness or acceptability of classi-
fiers (Li & Xu, 2021; McDuff et al., 2019; Nguyen et al., 2017). The work of (Lang et al., 2021)
proposes a training procedure, which incorporates the classifier model for a StyleGAN to learn a
classifier-specific StyleSpace to explain a classifier. The work (Ramaswamy et al., 2021) introduces
a GAN-based latent space de-biasing method to mitigate bias from data correlations for fair attribute
classification. In this work, we propose to use generative models with layer-wise generative repre-
sentations as a data source to perform semantic augmentation and increase the diversity of training
data. However, GAN overfits easily and suffers from mode collapse training on discrete multiple
source domains. Thus, it is highly non-trivial to extend existing GANs to improve OoD robustness.

Robustness from data augmentation perspective. Data augmentation mechanisms augment the
training data with similar but different additional virtual examples lead to better generalization abil-
ity (Simard et al., 1998). Mixup (Zhang et al., 2017) presents a learning principle to generate virtual
examples from a generic vicinal distribution, which trains a neural network on convex combinations
of pairs of examples and labels. It has thereafter inspired some other advanced algorithms, such
as Manifold Mixup (Verma et al., 2019), CutMix (Yun et al., 2019), and InterpCNN (Mao et al.,
2019). DNI (Wang et al., 2019) applies linear interpolation in the parameter space of two or more
correlated networks to achieve a smooth control of imagery effects. The work (Chai et al., 2021)
using the different views with real-world variations generated by generative models to benefit image
classification. The work (Jahanian et al., 2021) presents that the multiview data generated by gener-
ative models can naturally be used to identify positive pairs for contrastive methods. L2A-OT (Zhou
et al., 2020) utilizes a data generator to synthesize pseudo-novel domains data to augment the source
domains. However, they do not consider the OoD robustness of classifiers through interpolated gen-
erative models with layer-wise generative representations.

5 CONCLUSION

In this paper, we propose to use generative models as a data source to increase the diversity of
the training domains to improve OoD robustness. We use the StyleGAN2 as the data source, which
models multiple source domains in a pretraining and fine-tune manner. We apply linear interpolation
of the multiple correlated networks in the parameter space to generate OoD samples. We further
perform style-mixing mechanisms to control the semantic augmentation process. Our experiments
show that InterpolatedGAN can explicitly generate diversified OoD samples and achieves consistent
improvements over baselines on various OoD datasets.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We conduct a fair comparison of our proposed InterpolatedGAN with various OoD generalization
algorithms and SOAT GAN methods on challenging OoD datasets. For our proposed Interpolat-
edGAN method, the learning rate for the generation process is 0.0025. The optimizer for training
the conditional generator is. For training the classifiers, we use the SGD optimizer with an initial
learning rate of 0.01 for the Full Colored MNIST and the Colored Fashion MNIST. For the PACS
dataset, the batch size is 64. The optimizer is SGD. We conduct hyper-parameter optimization
(HPO) for all the baseline methods and compare our proposed method with their performance under
the best hyper-parameters. The results for the Full Colored MNIST and Colored Fashion MNIST
are averaged over 5 runs with the best set of hype parameters.

For the Full Colored MNIST, we use ten colors for all the data with 10 digits: Dark Green ([0, 100,
0]), Rosy Brown ([188, 143, 143]), Golden ([255, 215, 0]), Red ([255, 0, 0]), Royal Blue ([65, 105,
225]), Cyan ([0, 225, 225]), Blue ([0, 0, 255]), Deep Pink ([255, 20, 147]), Dark Gray ([160, 160,
160]), Lime ([0, 255, 0]). The images resolution is 32× 32. The dataset size is 60000 images. The
correlation is different during training and test time, as shown in Figure 5.

Figure 5: Illustration of the Full Colored MNIST dataset. The 10 digits were colored with 10 colors
based on different correlations with the labels to construct different environments, i.e., 80% and 90%
for training environments and 10% for the test environments.

For the Colored Fashion MNIST with 10 colors and 10 categories (T-shirt, Trouser, Pullover, Dress,
Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). This is a more challenging task than the Colored
MNIST. We color the objects based on different correlations to construct different environments.
Similar to the Full Colored MNIST, We set a one-to-one digit-color relationship and set the bias
coefficient to ρ = 0.9 and ρ = 0.8.

PACS is a widely used OoD dataset. This dataset contains 9991 images with 7 categories (dog, ele-
phant, giraffe, guitar, horse, house, person) and 4 domains (photo, art painting, cartoon, sketch). The
original images with 227× 227 resolution were padding to 256× 256 when training the generative
models. The implementation details of the pretraining and fine-tuning stage for the pacs dataset are:
1) Target domain photo: pretraining on the cartoon domain, fine-tuning to sketch, and art painting.
2) Target domain art painting: pretraining on the photo domain, fine-tune to sketch, and cartoon. 3)
Target domain sketch: pretraining on the photo domain, fine-tune to art painting, and cartoon. 4)
Target domain cartoon: pretraining on the photo domain, fine-tune to art painting and sketch.
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A.2 MORE VISUALIZATION RESULTS

We also provide more visualization results of the synthesized images in Figure 6 and Figure 7.

Figure 6: More visualization results of synthetic images on the Colored Fashion MNIST.

Figure 7: More visualization results of synthetic images on the Full Colored MNIST.
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