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Abstract

Offline reinforcement learning is widely applied
in multiple fields due to its advantages in effi-
ciency and risk control. However, a major prob-
lem it faces is the distribution shift between offline
datasets and online environments. This mismatch
leads to out-of-distribution (OOD) state-action
pairs that fall outside the scope of the training
data. Therefore, existing conservative training
policies may not provide reliable decisions when
the test environment deviates greatly from the
offline dataset. In this paper, we propose Test-
time Adapted Reinforcement Learning (TARL)
to address this problem. TARL constructs un-
supervised test-time optimization objectives for
discrete and continuous control tasks, using test
data without depending on environmental rewards.
In discrete control tasks, it minimizes the entropy
of predicted action probabilities to decrease un-
certainty and avoid OOD state-action pairs. For
continuous control tasks, it represents and min-
imizes action uncertainty based on the normal
distribution of policy network outputs. Moreover,
to prevent model bias caused by overfitting and
error accumulation during the test-time update
process, TARL enforces a KL divergence con-
straint between the fine-tuned policy and the orig-
inal policy. For efficiency, TARL only updates
the layer normalization layer parameters during
testing. Extensive experiments on popular Atari
game benchmarks and the D4RL dataset demon-
strate the superiority of our method. Our method
achieved a significant improvement over CQL,
with a 13.6% episode return relative increase on
the hopper-expert-v2 task.
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1. Introduction

Reinforcement learning is an important research field in
artificial intelligence and has achieved remarkable success.
Offline reinforcement learning (Kumar et al., 2020; An et al.,
2021; Fujimoto & Gu, 2021; Kostrikov et al., 2021) offers
significant advantages, enables efficient data utilization and
low risks by learning promising policies from pre-collected
datasets. Therefore, offline reinforcement learning has be-
come an indispensable method for a wide range of applica-
tions. For example, offline reinforcement learning can learn
an optimal driving policy from a large driving dataset to
improve the safety and stability of autonomous driving (Yu
et al., 2020a; Liu et al., 2023). Furthermore, offline re-
inforcement learning can also be applied to robotics con-
trol (Kalashnikov et al., 2018), game AI (AlphaStar; Ye
et al., 2020), portfolio selection (Zhang et al., 2023; Xu
et al., 2020), recommendation systems (Li et al., 2010; Gao
et al., 2022) and other fields, where it can improve the intel-
ligence of robots or agents by learning from large amounts
of offline data.

The dataset used in offline reinforcement learning can be col-
lected through interaction with the environment based on a
fixed policy, simulation runs or human demonstrations. The
state-action pairs in the offline dataset are unable to cover
all the possibilities of the state-action space. Consequently,
the dataset inevitably exhibits a certain degree of distri-
bution shift from the true state-action visitation frequency
associated with the learned policy, as shown in Figure 1.
During the deployment process, the policy may encounter
novel state-action pairs, which subsequently leads to the
predicament of being incapable of coping with unforeseen
changes and dynamic environments in practical applications.
Specifically, offline reinforcement learning may face out-
of-distribution (OOD) samples, i.e., samples not present in
the dataset, leading to inaccurate value function estimation
for unseen state-action pairs and resulting in significant ex-
trapolation error (Fujimoto et al., 2019). For example, in
an autonomous driving application, the vehicle controlled
by such a policy may fail to respond appropriately to a rare
combination of road conditions, endangering the safety of
passengers and other road users.

To address this issue, existing methods can be broadly classi-
fied into two categories: conservative estimation (Wu et al.,
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2019; Kumar et al., 2020; Fujimoto & Gu, 2021; Kostrikov
etal.,2021; Yu et al., 2021; Lyu et al., 2022) and uncertainty
estimation (Yu et al., 2020b; Wu et al., 2021; An et al., 2021).
Conservative estimation methods enforce consistency be-
tween the behavioral policy and the learned policy by adding
a KL divergence constraint or a pessimistic penalty to the
learned value function. This encourages the learned policy
to maintain a pessimistic estimate for out-of-distribution
state-action pairs and avoid them in online environments.
However, conservative estimation methods tend to be overly
conservative by avoiding unknown state-action pairs and
their performance is severely restricted by the quality of the
offline dataset. Uncertainty estimation methods measure
the uncertainty of state-action pairs using an uncertainty
metric and then correspondingly adjust the value function
estimation. This balances the risk and reward of unseen
state-action pairs. However, uncertainty estimation methods
face risks of inaccurate uncertainty quantification and poor
generalization when dealing with unseen state-action pairs,
leading to potential negative consequences in safety-critical
applications such as autonomous driving. Both conservative
estimation and uncertainty estimation methods remain con-
strained by the closed and static offline dataset, and thus are
incapable of effectively adapting to the environment.

To overcome this limitation, we propose a novel offline re-
inforcement learning paradigm, called Test-time Adapted
Reinforcement Learning (TARL). This paradigm empowers
offline RL to establish an interface with the environment,
enabling the efficient update of a few parameters. Through
the utilization of test-time data in the testing stage, it be-
comes possible to further fine-tune the model. As a result,
the performance of offline RL can be significantly enhanced,
and the learned policy can be effectively optimized to adapt
to the real testing environment. Note that since we do not
conduct an exploration of the environment and do not re-
quire feedback from the environment, this remains an of-
fline rather than an online approach. TARL still retains the
advantages of offline reinforcement learning in terms of effi-
ciency and security. Specifically, we construct unsupervised
test-time optimization objectives for discrete control and
continuous control tasks separately. We fine-tune the param-
eters in the normalization layers of the policy by minimizing
the output entropy or output uncertainty of the policy. In
this manner, we can make minor adjustments to the policy
using only the unlabeled data from the test environment,
enabling it to adapt to the online testing environment. More-
over, we propose a debiasing term by KL divergence, which
restricts the model parameters from becoming excessively
large. This can effectively prevent the policy from overly
focusing on the test-time data and thus avoid the bias prob-
lem caused by overfitting and error accumulation. In this
paper, our main contributions are as follows:
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Figure 1. State-action pairs distribution shift. The horizontal axis
represents the action value, the vertical axis denotes the action
probabilities. The red color represents the actions in the offline
data, and the blue color represents the actions in the online envi-
ronment. The offline dataset and the dynamic online environment
have a significant data distribution mismatch, called the out-of-
distribution (OOD) problem. This problem hinders the application
of reinforcement learning algorithms in real-world scenarios due
to suboptimal policy performance.

* We propose a novel Test-time Adapted Reinforcement
Learning method, referred to as TARL. This simple
yet effective paradigm enables offline reinforcement
learning methods to adapt to the real-world environ-
ment, with only a few parameters in normalization
layers requiring updates during testing. This method
can be applied to various existing offline reinforcement
learning methods. By integrating TARL, these existing
methods can overcome the limitations imposed by the
static offline datasets and better handle the uncertain-
ties and variations in the real-world environment.

* TARL combines the adaptability of test-time fine-
tuning with the conservatism of offline learning. We
separately design unsupervised optimization objectives
for discrete control tasks and continuous control tasks
to achieve test-time adaptation. By using unsupervised
objectives, TARL adapts the offline policy based solely
on the test data, avoiding the need to wait for envi-
ronmental rewards. Therefore, TARL preserves the
stability and safety of conservative offline reinforce-
ment learning.

* We conduct extensive experiments on the Atari and
D4RL benchmarks to demonstrate the effectiveness
of our proposed method. Our method achieves sta-
ble improvement over the baseline on various discrete
and continuous control tasks. Notably, on the hopper-
expert-v2 task, our method achieved a remarkable
13.6% relative increase in episode return compared
to CQL. These results demonstrate the robustness and
efficacy of our method in improving the performance
of offline reinforcement learning on a variety of tasks.
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2. Related Work

2.1. Offline Reinforcement Learning

Due to the distribution shift between the offline dataset and
the online environment, offline reinforcement learning of-
ten encounters issues related to out-of-distribution (OOD)
state-action pairs. Prior works have attempted to address
this problem by adding KL-divergence (Jaques et al., 2019;
Peng et al., 2019), Wasserstein distance (Wu et al., 2019),
or MMD (Kumar et al., 2019) between the learned policy
and the behavior policy to avoid the OOD state-action pairs.
However, these methods often require a separately estimated
model of the behavior policy and are limited by their ability
to accurately estimate the unknown behavior policy, espe-
cially when data is collected from multiple sources (Levine
et al., 2020). Conservative Q-learning (CQL) (Kumar et al.,
2020) does not require estimating the behavior policy, which
is sought after by researchers.

Previous approaches to offline RL have also attempted to
estimate uncertainty to determine the trustworthiness of Q-
value predictions (An et al., 2021; Lee et al., 2022), but
these methods have not been generally performant due to
the high-fidelity requirements of uncertainty estimates in
offline RL. (An et al., 2021)used a diversified q-ensemble to
capture Q-value variance for uncertainty, yet it led to over-
fitting with scarce or biased datasets, harming uncertainty
reliability and decision-making in novel situations. (Lee
et al., 2022)faced challenges in exploration-exploitation bal-
ance. Its pessimistic bias to handle unseen states-action pairs
sometimes made the agent overly avoid exploration, stalling
learning and preventing optimal performance. Our approach
is devised with the aim of empowering offline reinforcement
learning methods to smoothly adapt to out-of-distribution
(OOD) states-action pairs in the actual environment, and
notably, it manages to achieve this without having to fall
back on online rewards.

2.2. Test-Time Adaptation

Test-time adaptation (TTA) aims to improve model accu-
racy on out-of-distribution (OOD) test data by adapting the
model with test samples. Existing TTA methods, such as
TTT (Wang et al., 2020) and TTT++ (Liu et al., 2021), rely
on joint training of a source model using both supervised and
self-supervised objectives, followed by adaptation with a
self-supervised objective at test time. However, this pipeline
assumes a specific manner of model training, which may
not always be controllable in practice. To address this, fully
test-time adaptation methods have been proposed, which
adapt a model with only test data. These methods include
batchnorm statistics adaptation (Nado et al., 2020), test-
time entropy minimization (Wang et al., 2020; Niu et al.,
2022), prediction consistency maximization over different
augmentations (Zhang et al., 2022).

The test-time adaptation method can be used to solve various
distribution deviation problems, including the distribution
deviation between offline datasets and online environments
in offline reinforcement learning. In this paper, we use
the test-time adaptation method to address this problem and
improve the performance of offline policies by incorporating
online data. Our approach aims to overcome the distribution
shift problem by adapting the offline policy with test-time
adaptation using online data.

3. Test-Time Adapted Reinforcement Learning

Notations. We represent the environment as a Markov
Decision Process (MDP) consisting of a 5-tuple <
S, A, P,R,~v >, where S is the state space, A is the action
space, P(s'|s,a) is the transition probability distribution,
R : S8 x A — Ris the reward function, and y € [0,1] is
the discount factor. Reinforcement learning (RL) aims to
seek a policy m(a|s) from the set of policy functions 7 to
maximize the expected cumulative discounted reward.

Problem definition. In offline reinforcement learning, the
offline dataset D = {(s;, a;, r, si“)}ij\;l is collected by a
behavior policy u(-|s). The agent can only learn the offline
policy 7°7f (a|s) from the offline dataset D, without inter-
acting with the environment to improve the policy. A ma-
jor challenge arises from the pervasive presence of Out-of-
Distribution (OOD) state-action pairs in real-world environ-
ments, where offline policies encounter novel interactions
beyond their training distribution. Due to the distribution
shift between the state-action distribution d°*(s, a) of on-
line samples and d°// (s, a) of offline samples, the learned
offline policy 7°f/ (a|s) cannot be well adapted to the online
environment (Lee et al., 2022). This lack of adaptability can
trigger a series of adverse effects, such as poor performance
and erratic decisions in real-world environments.

Overview of TARL. To solve the problem, we develop
a Test-time Adapted Reinforcement Learning (TARL) to
mitigate the distribution shift between the offline dataset and
the online environment, as shown in Figure 2. Firstly, TARL
computes the probability entropy. We set a threshold for
the entropy to exclude out-of-distribution (OOD) samples.
Subsequently, we use the selected highly confident samples
and minimize the entropy loss to achieve unsupervised test-
time fine-tuning. This process allows our model to adapt to
the test-time data without relying on additional supervision,
leveraging the inherent information within the data itself.
Secondly, we compute the debiasing term by enforcing the
KL divergence between the original policy and the test-time
updated policy. By constraining the update, we prevent the
network from overfitting to the test-time data and ensure
its generalization ability. Lastly, we combine the entropy
minimization term and the debiasing term to update only the
layer normalization layers. By selectively updating these
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Figure 2. The overview of our Test-time Adapted Reinforcement Learning (TARL) method. TARL adjusts the trained policy during test
time efficiently and effectively. Given a state from the test environment, our test-time adaptation strategy consists of three steps. First,
we compute the probability entropy used as sample filters and test-time learning objectives. Second, we compute the debiasing term by
enforcing the KL divergence between the trained policy and test-time updated policy. Last, we combine the entropy minimization term
and the regularization term to update the layer normalization layers only.

Out of Distribution (OOD) States
Real-world Environments

layers, we can efficiently adapt the model to the test-time
environment while preserving the knowledge learned during
the pre-training phase. When the pre-trained offline policy
is deployed in the online environment, we use the test data to
adapt it, which enables the offline policy to better align with
the distribution of the online environment, thereby leading
to higher returns.

3.1. Significance of Offline RL Test-Time Adaptation

In reinforcement learning, a prominent out-of-distribution
(OOD) problem often exists between the offline dataset and
the online environment, as shown in Figure 1. The offline
dataset is usually collected under specific, limited condi-
tions, like past experiments with fixed parameters. Con-
versely, the online environment is dynamic and affected
by unpredictable factors such as system state changes and
evolving user behaviors. These differences cause a signif-
icant data distribution mismatch. As a result, deploying a
pre-trained offline policy directly to the online environment
may result in the agent taking unknown actions, leading
to potential safety hazards due to the distributional shift
between the online environment and the offline dataset. In
safety-critical scenarios, such as autonomous driving, the
agent taking unknown actions is not permissible. Therefore,
it is risky to apply the original offline policy directly to
the online environment. In contrast, online reinforcement
learning enables the agent to interact directly with the envi-
ronment, where the environmental rewards serve as crucial
feedback mechanisms for policy improvement. However, in
some online environments, acquiring rewards can be time-
consuming or even infeasible. Real-world scenarios may
not provide real-time reward signals to motivate the agent

to fine-tune the policy, further complicating the adaptation
process. Therefore, it becomes crucial to enable the offline
policy, which does not rely on real-time rewards from online
environments, to adapt to real-world scenarios.

Motivated by this, we propose Test-time Adapted Rein-
forcement Learning (TARL). Inspired by online Test-Time
Adaptation techniques, we construct unsupervised objective
functions for discrete and continuous control tasks respec-
tively. These functions are employed to fine-tune a minimal
number parameters of layer normalization layers in the of-
fline policy using test data. Specifically, our aim is to enable
the policy to enhance the confidence of high-probability
categories and avoid selecting low-confidence categories.
Intuitively, the uncertainty associated with unknown out-of-
distribution (OOD) actions, i.e., those actions not present
in the offline dataset, is greater than that of known actions,
which are the actions that exist within the offline dataset.
Through the test-time fine-tuning, the offline policy can be
encouraged to select actions with higher confidence. This,
in turn, helps to avoid some of the unknown OOD state-
action pairs, thereby improving the policy’s performance
and adaptability in the face of distributional shifts. By imple-
menting this approach, we eliminate the reliance on reward
signals for policy enhancement and empower the offline
policy to adapt to the online environment. The proposed
TARL approach has the potential to deftly circumvent the
inherent limitations plaguing offline reinforcement learn-
ing. Through establishing interactions between the offline
policy and the environment during test-time, our TARL pro-
motes reinforcement learning to be more highly practical
and efficacious in real-world scenarios.
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3.2. Unsupervised Test-Time Learning Objectives

Our Test-time Adaptation Reinforcement Learning (TARL)
is designed to establish interaction between offline reinforce-
ment learning and online environments without relying on
environmental reward signals. To achieve this goal, we pro-
pose unsupervised test-time learning objectives to update
offline policies. The test-time objective LY, , is to select the
high confidence sample s; to update partial parameters of
the policy. We understand that discrete continuous control
tasks and continuous control tasks have distinct characteris-
tics. Discrete control tasks involve choosing from a finite
set of actions, like selecting a specific gear in a vehicle.
Continuous control tasks, on the other hand, involve actions
that can take on any value within a certain range, such as
adjusting the speed of a robot. Therefore, we have tailored
the test-time learning objectives for these two types of tasks
respectively.

Discrete Control Tasks. For discrete control tasks, we use
probability entropy to quantify the uncertainty of the actions
predicted by the offline policy (Niu et al., 2022). As shown
in the following formula:

Edz’s(5§ @) = - Z 71'@(& | 5) logﬂ-@(a | 5)7 (D
acA

where A is the action space, s is the state in the online
environment. Fy;,(s) is the probability entropy of the ac-
tions predicted by the policy network, which represents the
uncertainty of taking an action.

A higher value of the entropy Eg4;s(s) indicates a greater
level of uncertainty in the actions predicted by the offline
policy. As this uncertainty increases, there is a higher prob-
ability that the policy will execute unknown or incorrect
actions, i.e., out-of-distribution (OOD) actions. In order
to prevent the policy network from choosing those OOD
actions with greater uncertainty, we filter out those samples
with greater uncertainty by setting a threshold Ejy:

fdis(s) = ]I{Ed“(s;@)<Eo}a 2
where 1 is the indicator function.

Then, we use the selected samples to update the policy net-
work. To improve the offline policy’s adaptability to the
online environment for discrete control tasks, we minimize
the E4;5(s) as the unsupervised optimization objective. By
reducing the uncertainty of the predicted actions, we can
enhance the confidence of the offline policy in predicting
correct actions during the test-time. Consequently, this en-
hances the policy’s prediction accuracy and helps it better fit
the online environment and handle new situations. What’s
more, for effective adaptation, we only update a few train-
able parameters 6 C ©ofall layer normalization layers.
Thus the test-time optimized goal for the discrete control

task is as follows:

ﬁgift = Hgn fais(8)Eqis(s; ©). 3)

Continuous Control Tasks. Continuous control tasks are
different from discrete control tasks. The output of the pol-
icy network is not about the probability of actions, thus we
cannot directly use the minimum action probability entropy
as the optimization goal. In continuous control tasks, the
policy network outputs the specific value of each action.
Across the entire action space, these outputs form a normal
distribution, characterized by a mean u and a variance o.
The action is then sampled by parameterization. So we
adopt the following formula to represent the uncertainty:

Feon(50) = 3 (In (270%) + 1), 4

where o is the variance of the policy network, which repre-
sents the uncertainty of the action mean w.

Due to the distribution shift between the offline dataset and
the online environment, the policy network will inevitably
output OOD actions for a certain state. In order to filter
out this part of OOD samples, we use a replay buffer to
temporarily store the test data s;. When a certain amount
of data is collected, we use Formula (4) to calculate the
uncertainty of all samples in the replay buffer B = {s;} ¥ ;
and select top k small variance sample data to fine-tune the
strategy network. As shown in the following formula:

feon(s) = H{Econ(S)SEo}’ ®)

where FEj is the k-th smallest entropy of E.,,(s;).

By minimizing the above Formula (4), the policy network
can output a more confident action mean u’ with less un-
certainty. Thus the test-time optimized objective for the
continuous control task is as follows:

2%&1 = ijl fcon(s)Econ(S; 6) (6)
(C]

3.3. Test-Time Debiasing Regularization

Since the test-time finetuning employs unsupervised objec-
tives, the generation of errors is inevitable. The network
relies on the inherent characteristics within the test data for
optimization. When the threshold Ej is set higher, more
online data are used to update the policy network. The more
test data are involved, the more likely it is to introduce issues
such as data noise and data distribution shifts, exacerbating
the generation of errors. As the training progresses con-
tinuously and iteratively, these errors exhibit a cumulative
effect. The accumulation of errors leads to a further negative
impact on the model’s performance. Moreover, the policy
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Figure 3. Policy network bias after test-time adaptation. When
only using test-time learning objectives to update the offline policy,
the policy network will tend to output a specific action category,
such as the third category in the figure.

network tends to over-emphasize the local features within
the test data while neglecting the overall data distribution.
As a result, the policy network is prone to the problem of
overfitting. The accumulation of errors and the overfitting
to the test data are intertwined issues. Together, they give
rise to an increasingly severe bias problem. As shown in
Figure 3, the model may output with a high probability to a
specific category. This bias can lead to suboptimal decision-
making and a failure to generalize well to the real-world
environment. In order to solve this problem, we propose
to use the original pre-trained offline policy network 7°/f
whose model parameters are frozen and perform KL di-
vergence constraints between the output of the fine-tuned
offline policy 7**® and the frozen policy network 7°f/. The
KL Divergence loss is as follows:

Lt = KL/ | |xtte). 7

This debiased term by KL divergence effectively restricts the
update of model parameters. As a result, the bias within the
policy network is significantly reduced. With less bias and
overfitting issues, the policy network can better generalize to
different scenarios. During the test-time adaptation process,
especially when dealing with out-of-distribution state-action
pairs, the generalization ability of the policy is enhanced.
It can make more accurate and reliable decisions, adapting
well to various states and actions that may not be fully
represented in the training data. This ultimately improves
the overall performance and adaptability of the offline policy
in real-world applications.

3.4. Debiased Test-Time Adaptation for RL

We use the state data s; during the interaction with the
online environment to further fine-tune the policy network

Algorithm 1 Training Method for TARL
of f

input The trained offline policy w®/7, the online state s, the
replay buffer 5.
output The test-time updated policy 7w**°.
1: Initialize the replay buffer B to temporarily store the state.
2: for episode = 1, M do
3:  Get the initialized state s from the online environment.
4: forstept=1,Tdo
5: Agent executes action a; and observes state s;.
6: Store state s; in 5.
7: Filter out those states with greater uncertainty via Eqn.
(2) or Eqgn. (5).

8: Compute the KL divergence between 7°f¥ and 7t by
Eqn. (8).
9: Use filtered samples to update the trainable parameters
© in 7wt via Eqn. (9).
10:  end for
11: end for

parameters so that the policy network can adapt to the online
environment. The optimization objectives during iteration
time step ¢ are as follows:

rt dis " if A is discrete action space, 8)
ent . . . .
- Lg it Ais continuous action space.

Furthermore, we take into account the bias problem intro-
duced during the test-time finetuning process. To address
this issue, we proposed using the KL divergence loss as
a debiasing term to regularize the policy network. We
present the whole loss function used in the debiased test-
time adapted reinforcement learning:

£t =rl

ent + A th<l7 (9)
where A is a hyperparameter that controls the degree of
change of the output of the offline policy. When the A
is large, the offline policy tends to the network that has
not been updated; when the ) is small, the offline policy
parameter update step is almost determined by the online
state sy.

The overall method of our TARL is summarized in Algo-
rithm 1. Leveraging the proposed debiased test-time learn-
ing objectives, TARL can update an offline reinforcement
learning network by using test data without reward. During
the test phase, TARL can analyze the test data to adjust its
internal parameters, optimizing the decision-making strate-
gies. TARL allows existing offline policies to effectively
adapt to Out-of-Distribution (OOD) state-action pairs in
the environment. Consequently, offline policies integrated
with TARL can maintain high performance and stability in
the face of unexpected environmental changes, significantly
enhancing its generalization ability and practicality.
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Table 1. Average episode return comparison of TARL against baseline methods on Atari benchmarks over the 10 evaluations. The highest

mean scores are highlighted in bold.

Algorithm ‘ Qbert Seaquest Asterix Pong Breakout

REM 914.38 £ 6.81 335.42+£9.72  387.00+4.68 —20.23+0.10 3.27+0.44
REM (TARL) 920.18 + 15.82 339.26 +£9.38  394.73 £8.53 —20.20 £0.06 3.58 £ 0.55
QR-DQN 646.35 £ 17.08  413.09+£13.16 503.38 £14.60 —18.48+0.12 3.8940.42
QR-DQN (TARL) | 672.73 +-14.44  424.57 £11.91 819.24 +30.74 —18.40+0.18 4.18 £+ 0.60
CQL 4334.64 + 259.67  257.80 £9.25  504.59 4+ 13.98 1.02 £1.22 8.26 +1.17
CQL (TARL) 4602.67 +-264.11 270.40 +-8.42 524.76 = 13.98 2.08 £ 0.92 8.53 £1.15

4. Experiments

To evaluate the effectiveness of Test-Time Adapted Rein-
forcement Learning (TARL), we conduct experiments on
both discrete control and continuous control tasks.

4.1. Datasets

¢ Atari Benchmark. For discrete control tasks, we con-
duct experiments on Atari games (Bellemare et al.,
2013). We evaluate our TARL on five Atari tasks:
Qbert, Seaquest, Asterix, Pong, Breakout. These
games provide diverse challenges through distinct me-
chanics, such as spatial reasoning in Qbert and reactive
control in Pong.

* D4RL Benchmark. For continuous control tasks, we
conduct experiments on D4RL benchmark (Fu et al.,
2020). We evaluate our algorithm in five settings:
Expert (optimal/near-optimal high-performing policy
data, Fully Replay (training exclusively on fixed pre-
collected datasets), Medium Policy (suboptimal policy-
generated data), Medium Replay Buffer (mixed-quality
data from training a medium policy), and Medium-
Expert (hybrid expert-novice demonstrations). We
evaluate TARL on three locomotion tasks: bipedal
locomotion (HalfCheetah), monopedal jumping sta-
bility (Hopper), and dynamic balance maintenance
(Walker2D).

4.2. Baselines

For discrete control tasks, following (Kumar et al., 2020),
we compare TARL with three classic algorithms: QR-
DQN (Dabney et al., 2018), REM (Agarwal et al., 2020)
and CQL (Kumar et al., 2020). For continuous control tasks,
we compare TARL with CQL (Kumar et al., 2020) and
IQL (Kostrikov et al., 2022).

4.3. Evaluation Metrics

For the atari game, when deploying offline policy to the on-
line environment, the agent interacts with the environment
for 125,000 steps, each episode is not more than 27,000

steps, and the average episode return is used as the evalu-
ation metric. For D4RL tasks, the agent interacts with the
environment with 10 episodes, and we also use the average
episode return as the metric. However, because the rein-
forcement learning prediction is very unstable, we repeat
the above process 10 times and use the mean and variance
of 10 times as the evaluation metric.

4.4. Implementation Details

We implement the discrete control experiments in atari fol-
lowing CQL (Kumar et al., 2020) and the continuous control
tasks in the OfflineRL-Kit codebase (Sun, 2023)'. We use
two distinct sets of hyperparameters for discrete control and
continuous control tasks, respectively. All environments of
the same type of task share the same hyperparameters. For
the D4RL benchmark dataset with continuous control tasks,
the hyperparameters used for all tasks were a learning rate
of 1e~%, a buffer capacity size of 1000, and a selection of
the top 10 small entropy samples to update the offline policy.
The KL Divergence constraint A was set to 1.0. For the
Atari dataset with discrete control tasks, we set the hyper-
parameters as follows: a learning rate of 1e~°, an entropy
threshold E of 0.1, and a KL Divergence constraint limit
Aof 1.5.

4.5. Offline RL on Discrete Control Tasks

Following (Kumar et al., 2020), we conducted experiments
on discrete control tasks to compare the performance of
our method with the classic offline reinforcement learning
algorithms QR-DQN and CQL. As shown in Table 6, our
method achieved a greater performance improvement than
QR-DQN, and also outperformed the CQL method. In the
Qbert task, TARL-enhanced REM (REM (TARL)) achieved
an average episode return of 920.18, while the original REM
had a return of 914.38. For QR-DQN, the average episode
return increased from 646.35 to 672.73 when combined with
TARL (QR-DQN (TARL)). In the Asterix task, the average
episode return of CQL was 504.59, while CQL (TARL)

'The source code for this project is publicly available at
https://github.com/xushoukai/TARL.
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Table 2. Average episode return comparison of TARL against base-
line methods on D4RL benchmarks. The highest mean scores are
highlighted in bold.

CQL Comparisons

Task Name CQL  CQL (TARL)
hopper-expert-v2 99.72 113.34
walker2d-fully-replay-v2 ~ 95.31 97.99
walker2d-expert-v2 113.25 113.57
IQL Comparisons
Task Name IQL  IQL (TARL)
Walker2d-medium-v2 ~ 79.92 82.43
Walker2d-expert-v2 110.31 110.49

reached 524.76. These results demonstrate the effectiveness
of our method for discrete control tasks. Using test-time
data and constructing unsupervised test-time optimization
objectives, TARL fine-tunes the layer normalization layers
of the offline policies. This allows the existing offline RL
algorithms to better adapt to the distribution of the online
environment. This further validates that our TALR can be
applied to various existing offline reinforcement learning
methods to make them adapt to online environments.

4.6. Offline RL on Continuous Control Tasks

Our experimental results in Table 2 demonstrate consis-
tent performance improvements over both CQL and IQL
baselines across D4RL benchmarks. The method achieves
substantial gains of 2.68 and 13.62 on CQL’s walker2d-fully-
replay-v2 and hopper-expert-v2 tasks respectively, while
maintaining stable superiority (0.32) even on expert-level
walker2d-expert-v2, suggesting enhanced capability to han-
dle policy mismatch across varying dataset qualities. Similar
improvements emerge with IQL baselines, where our ap-
proach outperforms by 2.51 on Walker2d-medium-v2, while
preserving a marginal but consistent advantage (0.18) on
Walker2d-expert-v2. This performance pattern reveals two
critical insights: first, the method demonstrates stronger
efficacy when tackling medium-quality datasets with pro-
nounced distribution shifts. Second, the persistent albeit
smaller improvements on expert-level tasks confirm the uni-
versal existence of offline-online distribution discrepancies
regardless of behavior policy quality. These findings col-
lectively validate our approach’s robustness in mitigating
distribution shift challenges, particularly in suboptimal data
regimes where conventional offline RL methods struggle.
Extended experimental results are provided in the supple-
mentary materials A, including comprehensive comparisons
across more tasks.

Table 3. The effect of Entropy Threshold Ey. The highest mean
scores are highlighted in bold.

Entropy Threshold ‘ CQL TARL (Ours)
0.9 1.02+1.22 —-19.98+0.11
0.7 1.02+1.22 —-19.61 £0.22
0.5 1.02+1.22 —18.79+0.42
0.3 1.02+1.22 —-13.54+1.22
0.1 1.02 +1.22 1.70 £ 0.82

Table 4. Effectiveness of low-entropy selective training.

Training Strategy TARL
Global Entropy Minimization 77.74
Low-entropy Selective Training | 82.95
High-entropy Selective Training | 72.91

4.7. Ablation Study

Effect of Entropy Threshold E,. We verify the effect
of entropy threshold Ej on test-time adapted RL under
the pong game in the Atari benchmark. The learning rate
is 1e=9. From Table 3, we can clearly see that when the
entropy threshold increases from 0.3 to 0.5, the performance
of test-time adapted RL declines, which just shows that just
minimizing the test-time optimized goal does not necessarily
promote the offline policy to adapt to the online environment,
it is necessary to have a suitable threshold to filter some
samples with relatively high confidence to update the offline
policy to adapted the online environment.

Effect of Selective Training on Low-entropy States. The
experiments were conducted in the walker2d-medium-v2
task to evaluate the hypothesis that selective training on
low-entropy states improves TTA performance. The experi-
mental setup included three conditions:

* Global Entropy Minimization, where all available data
were used for test-time adaptation.

* Low-entropy Selective Training, where only samples
with entropy below a predefined threshold were used
for training.

* High-entropy Selective Training, where only samples
with entropy over a predefined threshold were used for
training.

Our results demonstrate that selective training on low-
entropy states improves TTA performance more effectively
than global entropy minimization. Meanwhile, if we only
select high-entropy samples for tta, the performance actually
becomes worse. This further indicates that selective training
on low-entropy states enables beneficial knowledge transfer.

Effect of KL divergence \. To investigate the impact of
KL divergence on offline policy constraints, we conducted
experiments on the Pong game with a learning rate of 1e
and an entropy threshold of 0.5. Table 5 shows that when the



Test-Time Adapted Reinforcement Learning with Action Entropy Regularization

Table 5. The effect of KL divergeence A. The highest mean scores
are highlighted in bold.

A | cQL CQL (TARL)
0.5 ] 1.02+1.22 0.92+1.08
10 | 1.02+1.22 1.324+1.39
1.5 | 1.02+1.22  2.08+0.92
20| 1.02+1.22 0.62+1.73

entropy threshold is set too high, more uncertain samples
s¢ are used to update the offline policy, which can make it
difficult for the policy to adapt to the online environment.
Incorporating an appropriate KL divergence constraint be-
tween the offline policy and the frozen base policy can help
the offline policy transition smoothly to the online environ-
ment by setting a more suitable A in the optimization goal
during the adaptation process. When A changes from 0.5
to 1.0, we can see that the adaptive performance is improv-
ing, but when A is too large, the adaptive performance will
deteriorate.

5. Conclusion

In this work, we study how to use the test-time data to learn
a promising policy in the offline reinforcement learning task.
To this end, we propose Test-time Adapted Reinforcement
Learning (TARL) to efficiently and effectively adjust the
parameters of the layer normalization layers. We first in-
troduce an entropy minimization loss as the unsupervised
training objective for policy parameter update. Then we pro-
pose a debiasing term that regularizes the KL divergence of
predictions between the original pre-trained policy and the
test-time updated policy to avoid model degeneration due
to the overestimation of a few test-time inputs. Extensive
experiments on the widely-used Atari game benchmarks
show the superior performance of our method.
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SUPPLEMENTARY MATERIALS

A. More Comparisons on D4RL with CQL

We compared the performance of our method with the classic offline RL algorithm CQL on more tasks. As shown in
Table 6, our method outperformed CQL significantly. Moreover, we observed that our method achieved greater performance
improvement than the baseline when the offline dataset was collected using a medium strategy. For instance, on the
walker2d-m task, our method achieved a return that was 5.51 higher than CQL. This demonstrates that our method has a
significant advantage over normal offline reinforcement learning algorithms when there is a large distribution shift between
the offline dataset and the online environment. On the dataset collected using the expert strategy, our method performed
similarly to CQL, but still showed some improvements. This indicates that regardless of how the behavior strategy collects
data, there is always a certain distribution offset between the offline dataset and the online environment.

Table 6. Normalized average score comparison of TARL against baseline methods on D4RL benchmarks over the 10 evaluations. The
score ranges from 0 (random policy) to 100 (expert policy). The abbreviations used are m for medium-v2, m-r for medium-replay-v2, and
m-e for medium-expert-v2. The highest mean scores are highlighted in bold.

Task Name | CQL CQL (TARL)
halfcheetah-m 50.67 £0.30  50.75 + 0.11
hopper-m 85.74 £4.42  87.79 +3.96
walker2d-m 77444+ 550  82.95+ 3.00
halfcheetah-m-r | 46.824+0.26  46.92 4+ 0.23
hopper-m-r 101.47 +0.11 101.55 £ 0.16
walker2d-m-r 85.13+6.54  85.61 +4.33
halfcheetah-m-e | 94.36 +£2.57  95.12 + 0.39
hopper-m-e 106.18 +£4.27  107.63 £ 3.29
walker2d-m-e¢ | 112.73 +£1.98 113.64 + 0.20
Avg. Score 84.52 85.79

B. More Discussion about the Difference between the TARL and Online RL

TARL and online reinforcement learning (Xie et al., 2021; Lee et al., 2022) operate at different levels. The fundamental
distinction between TARL and online RL lies in their operational paradigms and feedback dependencies.

When offline RL methods run in online environments, they will suffer from OOD issues. The core motivation of TTA is
that environmental dynamics and distribution shifts cause performance drops in offline-trained models. TARL aims to
maintain stability amidst data distribution changes. TARL fine-tunes the policy during the test-time phase through entropy
minimization, without needing environment feedback. It effectively adapts to changes in test data distribution and ensures
efficient updates. In contrast, online RL algorithms depend on environment feedback for policy updates. However, in some
environments acquiring rewards can be time-consuming or even infeasible. Therefore, offline-to-online RL cannot update
policies.
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