

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAITH: FACTUALITY ALIGNMENT THROUGH INTEGRATING TRUSTWORTHINESS AND HONESTNESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can generate factually inaccurate content even if they have corresponding knowledge, which critically undermines their reliability. Existing approaches attempt to mitigate this by incorporating uncertainty in QA prompt during training, but these numerical scores lack the semantic richness for LLM to properly understand its internal states of trustworthiness and honesty, leading to insufficient factuality alignment. We introduce **FAITH** (Factuality Alignment Integrating Trustworthiness and Honestness), a post-training framework for factuality alignment that integrates natural-language uncertainty signals with external knowledge. Specifically, we augment training datasets by computing confidence scores and semantic entropy from LLM outputs and mapping them into a knowledge state quadrant that describes the model’s internal knowledge possession (trustworthiness) and answering behaviors (honestness) in natural language. Based on this enhanced data, we design a reward function that considers both correctness and uncertainty signals, and fine-tune the LLM using the Proximal Policy Optimization (PPO) algorithm. To further mitigate weakly grounded responses, we design a retrieval-augmented module that retrieves relevant external passages, improving the consistency between internal and external knowledge representations. Extensive experiments on four knowledge-intensive benchmarks demonstrate that FAITH enhances the factual accuracy and truthfulness of LLMs.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4 (OpenAI, 2023), Llama3 (Dubey et al., 2024) and DeepSeek-v3 (DeepSeek-AI et al., 2024), have demonstrated impressive performance across a broad range of natural language processing tasks. Despite these advances, growing evidence shows that LLMs may generate outputs that are fluent but factually incorrect or fabricated, a phenomenon commonly known as hallucination (Huang et al., 2021; Ji et al., 2023). Such hallucinations pose substantial risks in knowledge-intensive and high-stakes domains, including legal, educational, and clinical applications (Alkaissi & McFarlane, 2023; Wang et al., 2023b).

A particularly concerning type of hallucination emerges when the model possesses the necessary knowledge but fails to articulate it accurately. This disconnect between internal knowledge and external expression, often termed the *know–tell* gap (Saunders et al., 2022; Li et al., 2025), not only undermines the model’s ability to convey truthful information but also manifests as inconsistency of factual expression, where the model may produce an incorrect response in one instance yet a correct one in another (Manakul et al., 2023; Wang et al., 2023a).

In this work, we propose to post-train LLMs for enhancing factuality. Our study identifies several limitations in recent endeavors (Tian et al., 2024; Tao et al., 2024; Xue et al., 2025; Sun et al., 2025): (1) while these works introduce uncertainty for factual alignment, they directly use the numerical values into question-answering prompts during training, which lack semantic richness and are difficult for LLMs to understand and exploit for factuality-aligned expression; (2) they employ binary reward function in policy training, which simply focuses on whether the response is correct or not while ignoring to consider the confidence of LLM’s response (*i.e.*, uncertainty), potentially encouraging guessing; and (3) they neglect the use of external knowledge, leaving potentially incorrect responses unrectified.

To address these limitations, we introduce FAITH (Factuality Alignment through Integrating Trustworthiness and Honesty), a post-training framework designed for factuality alignment in LLMs. FAITH incorporates three key designs: (1) When augment in-domain training datasets, beyond estimating the uncertainties (via consistency and semantic entropy) of LLMs for each question in datasets, we map these numerical values into a knowledge state quadrant (Liang et al., 2024) where each knowledge state is expressed in natural language and defined along two dimensions: *knowledge possession* (trustworthiness) and *answering behavior* (honestness). Unlike opaque numerical uncertainty values, incorporating knowledge states into QA prompt during training provides LLMs with semantically rich and interpretable guidance. (2) For policy optimization, we design a fine-grained reward function that consider both the correctness of response and LLM’s uncertainty, providing more informative feedback than a binary reward, encouraging the policy model to align its outputs with their knowledge states. (3) To further improve reliability, we construct a vector database over the Wikipedia corpus (Karpukhin et al., 2020) and train a RAG model that retrieves external knowledge from the database as contextual input to rectify potentially incorrect responses generated by the policy model.

Through FAITH, we enhance LLM factuality in terms of precision and truthfulness. Extensive experiments show that FAITH consistently outperforms five recent strong baselines on three in-domain and one out-of-domain dataset. For example, on Llama3-8B, FAITH achieves 74.26% precision and 45.73% truthfulness on in-domain datasets, and 67.99% precision and 34.03% truthfulness on the out-of-domain dataset. Similar gains are observed on Mistral-7B-v0.1, demonstrating that FAITH’s effectiveness generalizes across both models and datasets.

In summary, our contributions are as follows:

1. We introduce FAITH, a novel post-training framework for factuality alignment. FAITH advances the factuality alignment by its semantically rich knowledge state quadrant, fine-grained reward function, and employing external knowledge to ground LLM’s response.
2. We conduct extensive experiments demonstrating that FAITH consistently outperforms strong baselines, with performance gains generalizing across multiple datasets and models. Meanwhile, we provide ablations to assess the contribution of each component.
3. We provide in-depth analyses of FAITH, including the impact of different knowledge state estimation strategies on inference performance and training-time scaling behavior with varying numbers of sampled responses K .

2 RELATED WORK

Factuality Alignment. To enhance LLM factuality, prior work has explored training-free strategies such as external knowledge augmentation (Kandpal et al., 2023; Jiang et al., 2023b), decoding methods (Chuang et al., 2024), and self-consistency techniques grounded in uncertainty estimation (Kadavath et al., 2022; Tian et al., 2023). More recently, post-training approaches, including SFT and policy optimization, have been applied to further improve factuality (Tian et al., 2024; Tao et al., 2024; Sun et al., 2025; Xu et al., 2024; Xue et al., 2025; Chen et al., 2025). Our work falls into this category, where we propose to map numerical uncertainty values into natural-language knowledge states and design a new reward function to enhance the model’s expression of its knowledge.

Uncertainty Estimation. Uncertainty Estimation (UE) has long been studied in machine learning domain, including NLP, with vast majority of previous work focusing on discriminative tasks, such as sentiment analysis (Xiao et al., 2022). Specifically, the entropy of the predictive posterior and the negative predictive posterior probability of the most probable answer are used to quantify uncertainty in predictions (Lakshminarayanan et al., 2017; Bakman et al., 2024). However, LLMs pose new challenges for uncertainty estimation due to their generative paradigm. Recent studies have extended UE to generative models, introducing heuristic or probabilistic metrics such as entropy-based scoring (Malinin & Gales, 2021), semantic entropy that accounts for meaning equivalence in multiple generations (Kuhn et al., 2023), and similarity-based methods applied in tasks like machine translation (Fomicheva et al., 2020; Lin et al., 2022b). Other works explore black-box UE by leveraging sampled outputs (Chen & Mueller, 2024; Manakul et al., 2023), or prompt-based approaches where models verbalize their own confidence (Kadavath et al., 2022). Training-based methods have also been proposed to enhance linguistic self-assessments of uncertainty (Lin et al., 2022a).

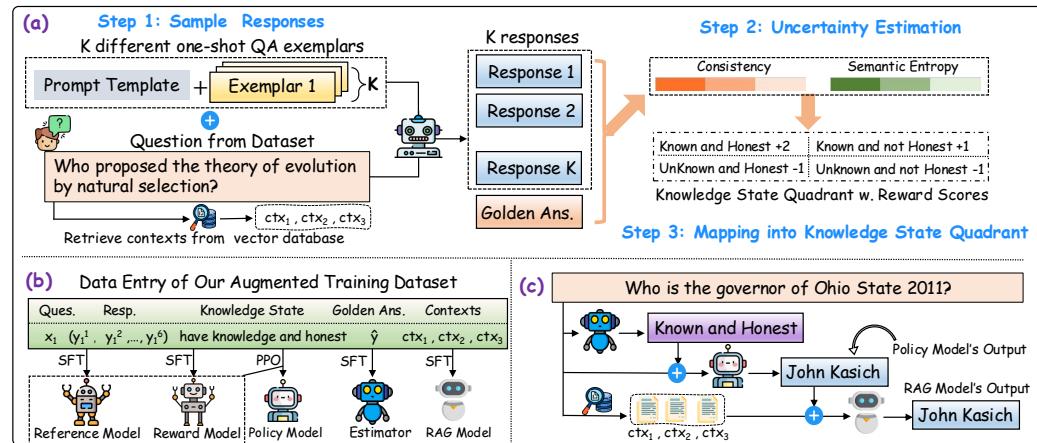


Figure 1: Illustration of the FAITH framework. Panel (a) shows the procedure for augmenting the training datasets, Panel (b) depicts model training with the augmented datasets, and Panel (c) presents the inference pipeline.

Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) has become a widely adopted strategy for mitigating the limitations of parametric knowledge in LLMs by grounding responses in external evidence (Guu et al., 2020; Izacard & Grave, 2021; Zhong et al., 2023). However, recent studies reveal that contradictions may arise when retrieved knowledge conflicts with internal representations (Mei et al., 2024; Ni et al., 2024). To mitigate this, retrieval-based methods increasingly leverage structured repositories such as knowledge graphs for more reliable grounding (Baek et al., 2023; Zhang et al., 2023). Other approaches enhance factuality by incorporating retrieval into inference-time interventions, including memory-augmented architectures (Li et al., 2022) and entity-level embedding integration (Kang et al., 2022; de Jong et al., 2022). Generally, RAG provides a scalable way to continuously integrate knowledge, offering advantages over task-specific parameter editing.

3 PRELIMINARY

Problem Definition. We consider a standard *open-domain, closed-book QA* setting, where a language model *LLM* is given a factual question q and generates a short-form answer $a \sim LLM(\cdot | q)$ with probability $LLM(a | q)$. The answer is expected to be concise and factually correct, but in practice may suffer from failure of factuality due to uneven knowledge possession and the gap between knowledge and expression, while the autoregressive generation paradigm inevitably produces responses by sampling from token distributions.

Following prior work (Xue et al., 2025), we categorize model outputs into six types based on knowledge possession and response correctness, as summarized in Table 1. The research scope of this work is to encourage more instances of **KC** and **UR** (See § 5.1 for evaluation metrics).

4 METHOD

As shown in Figure 1, we introduce the framework of FAITH which enhances factuality alignment for LLMs. Specifically, we first augment three QA training datasets by estimating the uncertainties of LLMs for each question in these datasets and translating the numerical uncertainty values into natural-language descriptions drawn from the knowledge state quadrant (described in § 4.1). We then apply Proximal Policy Optimization (PPO) to finetune LLMs on the augmented datasets,

Table 1: Categories of model output for QA.

Abbr.	Explanation
KC	Known and answered correctly
KI	Known but answered incorrectly
KR	Known but refused to answer
UC	Unknown but answered correctly
UI	Unknown but answered incorrectly
UR	Unknown and refused to answer

162 guiding them to answer questions combining their knowledge state; meanwhile, to mitigate internal
 163 knowledge insufficiency for confidently expressing knowledge, we train a RAG model to rectify
 164 potential incorrect answers produced by policy model (described in § 4.2). Finally, we conduct the
 165 inference in § 4.3.

166

167 4.1 TRAINING DATASET AUGMENTATION
 168

169 As shown in Figure 1, Panel (a), we first sample responses to each question in in-domain QA datasets
 170 and then conduct uncertainty estimation, which is consistent with existing works of uncertainty
 171 estimation (Xiong et al., 2024; Kuhn et al., 2023; Aichberger et al., 2025; Kang et al., 2025). We
 172 do this for two purposes: (1) to measure the knowledge boundary of an LLM and locate whether
 173 a given question is within it; (2) to evaluate the honesty of an LLM when answering the given
 174 question.

175

176 **Sampling Responses from Training Datasets.** We sample responses from the training split of
 177 NQ-Open (Kwiatkowski et al., 2019), SciQ (Welbl et al., 2017b) and TriviaQA (Joshi et al., 2017)
 178 datasets, and each dataset \mathcal{D} contains a set of N question-answer pairs $\{(x_i, \hat{y}_i)\}_{i=1}^N$, where x_i and
 179 \hat{y}_i represent the i -th question and golden answer in \mathcal{D} , respectively. Specifically, for each question
 180 $q_i \in \mathcal{D}$, we prompt q_i with K different one-shot exemplars and obtain K responses, denoted as
 181 $Y_i = \{y_i^k\}_{k=1}^K$. We set $K = 6$ in the main experiment, same as in baseline UAlign (Xue et al.,
 182 2025). Also, for fair comparison to baselines, we adopt the same temperature $T=0.2$ with UAlign
 183 and also randomly preserve half of data entries in NQ-Open and TriviaQA datasets while preserve
 184 all entries in SciQ dataset.

185

186 **Uncertainty Estimation.** For the uncertainty estimation of generative LLMs, we employ consistency
 187 and semantic entropy. Consistency serves as an accuracy-based measure of confidence, and
 188 it reflects the accuracy of the generated K candidate responses (Xiong et al., 2024), computed as
 189 follows:

$$190 \text{Consistency}(x_i) = \frac{1}{K} \sum_{i=1}^K \mathbb{1} \{y_i^k = \hat{y}_i\}. \quad (1)$$

191

192 The semantic entropy (SE), on the other hand, captures uncertainty from the semantic dispersion
 193 of generated answers, determining the likelihood of each meaning c rather than each generated
 194 sequence y_i^k (Kuhn et al., 2023). It addresses the limitations of prior approaches, which are often af-
 195 fected by response length or by semantically identical answers expressed in different surface forms.
 196 Semantic entropy is defined as:

$$197 \text{SE}(x_i) = - \sum_c p(c | x_i) \log p(c | x_i) = - \sum_c \left(\left(\sum_{y_i^k \in c} p(y_i^k | x_i) \right) \log \left[\sum_{y_i^k \in c} p(y_i^k | x_i) \right] \right). \quad (2)$$

198

199 By now, we augment each data entry in \mathcal{D} from (x_i, \hat{y}_i) to $(x_i, \hat{y}_i, Y_i, \text{Consistency}(x_i), \text{SE}(x_i))$.
 200 However, we argue that the numerical values of uncertainty, which will be used in QA
 201 training prompt (e.g., “Who starred in an officer and a gentleman ### Conf: 0.833 ### Entro: -0.” in Xue et al. (2025)), cannot effectively guide LLM to understand
 202 and recognize its knowledge boundary, as raw numbers lack semantic meaning.

203

204 **Knowledge State Mapping.** To this end, we map consistency scores and semantic entropy onto
 205 our defined knowledge state quadrant (described below), thus rendering otherwise opaque numeri-
 206 cal uncertainty values in semantically rich natural language descriptions. Specifically, we describe
 207 knowledge states of LLM based on two factors: *knowledge possession* and *answer behavior*, and
 208 this results in a quadrant with four knowledge states expressed in natural language: (i) **Have knowl-
 209 edge and honesty (KH)**, (ii) **Have knowledge but not honesty (K- \neg H)**, (iii) **Not have knowledge
 210 but honesty (\neg KH)**, and (iv) **Not have knowledge and not honesty (\neg K- \neg H)**.

211

212 We quantify the knowledge possession of LLMs for a given question x_i through consistency de-
 213 fined in Equation 1, and the indicator function $\mathbb{1}$ is *Positive-Recall Exact Match (PREM)*, where
 214 $\text{PREM}(y_i^k, \hat{y}_i) = 1$ if $y_i \in \hat{y}_i^k \vee \hat{y}_i^k \in y_i$, otherwise $\text{PREM}(y_i^k, \hat{y}_i) = 0$, which is widely-used in
 215 short-form QA. On the other hand, we model the answer behavior of LLMs via semantic entropy.

Overall, the procedure for mapping consistency and semantic entropy into the knowledge state quadrant \mathcal{S} is defined as follows (We explain the details of knowledge states in Appendix A.1.):

$$s_i = \text{KnowledgeState}(x_i) = \begin{cases} \text{KH}, & \text{if } \text{Consistency}(x_i) > 0 \text{ and } \text{SE}(x_i) = 0, \\ \text{K-H}, & \text{if } \text{Consistency}(x_i) > 0 \text{ and } \text{SE}(x_i) \neq 0, \\ \neg\text{KH}, & \text{if } \text{Consistency}(x_i) = 0 \text{ and } \text{SE}(x_i) = 0, \\ \neg\text{K-H}, & \text{otherwise.} \end{cases} \quad (3)$$

The knowledge state formulation (Eq. 3) allows us to characterize LLMs in terms of trustworthiness (knowledge possession) and honesty (answer behavior), and we finally augment each data entry from (x_i, \hat{y}_i) to $(x_i, \hat{y}_i, Y_i, s_i)$.

4.2 TRAINING STAGE OF FAITH

We aim to leverage both internal and external knowledge to enhance the expression of existing knowledge, bridging the gap between knowing and telling. To this end, as shown in Figure 1, Panel (b), we first train a policy model using PPO to align LLM’s responses with its internal knowledge states. We then train a RAG model to correct potentially incorrect responses by incorporating external knowledge. Finally, we introduce a knowledge state estimator that eliminates the need for sampling multiple responses during inference, thereby improving efficiency. All prompt templates used in training stage are provided in Appendix A.2.

Reference Model Training. We start from a pretrained base model and obtain a reference model π_μ through supervised fine-tuning (SFT). Specifically, the model is fine-tuned using pairs of the form $(\text{prompt}(x_i, s_i); \hat{y}_i)$, where the prompt incorporates both the question x_i and the knowledge state s_i , and \hat{y}_i is the golden answer. By fine-tuning the base model with these curated input–output pairs, the reference model establishes a foundation for subsequent policy optimization.

Reward Model Training. To align generation with knowledge state, we train a reward model with parameter θ to evaluate the generated response combined with the knowledge state. Different from existing binary reward $r_i \in \{0, 1\}$ which only focuses on whether the response is correct or not and ignores how confident the correct response is (Yao et al., 2025; Kirichenko et al., 2025; Xue et al., 2025), we propose a fine-grained reward function to focus on both the correctness of response and the uncertainty. Specifically, we propose a combined reward function:

$$\begin{aligned} R_{\text{FAITH}}(x_i, y_i^k, \hat{y}_i, s_i) &= R_{\text{correctness}}(y_i^k, \hat{y}_i) + R_{\text{uncertainty}}(s_i) \\ &= \mathbb{1}_{y_i^k \equiv \hat{y}_i} + R_{\text{uncertainty}}(s_i), \end{aligned} \quad (4)$$

where $s_i = \text{KnowledgeState}(x_i) \in \mathcal{S}$ and the $R_{\text{uncertainty}} \in \{+2, +1, -1, -2\}$ is defined by the following rules in terms of its knowledge state s_i in \mathcal{S} :

$$+2 \rightarrow \text{KH}, \quad +1 \rightarrow \text{K-H}, \quad -1 \rightarrow \neg\text{KH}, \quad -2 \rightarrow \neg\text{K-H}.$$

We parameterize the reward function into a reward model RM_θ . Specifically, given a dataset \mathcal{D} containing multiple tuples (x_i, y_i^k, s_i, r_i^k) , where r_i^k is the reward value, the reward model minimizes the multi-class cross-entropy:

$$\mathcal{L}_\theta = -\mathbb{E}_{(x_i, y_i^k, s_i, r_i^k) \sim \mathcal{D}} [\log p_\theta(r_i^k | x_i, y_i^k, s_i)]. \quad (5)$$

Our fine-grained reward model provides more informative feedback than a binary reward, encouraging the policy model to align its generated responses with their knowledge state, where uncertainty is expressed in natural language form rather than numeric scores.

Policy Model Training Similar to reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022), we employ PPO with a KL-divergence penalty to optimize LLMs for factuality alignment. Specifically, given a question x_i paired with its knowledge state s_i , both the reference model π_μ and the policy model π_ϕ generate responses, while the reward model RM_θ evaluates the factual

270 reliability of a generated response \tilde{y}_i in terms of correctness and uncertainty (i.e., knowledge state).
 271 The training objective is to optimize π_ϕ to maximize the expected reward:
 272

$$273 \arg \max_{\pi_\phi} \mathbb{E}_{x \sim \mathcal{D}, s \sim \text{KnowledgeState}(x), \tilde{y} \sim \pi_\phi(x, s)} \left[\underbrace{RM_\theta(x, \tilde{y}, s)}_{\text{reward}} - \beta \underbrace{\text{KL}[\pi_\mu(x) \parallel \pi_\phi(x, s)]}_{\text{penalty}} \right]. \quad (6)$$

274

275 **RAG Model Training.** We train a RAG model π_{rag} to leverage external knowledge to rectify
 276 potentially incorrect answers produced by the policy model. To this end, we first build a vector
 277 database over the Wikipedia corpus (Karpukhin et al., 2020) using the BAAI General Embedding
 278 model¹. We employ IndexIVFPQ in Facebook AI Similarity Search (FAISS) (Johnson et al., 2021)
 279 as the retriever to perform similarity search. For each question $x_i \in \mathcal{D}$, the retriever returns the
 280 top-3 most semantically relevant passages, denoted as $ctx_i = \{context_i^j\}_{j=1}^3$, which are used as
 281 context in prompt. Accordingly, we augment the training dataset entries from $(x_i, \hat{y}_i, Y_i, s_i)$ to
 282 $(x_i, \hat{y}_i, Y_i, s_i, ctx_i)$. Finally, we perform retrieval-augmented fine-tuning (RAFT) (Zhang et al.,
 283 2024) of an LLM as the rectifier, using training pairs of the form $(\text{prompt}(x_i, s_i, \tilde{y}_i, ctx_i); \hat{y}_i)$, where
 284 \tilde{y}_i is randomly selected from K responses in Y_i .
 285

286 **Knowledge State Estimator Training.** To improve inference efficiency, we additionally train a
 287 knowledge state estimator that directly predicts the LLM’s knowledge state s_i for a given question
 288 $x_i \in \mathcal{D}$. Since we represent knowledge possession and answer behavior within a knowledge state
 289 quadrant, the estimator is formulated as a four-class classification task.
 290

291 Specifically, given the augmented training dataset $\mathcal{D} = (x_i, \hat{y}_i, Y_i, s_i)_{i=1}^N$ described in § 4.1, we
 292 perform supervised fine-tuning of an LLM to serve as the knowledge state estimator, using pairs of
 293 the form $(\text{prompt}(x_i); s_i)$, where the prompt incorporates the question x_i and the target label is its
 294 knowledge state s_i . The estimator is parameterized by τ , and its SFT objective is defined as:
 295

$$296 \mathcal{L}_\tau = -\mathbb{E}_{(x_i, s_i) \sim \mathcal{D}} [\log p_\tau(s_i \mid x_i)]. \quad (7)$$

297

298 This design enables the estimator to obtain a knowledge state in a single forward pass, rather than
 299 relying on sampling K responses and computing consistency and semantic entropy. We provide
 300 empirical evaluations of the estimator’s impact on model performance in § 5.3.
 301

302 4.3 INFERENCE STAGE OF FAITH

303 We employ the policy model π_ϕ , the estimator model Est_τ , and the RAG model π_{rag} to perform
 304 factuality-enhanced question answering. Specifically, as shown in Figure 1, Panel (c), given a question
 305 x , we first predict its knowledge state s in the knowledge state quadrant using the estimator
 306 model: $s = Est_\tau(x)$. We then prompt the policy model π_ϕ with (x, s) to generate the answer
 307 $\tilde{y} = \pi_\phi(\text{prompt}(x, s))$. Finally, we apply the RAG model to further rectify the answer produced by
 308 the policy model: $\tilde{y}^* = \pi_{rag}(\text{prompt}(x, s, \tilde{y}, ctx_i))$, obtaining the final answer \tilde{y}^* . We analyze the
 309 impact of the RAG model as a rectifier in § 5.3. All prompt templates used during inference are
 310 identical to those employed in the training stage.
 311

312 5 EXPERIMENTS

313 5.1 EXPERIMENTAL SETUP

314 **Datasets.** For training, we adopt the same widely used QA datasets as prior works in FAITH to
 315 ensure fair comparison: (1) TriviaQA (Joshi et al., 2017), where questions are from various topics
 316 and authored by trivia enthusiasts with evidence documents. (2) SciQ (Welbl et al., 2017b), which
 317 focuses on question answering in the scientific domain; and (3) NQ-Open (Kwiatkowski et al.,
 318 2019), consisting of Google search queries paired with annotated short-form answers.
 319

320 For evaluation, we use the test splits of these three datasets as in-domain benchmarks, and employ
 321 WebQuestions (Berant et al., 2013a) as an out-of-domain dataset to assess the generalization capabili-
 322 ty of our approach. Detailed descriptions and statistics of all datasets are provided in Appendix A.4.
 323

¹BGE-base-en-v1.5 : <https://huggingface.co/BAAI/bge-base-en-v1.5>

324
 325 **Table 2: Precision and Truthfulness of FAITH (ours) vs. strong baselines on in-domain (ID) and**
 326 **out-of-domain (OOD) QA datasets. The Average (ID) column denotes the average performance on**
 327 **all three ID datasets. The subscript “sft” denotes ablation results with only supervised fine-tuning**
 328 **(SFT), excluding the PPO and RAG (if applicable) module. Similarly, “sft+ppo” denotes results**
 329 **with SFT and PPO, but excluding the RAG module. All results are reported in percentages.**

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377					
	Prec. ↑	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377								
Llama3-8B										
ICL-CoT	66.68	53.37	72.34	45.90	57.34	23.60	65.45	40.95	65.97	30.85
SFT	70.80	52.57	72.18	45.40	41.41	16.57	61.46	38.18	66.46	31.18
RL-DPO	72.08	53.96	71.23	44.20	49.65	19.18	64.32	39.11	65.99	32.41
DTA²	43.99	31.73	—	—	56.72	21.12	—	—	61.24	30.71
UAlign	79.14	57.04	76.44	48.00	56.60	26.09	70.72	43.71	66.88	33.01
UAlign_{sft}	78.76	56.68	75.87	47.65	56.02	25.49	70.22	43.27	66.12	32.58
FAITH (ours)	84.19	60.69	80.61	49.99	58.13	27.58	74.26	45.73	67.99	34.03
FAITH_{sft+ppo}	82.95	59.80	80.29	49.70	57.99	26.52	73.79	45.69	67.31	33.75
FAITH_{sft}	81.24	58.77	78.85	48.65	56.72	26.21	72.27	44.54	66.94	33.10
Mistral-7B-v0.1										
ICL-CoT	76.73	54.78	71.87	44.20	54.47	18.22	67.69	39.06	53.43	35.76
SFT	74.57	54.77	65.85	42.50	50.82	14.42	63.74	37.08	52.24	34.33
RL-DPO	72.20	52.98	66.44	41.80	50.95	16.42	63.19	37.06	52.01	33.87
DTA²	41.33	28.78	—	—	41.01	20.49	—	—	56.53	23.44
UAlign	82.10	59.05	73.21	46.70	54.17	19.64	70.82	41.79	56.47	37.02
UAlign_{sft}	81.07	56.47	72.45	45.87	43.32	21.55	65.61	41.30	55.34	36.87
FAITH (ours)	87.20	60.72	81.42	51.40	48.05	23.91	72.22	45.34	58.04	40.43
FAITH_{sft+ppo}	87.00	60.58	83.68	51.80	46.60	23.19	72.43	45.19	55.48	38.65
FAITH_{sft}	86.51	60.24	82.88	51.30	46.16	22.96	71.85	44.83	51.99	41.77

Evaluation Metrics. Consistent with baselines, we employ Precision (*Prec.*) and Truthfulness (*Truth.*) as evaluation metrics. Precision measures the proportion of correctly answered questions among all known questions, reflecting an LLM’s ability to accurately articulate its known knowledge. Truthfulness is defined as the proportion of correctly answered known questions plus correctly refused unknown questions over all questions. Further details are provided in Appendix A.5.

Baselines. We evaluate FAITH against five baseline methods that fall into three categories: prompt-based, SFT-based, and RL-based. **(1) ICL-CoT** (Wei et al., 2022): A prompt-based approach that uses few-shot exemplars with reasoning steps to improve answer accuracy. **(2) Supervised Fine-Tuning (SFT):** A standard baseline that fine-tunes LLMs by minimizing the negative log-likelihood of ground-truth answers conditioned on the questions. **(3) RL-DPO** follows Lin et al. (2024) to construct factuality preference dataset to improve the factuality of LLMs by preference optimization. **(4) Divide-then-Align (DTA):** A framework for honest alignment of retrieval-augmented LLMs based on knowledge boundary. It employs multi-objective training that combines DPO loss, SFT loss, and boundary classification loss to align model behavior with knowledge boundary constraints (Sun et al., 2025). **(5) UAlign** leverages uncertainty estimation to elicit LLMs to accurately express factual knowledge that they cannot consistently answer correctly (Xue et al., 2025).

Training Setup. We implement our approach on Llama3-8B (Dubey et al., 2024) and Mistral-7B-v0.1 (Jiang et al., 2023a), applying LoRA for parameter-efficient fine-tuning. Full training details are provided in Appendix A.3.

5.2 MAIN RESULTS

We evaluate the effectiveness of our factuality alignment framework FAITH against strong baselines with experimental results presented in Table 2. From the table, we have the following key findings.

(1) FAITH achieves state-of-the-art performance, outperforming advanced baselines. As shown in Table 2, FAITH consistently surpasses five baselines on three in-domain and one out-of-

²For DTA with Llama3, we directly evaluate the released checkpoint, whereas for DTA with Mistral, we fine-tune Mistral-7B-Instruct on the released training data for Llama3 in a transfer setting. Meanwhile, since DTA requires augmented QA datasets with RAG context and SciQ’s augmented version was not released, its results on SciQ are unavailable (denoted as “—” in the table).

378 domain dataset. For instance, on Llama3-8B model, FAITH achieves an overall precision of 74.26%
 379 and truthfulness 45.73% on in-domain datasets, and it attains precision of 67.99% and truthfulness
 380 of 34.03% on WebQuestions dataset. We observe similar performance superiority on Mistral-7B
 381 model, with the exception of precision on NQ-Open, demonstrating that the effectiveness of FAITH
 382 generalizes across models and datasets.

383 **(2) Natural-language knowledge states are more effective than numerical uncertainty values
 384 in guiding knowledge-boundary-aware question answering.** To assess the effectiveness of our
 385 knowledge-state-quadrant design, we compare it against numerical uncertainty values. Specifically,
 386 we construct a variant of UAlign by eliminating its policy optimization stage and retaining the re-
 387 maining SFT stage, i.e., we apply SFT with prompts containing numerical uncertainty values. We
 388 keep all other settings unchanged. Similarly, we implement FAITH with SFT only, where the model
 389 is prompted with natural-language knowledge state drawn from the knowledge-state quadrant. Their
 390 performance is reported in Table 2 under \mathbf{UAlign}_{sft} and \mathbf{FAITH}_{sft} , respectively.

391 Evaluation shows that replacing numerical uncertainty values with semantically rich knowledge
 392 states in natural language yields clear gains in guiding LLMs to understand their knowledge bound-
 393 ary and answer questions accordingly. For instance, on Llama3-8B, FAITH with SFT outperforms
 394 UAlign with SFT by 2.05% in precision and 1.27% in truthfulness on average, with even larger
 395 improvements observed on Mistral-7B. We attribute these improvements to LLMs’ preference for
 396 semantically meaningful labels (e.g., “known”, “honest”) that better convey knowledge boundary.
 397 In contrast to fitting abstract numerical values, LLMs more readily interpret and leverage natural
 398 language as guidance, enabling knowledge-boundary-aware question answering.

399 **(3) Reinforcement learning with our proposed reward function improves performance.** We
 400 examine the impact of reward function design by comparing the correctness-based binary reward
 401 used in UAlign with our fine-grained reward function in Eq. 4. For example, on Llama3-8B, ap-
 402 plying PPO with binary reward yields average gains of 0.7% in precision and 0.44% in truthfulness
 403 over SFT³ on three in-domain datasets, whereas FAITH, applying PPO with our reward function,
 404 achieves larger improvements of 1.52% in precision and 1.15% in truthfulness, which demonstrates
 405 the effectiveness of the fine-grained reward function in incentivizing LLM’s generation from both
 406 correctness and uncertainty.

407 **(4) Retrieval-Augmented Fine-Tuning aligns policy model outputs with external knowledge
 408 by rectifying potential errors.** As shown in Table 2, comparing the values under \mathbf{FAITH} with
 409 $\mathbf{FAITH}_{sft+ppo}$, we observe consistent performance improvements across both LLMs, except for
 410 SciQ on Mistral-7B. This demonstrates that incorporating external knowledge enhances the truth-
 411 fulness of LLM’s responses. Besides, we manually inspect the corrections made by RAG model to
 412 the policy model outputs. Interestingly, some rectifications fail, even altering correct answers into
 413 incorrect ones, though such cases are rare. We provide an in-depth analysis of such cases in § 5.3.

5.3 ANALYSIS AND DISCUSSION

Performance of the RAG Model on Post-Hoc

417 **Correction to Policy Model Outputs.** For
 418 this analysis, we conduct a statistical study on
 419 both in-domain (TriviaQA, SciQ, NQ-Open)
 420 and out-of-domain (WebQuestions) datasets,
 421 with results summarized in Figure 2. Speci-
 422 cally, we examine the responses produced by
 423 the policy model that are subsequently modi-
 424 fied by the RAG model, and compute the pro-
 425 portion of cases where an incorrect response is
 426 corrected into a correct one versus the reverse.
 427 We find that the proportion of correct rectifi-
 428 cations consistently exceeds that of erroneous
 429 rectifications across all datasets. Notably, on TriviaQA, 87% of the policy model outputs modi-
 430 fied by the RAG model are corrected successfully, demonstrating that incorporating external knowledge
 431 effectively compensates for the insufficiency of relying solely on internal knowledge.

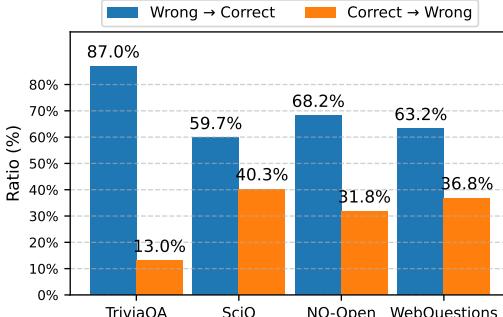


Figure 2: Ratios of on four datasets.

³Calculated as the difference between the metric values reported under \mathbf{UAlign} and \mathbf{UAlign}_{sft} in Table 2

Calculate Knowledge State: Estimator vs. Sample K Responses. We further investigate the impact of different knowledge state estimation strategies on model performance during inference, comparing model-based estimation and sampling-based estimation. The model-based approach corresponds to our trained estimator model, whereas the sampling-based approach follows a two-stage pipeline: first sampling K responses using prompts with different one-shot examples, and then computing the knowledge state with Eq. 3. For this analysis, we set $K = 6$, consistent with the training stage. We present the evaluation results for precision and truthfulness in Table 3, and we observe that sampling-based estimation yields slightly higher precision and truthfulness in most cases.

These findings indicate the distribution of the knowledge states can be captured by a trained LLM, while also highlighting a trade-off between efficiency and performance: sampling provides better performance with interpretable uncertainty measures, whereas model-based estimation avoids K rounds of inference with only minimal performance degradation.

Table 3: Performance comparison between model-based and sampling-based knowledge state estimation ($K = 6$). Results are reported on precision and truthfulness across all datasets and models.

Method	TVQA (ID)		SciQ (ID)		NQ-Open (ID)		Average (ID)		WebQ-QA (OOD)	
	Prec. \uparrow	Truth. \uparrow								
Llama3-8B										
Estimator	82.95	59.80	80.29	49.70	57.99	26.52	73.79	45.69	67.31	33.75
Sample-based	83.99	59.86	83.20	51.50	58.23	26.93	75.14	46.10	67.85	34.07
Mistral-7B-v0.1										
Estimator	87.00	60.58	83.68	51.80	46.60	23.19	72.43	45.19	55.48	38.65
Sample-based	87.43	60.88	84.01	52.00	45.66	22.71	72.37	45.20	55.70	38.80

Training-time Scaling: the Impact of Number of Sampled Responses.

We study the training-time scaling behavior, i.e., how the number of sampled responses K used during data augmentation influences the training performance of the policy model. The default K we use is 6 in the main framework for efficiency. Here, specifically, we increase K from 6 to 8, 10, and 12

during data augmentation, resulting in augmented datasets that differ only in the values of K . These datasets are then used to train both estimator and policy model (including reference model and reward model). Finally, we evaluate the trained models and compare the performance. As shown in Figure 3, increasing K beyond 6 does not yield noticeable improvements in either precision or truthfulness. This suggests that sampling $K = 6$ responses during data augmentation is already sufficient and effective to capture the distribution of the model’s knowledge state, while also keeping the efficiency. In other words, while larger K values slightly expand the coverage of sampled responses, they do not translate into significant gains in downstream performance, indicating minor effects. The detailed numerical results are provided in Table 4 in the Appendix A.6.

Finally, we present case studies and discuss the limitations in Appendix A.7 and A.8, respectively. For reproducibility, the code is available in an anonymous repository at <https://anonymous.4open.science/r/FAITH-33A3>

6 CONCLUSION

We present a post-training framework, called FAITH, for factuality alignment in LLMs. Our approach estimates uncertainty and translates the numerical values into natural-language knowledge states that measure the knowledge possession and answering behavior of LLMs. Meanwhile, we design a fine-grained reward function to incentivize both correctness and uncertainty of LLM’s response. Finally, we introduce a trained RAG model to rectify potentially incorrect responses generated by policy model. Experiments show that FAITH substantially outperforms recent baselines in truthfulness and precision. We hope this work contributes to building more faithful and factual LLMs as part of the broader community effort.

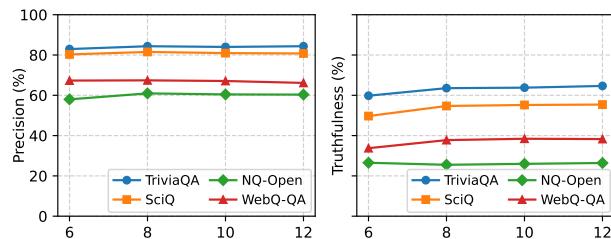


Figure 3: Training-time scaling with different numbers of sampled responses (K).

486 REFERENCES
487

488 Lukas Aichberger, Kajetan Schweighofer, Mykyta Ielanskyi, and Sepp Hochreiter. Improving un-
489 certainty estimation through semantically diverse language generation. In *The Thirteenth Interna-*
490 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=HSi4VetQLj)
491 [forum?id=HSi4VetQLj](https://openreview.net/forum?id=HSi4VetQLj).

492 Hussam Alkaissi and Samy I McFarlane. Artificial hallucinations in chatgpt: implications in sci-
493 entific writing. *Cureus*, 15(2), 2023.

494 Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompt-
495 ing for zero-shot knowledge graph question answering. *CoRR*, abs/2306.04136, 2023. doi: 10.
496 48550/ARXIV.2306.04136. URL <https://doi.org/10.48550/arXiv.2306.04136>.

497 Yavuz Faruk Bakman, Duygu Nur Yaldiz, Baturalp Buyukates, Chenyang Tao, Dimitrios Dimitri-
498 adis, and Salman Avestimehr. MARS: Meaning-aware response scoring for uncertainty estima-
499 tion in generative LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings*
500 *of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
501 *Papers)*, pp. 7752–7767, Bangkok, Thailand, August 2024. Association for Computational Lin-
502 *guistics*. doi: 10.18653/v1/2024.acl-long.419. URL <https://aclanthology.org/2024.acl-long.419/>.

503 Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
504 from question-answer pairs. In *Proceedings of the 2013 Conference on Empirical Methods in*
505 *Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seat-*
506 *tle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL*, pp. 1533–
507 1544. ACL, 2013a. doi: 10.18653/V1/D13-1160. URL <https://doi.org/10.18653/v1/d13-1160>.

508 Jonathan Berant, Andrew K. Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
509 from question-answer pairs. In *Conference on Empirical Methods in Natural Language Process-*
510 *ing*, 2013b. URL <https://api.semanticscholar.org/CorpusID:6401679>.

511 Juhai Chen and Jonas Mueller. Quantifying uncertainty in answers from any language model and
512 enhancing their trustworthiness. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Pro-*
513 *ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
514 *1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 5186–5200. Asso-
515 *ciation for Computational Linguistics*, 2024. doi: 10.18653/V1/2024.ACL-LONG.283. URL
516 <https://doi.org/10.18653/v1/2024.acl-long.283>.

517 Xilun Chen, Ilia Kulikov, Vincent-Pierre Berges, Barlas Oğuz, Rulin Shao, Gargi Ghosh, Jason
518 Weston, and Wen tau Yih. Learning to reason for factuality, 2025. URL <https://arxiv.org/abs/2508.05618>.

519 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He. Dola:
520 Decoding by contrasting layers improves factuality in large language models. In *The Twelfth Inter-*
521 *national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
522 OpenReview.net, 2024. URL <https://openreview.net/forum?id=Th6NyL07na>.

523 Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Fei Sha, and William W. Cohen. Mention
524 memory: incorporating textual knowledge into transformers through entity mention attention.
525 In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event*,
526 April 25-29, 2022. OpenReview.net, 2022. URL <https://openreview.net/forum?id=OY1A8ejQgEX>.

527 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, and
528 Chenggang et al. Zhao. DeepSeek-V3 Technical Report, 2024. URL <http://arxiv.org/abs/2412.19437>.

529 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
530 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
531 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, and Artem et al. Korenev. The Llama
532 3 Herd of Models, August 2024.

540 Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,
 541 Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation for
 542 neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:
 543 539–555, 2020. doi: 10.1162/tacl_a_00330. URL <https://aclanthology.org/2020.tacl-1.35/>.

545 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
 546 language model pre-training. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th*
 547 *International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning*
 548 *Research*, pp. 3929–3938. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/guu20a.html>.

551 Yi-Chong Huang, Xiachong Feng, Xiaocheng Feng, and Bing Qin. The factual inconsistency
 552 problem in abstractive text summarization: A survey. *CoRR*, abs/2104.14839, 2021. URL
 553 <https://arxiv.org/abs/2104.14839>.

555 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for
 556 open domain question answering. In Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty (eds.),
 557 *Proceedings of the 16th Conference of the European Chapter of the Association for Compu-*
 558 *tational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021*, pp. 874–880. As-
 559 *sociation for Computational Linguistics*, 2021. doi: 10.18653/V1/2021.EACL-MAIN.74. URL
 560 <https://doi.org/10.18653/v1/2021.eacl-main.74>.

561 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
 562 Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM Comput.*
 563 *Surv.*, 55(12):248:1–248:38, 2023. doi: 10.1145/3571730. URL <https://doi.org/10.1145/3571730>.

565 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 566 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 567 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 568 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a. URL <https://arxiv.org/abs/2310.06825>.

571 Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 572 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Houda Bouamor,
 573 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in*
 574 *Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 7969–7992.
 575 *Association for Computational Linguistics*, 2023b. doi: 10.18653/V1/2023.EMNLP-MAIN.495.
 576 URL <https://doi.org/10.18653/v1/2023.emnlp-main.495>.

577 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE*
 578 *Trans. Big Data*, 7(3):535–547, 2021. doi: 10.1109/TB DATA.2019.2921572. URL <https://doi.org/10.1109/TB DATA.2019.2921572>.

581 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
 582 supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
 583 (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*
 584 (*Volume 1: Long Papers*), pp. 1601–1611, Vancouver, Canada, July 2017. *Association for Com-*
 585 *putational Linguistics*. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

587 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 588 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston,
 589 Sheer El Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam
 590 Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion,
 591 Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei,
 592 Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared
 593 Kaplan. Language models (mostly) know what they know. *CoRR*, abs/2207.05221, 2022. doi: 10.
 48550/ARXIV.2207.05221. URL <https://doi.org/10.48550/arXiv.2207.05221>.

594 Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
 595 models struggle to learn long-tail knowledge. In Andreas Krause, Emma Brunskill, Kyunghyun
 596 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference
 597 on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of
 598 *Proceedings of Machine Learning Research*, pp. 15696–15707. PMLR, 2023. URL <https://proceedings.mlr.press/v202/kandpal23a.html>.

600 Minki Kang, Jinheon Baek, and Sung Ju Hwang. KALA: knowledge-augmented language model
 601 adaptation. In Marine Carpuat, Marie-Catherine de Marneffe, and Iván Vladimir Meza Ruíz
 602 (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for
 603 Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United
 604 States, July 10-15, 2022*, pp. 5144–5167. Association for Computational Linguistics, 2022. doi:
 605 10.18653/V1/2022.NAACL-MAIN.379. URL <https://doi.org/10.18653/v1/2022.naacl-main.379>.

606 Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
 607 models via self-certainty, 2025. URL <https://arxiv.org/abs/2502.18581>.

608 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 609 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
 610 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on
 611 Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November
 612 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
 613 URL <https://aclanthology.org/2020.emnlp-main.550/>.

614 Polina Kirichenko, Mark Ibrahim, Kamalika Chaudhuri, and Samuel J. Bell. Abstentionbench:
 615 Reasoning llms fail on unanswerable questions, 2025. URL <https://arxiv.org/abs/2506.09038>.

616 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
 617 for uncertainty estimation in natural language generation. In *The Eleventh International Confer-
 618 ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net,
 619 2023. URL <https://openreview.net/forum?id=VD-AYtP0dve>.

620 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 621 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 622 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 623 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 624 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 625 <https://aclanthology.org/Q19-1026/>.

626 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
 627 able predictive uncertainty estimation using deep ensembles. In I. Guyon, U. Von
 628 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 629 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 630 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

631 Siheng Li, Cheng Yang, Taiqiang Wu, Chufan Shi, Yuji Zhang, Xinyu Zhu, Zesen Cheng, Deng
 632 Cai, Mo Yu, Lemao Liu, Jie Zhou, Yujiu Yang, Ngai Wong, Xixin Wu, and Wai Lam. A survey
 633 on the honesty of large language models. *Trans. Mach. Learn. Res.*, 2025, 2025. URL <https://openreview.net/forum?id=FJgtVfUxLQ>.

634 Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. Decoupled context processing for con-
 635 text augmented language modeling. In Sanmi Koyejo, S. Mohamed, A. Agar-
 636 wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-
 637 mation Processing Systems 35: Annual Conference on Neural Information Processing Sys-
 638 tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 639 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/882d801fb1017f955547d5a816ade0fc-Abstract-Conference.html.

648 Yuxin Liang, Zhuoyang Song, Hao Wang, and Jiaxing Zhang. Learning to trust your feelings:
 649 Leveraging self-awareness in LLMs for hallucination mitigation. In Wenhao Yu, Weijia Shi,
 650 Michihiro Yasunaga, Meng Jiang, Chenguang Zhu, Hannaneh Hajishirzi, Luke Zettlemoyer, and
 651 Zhihan Zhang (eds.), *Proceedings of the 3rd Workshop on Knowledge Augmented Methods for
 652 NLP*, pp. 44–58, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
 653 doi: 10.18653/v1/2024.knowledgenlp-1.4. URL <https://aclanthology.org/2024.knowledgenlp-1.4/>.
 654

655 Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, and Xilun Chen.
 656 FLAME : Factuality-aware alignment for large language models. In Amir Globersons, Lester
 657 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 658 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 659 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 660 15, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/d16152d53088ad779ffa634e7bf66166-Abstract-Conference.html.
 661

662 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 663 words. *Trans. Mach. Learn. Res.*, 2022, 2022a. URL <https://openreview.net/forum?id=8s8K2UZGTZ>.
 664

665 Zi Lin, Jeremiah Zhe Liu, and Jingbo Shang. Towards collaborative neural-symbolic graph se-
 666 mantic parsing via uncertainty. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
 667 (eds.), *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 4160–4173,
 668 Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 669 findings-acl.328. URL <https://aclanthology.org/2022.findings-acl.328/>.
 670

671 Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction. In
 672 *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=jN5y-zb5Q7m>.
 673

674 Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource black-box
 675 hallucination detection for generative large language models. In Houda Bouamor, Juan Pino,
 676 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural
 677 Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 9004–9017. Associa-
 678 tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.557. URL
 679 <https://doi.org/10.18653/v1/2023.emnlp-main.557>.
 680

681 Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, and Xueqi Cheng. SLANG: new concept
 682 comprehension of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
 683 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 684 Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024*, pp. 12558–12575. Associa-
 685 tion for Computational Linguistics, 2024. doi: 10.18653/V1/2024.EMNLP-MAIN.698. URL
 686 <https://doi.org/10.18653/v1/2024.emnlp-main.698>.
 687

688 Shiyu Ni, Keping Bi, Jiafeng Guo, and Xueqi Cheng. When do llms need retrieval augmentation?
 689 mitigating llms' overconfidence helps retrieval augmentation. In Lun-Wei Ku, Andre Martins,
 690 and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL 2024,
 691 Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 11375–11388. Association for
 692 Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.675. URL <https://doi.org/10.18653/v1/2024.findings-acl.675>.
 693

694 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 695 URL <https://doi.org/10.48550/arXiv.2303.08774>.
 696

697 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 698 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
 699 Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
 700 Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
 701 back. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
 702 *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
 703 tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December*

702 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

703

704

705 William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan

706 Leike. Self-critiquing models for assisting human evaluators. *CoRR*, abs/2206.05802, 2022.

707 doi: 10.48550/ARXIV.2206.05802. URL <https://doi.org/10.48550/arXiv.2206.05802>.

708

709 Xin Sun, Jianan Xie, Zhongqi Chen, Qiang Liu, Shu Wu, Yuehe Chen, Bowen Song, Zilei Wang,

710 Weiqiang Wang, and Liang Wang. Divide-then-align: Honest alignment based on the knowledge

711 boundary of RAG. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher

712 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational*

713 *Linguistics (Volume 1: Long Papers)*, pp. 11461–11480, Vienna, Austria, July 2025. Association

714 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.561.

715 URL <https://aclanthology.org/2025.acl-long.561/>.

716

717 Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie, Qi Cao, Fei Sun, Jinyang Gao,

718 Huawei Shen, and Bolin Ding. When to trust llms: Aligning confidence with response quality.

719 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational*

720 *Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 5984–5996. Association for Computational Linguistics, 2024. doi: 10.

721 18653/V1/2024.FINDINGS-ACL.357. URL <https://doi.org/10.18653/v1/2024.findings-acl.357>.

722

723 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailev, Huaxiu Yao, Chelsea

724 Finn, and Christopher D. Manning. Just ask for calibration: Strategies for eliciting calibrated

725 confidence scores from language models fine-tuned with human feedback. In Houda Bouamor,

726 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in*

727 *Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 5433–5442.

728 Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.330.

729 URL <https://doi.org/10.18653/v1/2023.emnlp-main.330>.

730

731 Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-tuning

732 language models for factuality. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=WPZ2yPag4K>.

733

734 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha

735 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language

736 models. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023a. URL <https://openreview.net/forum?id=1PL1NIMMrw>.

737

738 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and

739 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In

740 Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual*

741 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2023,

742 *Toronto, Canada, July 9-14, 2023*, pp. 13484–13508. Association for Computational Linguistics,

743 2023b. doi: 10.18653/V1/2023.ACL-LONG.754. URL <https://doi.org/10.18653/v1/2023.acl-long.754>.

744

745 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,

746 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

747 models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh

748 (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural*

749 *Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

750

751

752 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-

753 tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), *Proceedings of*

754 *the 3rd Workshop on Noisy User-generated Text, NUT@EMNLP 2017, Copenhagen, Denmark, September 7, 2017*, pp. 94–106. Association for Computational Linguistics, 2017a. doi:

755 10.18653/V1/W17-4413. URL <https://doi.org/10.18653/v1/w17-4413>.

756 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-
 757 tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), *Proceedings of*
 758 *the 3rd Workshop on Noisy User-generated Text*, pp. 94–106, Copenhagen, Denmark, Septem-
 759 ber 2017b. Association for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL
 760 <https://aclanthology.org/W17-4413/>.

761 Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis-
 762 Philippe Morency. Uncertainty quantification with pre-trained language models: A large-scale
 763 empirical analysis. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of*
 764 *the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emi-
 765 rates, December 7-11, 2022*, pp. 7273–7284. Association for Computational Linguistics, 2022.
 766 doi: 10.18653/V1/2022.FINDINGS-EMNLP.538. URL <https://doi.org/10.18653/v1/2022.findings-emnlp.538>.

767 Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can
 768 LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs.
 769 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=gjeQKFxFpZ>.

770 Hongshen Xu, Zichen Zhu, Situo Zhang, Da Ma, Shuai Fan, Lu Chen, and Kai Yu. Rejection
 771 improves reliability: Training LLMs to refuse unknown questions using RL from knowledge
 772 feedback. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=lJMioZBoR8>.

773 Boyang Xue, Fei Mi, Qi Zhu, Hongru Wang, Rui Wang, Sheng Wang, Erxin Yu, Xuming Hu, and
 774 Kam-Fai Wong. UAlign: Leveraging uncertainty estimations for factuality alignment on large
 775 language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 776 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational*
 777 *Linguistics (Volume 1: Long Papers)*, pp. 6002–6024, Vienna, Austria, July 2025. Association
 778 for Computational Linguistics. ISBN 979-8-89176-251-0. URL <https://aclanthology.org/2025.acl-long.299>.

779 Zijun Yao, Yantao Liu, Yanxu Chen, Jianhui Chen, Junfeng Fang, Lei Hou, Juanzi Li, and Tat-Seng
 780 Chua. Are reasoning models more prone to hallucination?, 2025. URL <https://arxiv.org/abs/2505.23646>.

781 Shuo Zhang, Liangming Pan, Junzhou Zhao, and William Yang Wang. Mitigating language model
 782 hallucination with interactive question-knowledge alignment. *CoRR*, abs/2305.13669, 2023.
 783 doi: 10.48550/ARXIV.2305.13669. URL <https://doi.org/10.48550/arXiv.2305.13669>.

784 Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E.
 785 Gonzalez. RAFT: Adapting language model to domain specific RAG. In *First Conference on*
 786 *Language Modeling*, 2024. URL <https://openreview.net/forum?id=rzQGHXNReU>.

787 Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen.
 788 Mquake: Assessing knowledge editing in language models via multi-hop questions. In Houda
 789 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empiri-
 790 cal Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*,
 791 pp. 15686–15702. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
 792 EMNLP-MAIN.971. URL <https://doi.org/10.18653/v1/2023.emnlp-main.971>.

793 Yubo Zhu, Dongrui Liu, Zecheng Lin, Wei Tong, Sheng Zhong, and Jing Shao. The llm already
 794 knows: Estimating llm-perceived question difficulty via hidden representations, 2025. URL
 795 <https://arxiv.org/abs/2509.12886>.

796 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A APPENDIX
811812 A.1 DERIVATION OF RULES FOR MAPPING UNCERTAINTY VALUES TO KNOWLEDGE STATES
813814 The proposed rule-based mapping from uncertainty values (*Consistency* and *SE*) to natural-
815 language knowledge states is as follow:816 Let $Y_i = \{y_i^k\}_{k=1}^K$ be K sampled responses from model and \hat{y} be the reference answer. *Knowledge*
817 *possession* is captured by *Consistency*, where:818

- 819 • Consistency > 0 indicates there exists at least one response y_i^k matches the ground-truth
820 answer \hat{y} , meaning the model possesses the required knowledge with a very high probabili-
821 ty.
- 822 • Consistency $= 0$ represents that the model fails to answer the question correctly with K
823 times, indicating the model does not possess relevant knowledge to the question. For a
824 given question, we assume that if the LLM possesses the relevant knowledge, the proba-
825 bility of answering it correctly is $p_\theta = 0.5$. We set the confidence level to $\alpha = 0.05$. If
826 none of the K sampled responses are correct, then with confidence $1 - \alpha$ we can reject the
827 hypothesis that the model’s probability of producing a correct answer satisfies $p_\theta \geq 0.5$.
828 Under the assumption $p_\theta = 0.5$, sampling $K = 6$ responses is sufficient to show that if
829 none of them are correct, the model is unlikely to possess the relevant knowledge.

830 *Answer Behavior* is measured by *semantic entropy*:831

- 832 • The magnitude of semantic entropy reflects the model’s uncertainty at the semantic level:
833 a higher value indicates diverse or conflicting semantic outputs (greater ambiguity), while
834 a lower value suggests more consistent and deterministic semantic interpretations.
- 835 • Semantic entropy equals zero when all generated outputs are semantically equivalent, i.e.,
836 they fall into the same semantic cluster with no competing interpretations. From the seman-
837 tic perspective, the model is completely certain, exhibiting neither ambiguity nor polysemy.

838 Given these interpretations, the mapping rules follow a logically consistent decision path:

839

- 840 1. If Consistency > 0 and SE $= 0$, the model is judged to possess the relevant knowledge of
841 a question and honestly provides consistent correct responses, corresponding to the knowl-
842 edge state **KH**.
- 843 2. If Consistency > 0 and SE $\neq 0$, the model produces a mix of correct and incorrect
844 answers, indicating insufficient mastery of the knowledge to express it accurately. The
845 reason for this gap could be decoding strategy, hallucination snowballing, misalignment
846 issues (Liang et al., 2024). This corresponds to the knowledge state **K-H**.
- 847 3. If Consistency $= 0$ and SE $= 0$, the model lacks correct knowledge but converges on a
848 single interpretation, corresponding to the knowledge state **-KH**.
- 849 4. In all other cases, the knowledge state is classified as **-K-H**.

850 Overall, the mapping is determined by two factors:

851
$$\underbrace{\text{Knowledge possession (Consistency)}}_{\text{know}} \quad \text{and} \quad \underbrace{\text{Answer honesty (Semantic Entropy)}}_{\text{tell}},$$

852 which together define a quadrant of four cognitive states, ensuring both interpretability and com-
853 pleteness.854 A.2 PROMPT TEMPLATES
855856 We illustrate the prompt templates used in this work in Figure 4, detailing the input structure, in-
857 corporated knowledge states, and output format. The templates explicitly define how a question is
858 combined with its corresponding knowledge state, optionally with retrieved external context, and
859 then formatted to elicit model responses. By making this structure explicit, the figure clarifies how
860 prompts guide the model during both training and inference, ensuring consistency across stages.

864 Moreover, the design rationale highlights how natural-language descriptions of knowledge states
 865 are integrated into the prompt, which is essential for conveying uncertainty information in a seman-
 866 tically interpretable way.
 867
 868
 869

870 **Prompt template for sampling responses**

871
 872 You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
 873 ### Question ###: {demo_question_1}
 874 ### Answer ###: {demo_answer_1}
 875 ### Question ###: {input_question}
 876 ### Answer ###:
 877

878 **Prompt template for supervised fine-tuning of the reference model**

879 You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
 880 ### Question ###: {THE QUESTION FROM DATASET}
 881 ### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}
 882 ### Output ###: {GOLDEN ANSWER}

883 **Prompt template for policy model optimization**

884 You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
 885 ### Question ###: {THE QUESTION FROM DATASET}
 886 ### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}
 887 ### Answer ###: {GOLDEN ANSWER}

888 **Prompt template for RAFT a RAG model**

889 You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
 890 ### Question ###: {THE QUESTION FROM DATASET}
 891 ### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}
 892 ### Prior Judgment ###: {RANDOMLY SELECTED RESPONSE FROM Y_i }
 893 ### Retrieve Documents ###: related passages: ###passage 1###,###passage 2###,###passage 3###
 894 ### Posterior Answer ###: {GOLDEN ANSWER}

895 **Prompt template for RAG model in inference**

896 You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
 897 ### Question ###: {THE QUESTION FROM DATASET}
 898 ### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}
 899 ### Prior Judgment ###: {POLICY MODEL'S OUTPUT}
 900 ### Retrieve Documents ###: related passages: ###passage 1###,###passage 2###,###passage 3###
 901 ### Posterior Answer ###: {GOLDEN ANSWER}

902 **Prompt template for supervised fine-tuning of the estimator model.**

903 You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
 904 ### Question ###: {THE QUESTION FROM DATASET}
 905 ### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}

914 **Figure 4: All the prompt templates employed in FAITH (our framework).**

915
 916
 917

918
919

A.3 DETAILS OF TRAINING

920
921

All experiments are conducted on a cluster equipped with $4 \times$ NVIDIA A40 and/or $4 \times$ NVIDIA 4090D GPUs.

922
923
924
925
926

For supervised fine-tuning (SFT) of both the reference model and estimator in FAITH, we train for 3 epochs. We adopt the Adam optimizer with an initial learning rate of 2e-4. We apply LoRA with a rank of 32, alpha of 16, and a dropout rate of 0.05, targeting all layers. The batch size per device is set to 8, with gradient accumulation steps of 8, leading to a total batch size of 256. The learning rate scheduler follows a cosine decay with a warmup ratio of 0.0.

927
928
929
930
931

For policy optimization, both the reward model (RM) and the PPO stages are trained for 2 epochs. We adopt the Adam optimizer with an initial learning rate of 1e-5. LoRA is applied with a rank of 8, alpha of 16, and a dropout rate of 0.05, again targeting all layers. The per-device batch size is set to 4, with gradient accumulation steps of 8, leading to a total batch size of 128. The learning rate scheduler is cosine decay, and the warmup ratio is 0.0, consistent with the SFT stage.

932
933
934

A.4 DETAILS OF DATASET

935
936
937
938
939
940
941
942

SciQ: The SciQ dataset (Welbl et al., 2017a) contains 13,679 crowdsourced science examination questions covering subjects such as physics, chemistry, and biology. Although originally released in multiple-choice format, in our setting all answer options are removed, and each question is reformulated as an open-ended query requiring a direct answer. For most questions, an accompanying paragraph with supporting evidence is provided, offering factual context that can be utilized to guide answer generation and factual alignment. In our experiments, 11,679 samples are used for training and 1,000 samples are reserved for validation, with the remaining questions serving as an in-domain test set.

943
944
945
946
947

TriviaQA: TriviaQA (Joshi et al., 2017) is a large-scale reading comprehension dataset containing over 650K question-answer-evidence triples, with questions authored by trivia enthusiasts and evidence documents collected from Wikipedia and the web. In our work, for constructing the augmented dataset, we pre-process and sample half of the original training set.

948
949
950
951
952
953

NQ-Open: NQ-Open (Kwiatkowski et al., 2019) is an open-domain QA benchmark derived from the Natural Questions dataset, where real user queries are paired with English Wikipedia passages as the knowledge source. In our work, we employ NQ-Open for augmented dataset construction. Similarly, to ensure fair comparison and reduce computational cost, we sample half of the original training data.

954
955
956
957
958
959

Web-Questions: The WebQuestions dataset (Berant et al., 2013b) comprises 6,642 question-answer pairs, where each question can be answered using Freebase, a large-scale knowledge graph. The majority of questions are centered around a single named entity and reflect typical queries collected from the web around 2013. In our experiments, we only employ its test set (1348 item) for the evaluation under the out-of-domain evaluation setting.

960
961

Truthfulness quantifies the proportion of correct responses among all provided answers, reflecting the LLM’s overall reliability in expressing knowledge. The formula for Truthfulness is given as follows:

965
966

$$\text{Truthfulness} = \frac{\text{UR} + \text{KC}}{\text{KC} + \text{KI} + \text{KR} + \text{UC} + \text{UI} + \text{UR}} \quad (8)$$

967
968
969
970

Precision measures the proportion of correctly answered questions among those for which the model possesses the relevant knowledge, reflecting the LLM’s ability to accurately convey known facts. The formula for Precision is given as follows:

971

$$\text{Precision} = \frac{\text{KC}}{\text{KI} + \text{KC} + \text{KR}} \quad (9)$$

972 A.6 NUMERICAL RESULTS OF TRAINING-TIME SCALING
973

974 Table 4 reports the detailed numerical results corresponding to the training-time scaling analysis.
975 The table compares precision and truthfulness across different values of K (6, 8, 10, 12). Consis-
976 tent with Figure 3, the results show that increasing K beyond 6 does not yield noticeable gains,
977 confirming that $K = 6$ is sufficient to capture the model’s knowledge state distribution during data
978 augmentation.

979 Table 4: Training-time scaling with different numbers of sampled responses (K) on Llama-3-8B.
980

# Responses	TVQA (ID)		SciQ (ID)		NQ-Open (ID)		Average (ID)		WebQ-QA (OOD)	
	Prec. ↑	Truth. ↑	Prec. ↑	Truth. ↑	Prec. ↑	Truth. ↑	Prec. ↑	Truth. ↑	Prec. ↑	Truth. ↑
Llama-3-8B										
K=6	82.95	59.80	80.29	49.70	57.99	26.52	73.79	45.69	67.31	33.75
K=8	84.36	63.55	81.52	54.70	60.95	25.51	75.61	47.92	67.42	37.76
K=10	84.01	63.79	80.94	55.20	60.44	25.98	75.13	48.32	67.10	38.43
K=12	84.36	64.65	80.76	55.40	60.35	26.40	75.16	48.82	66.15	38.28

981 A.7 CASE STUDY
982

983 In our method FAITH, one focus is to train RAG model to align the policy model’s output with
984 external knowledge. The RAG model is provided with retrieved passages as context, allowing it to
985 rectify or retain the policy model’s responses. In this section, we analyze three types of corrections,
986 with representative cases shown in Table 5, 6, and 7, as case studies. Specifically, the three correction
987 types are summarized as follows:

- 988 1. **Implicitly Supported Correction:** The initial answer from the policy model was incor-
989 rect, but after applying our trained RAG model, the final answer was corrected. Notably,
990 the retrieved passages did not verbatim reproduce the correct answer, but contained key
991 information or semantic cues related to the correct answer. Details can be found in Table 5.
- 992 2. **Explicitly Supported Correction:** The policy model initially produced an incorrect out-
993 put, but after applying our trained RAG model, the final output was corrected. In this
994 process, the retrieved content from RAG not only directly reproduced the correct answer
995 but also provided additional information related to it, thereby supporting the model’s cor-
996 rection. Details can be found in Table 6.
- 997 3. **Misleading Override:** The policy model initially produced the correct answer. However,
998 after applying our trained RAG model, the output was incorrectly altered. This occurred be-
999 cause the retrieved content contained misleading information that contradicted the correct
1000 answer, ultimately leading to an erroneous output. Details can be found in Table 7.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079Table 5: Case Study Analysis 1 of Model Responses. Specifically, A denotes Ground Truth, **A1** denotes the policy model’s output, and **A2** denotes the final output.

Type	Question & Answer	Retrieved Passages	Our Analysis
Implicitly Supported Correction	<p>Q: Protists play critically important ecological roles as producers and, on the other end of food webs, as what?</p> <p>A: decomposers</p> <p>A1: consumers</p> <p>A2: decomposers</p>	<p>I. In real world ecosystems, there is more than one food chain for most organisms, since most organisms eat more than one kind of food or are eaten by more than one type of predator. A diagram that sets out the intricate network of intersecting and overlapping food chains for an ecosystem is called its food web. Decomposers are often left off food webs, but if included, they mark the end of a food chain. Thus, food chains start with primary producers and end with decay and decomposers.</p> <p>II. Food webs have trophic levels and positions. Basal species, such as plants, form the first level and are the resource-limited species that feed on no other living creature in the web. Basal species can be autotrophs or detritivores, including decomposing organic material and its associated microorganisms, which we defined as detritus, micro-inorganic material, and associated microorganisms (MIP), and vascular plant material.</p> <p>III. The microbial food web refers to the combined trophic interactions among microbes in aquatic environments. These microbes include viruses, bacteria, algae, and heterotrophic protists (such as ciliates and flagellates). In aquatic environments, microbes constitute the base of the food web. Single-celled photosynthetic organisms such as diatoms and cyanobacteria are generally the most important primary producers in the open ocean. Many of these cells, especially cyanobacteria, are too small to be captured and consumed by small crustaceans and planktonic larvae. Instead, these cells are consumed by phagotrophic protists, which are readily consumed by larger organisms.</p>	<p>Some protists do function as A1 (consumers), but the model fails to accurately address the specific context of “the other end of food webs” posed in the question. This suggests the model’s insufficiency in effectively utilizing its internal knowledge to answer the question, or a failure to correctly understand the question, particularly its key constraints. After introducing the retrieved information to our trained RAG model, it successfully corrected the answer to A2 (decomposers). The retrieved information, in paragraph I, provides the crucial background knowledge: “Thus food chains start with primary producers and end with decay and decomposers.” This information does not explicitly state that “protists are decomposers.” Instead, it requires the model to synthesize this information with “protists” and “the other end of food webs” to deduce the correct answer. We denote this process as Implicitly Supported Correction.</p>

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

Table 6: Case Study Analysis 2 of Model Responses. Specifically, **A** denotes Ground Truth, **A1** denotes the policy model’s output, and **A2** denotes the final output.

Type	Question & Answer	Retrieved Passages	Our Analysis
Explicitly Supported Correction	<p>Q: Rita Coolidge sang the title song for which Bond film?</p> <p>A: Octopussy</p> <p>A1: North by Northwest</p> <p>A2: Octopussy</p>	<p>I. Octopussy is the soundtrack for the eponymous thirteenth James Bond film. The score was composed by John Barry, the lyrics by Tim Rice. The opening theme, All Time High is sung by Rita Coolidge and is one of six Bond film title songs or songs that are not named after the film’s title. The original compact disc released in 1985 by A&M Records, was recalled because of a printing error and became a rarity.</p> <p>II. Another Way to Die is a song by American musicians Jack White and Alicia Keys. Written and produced by White as the theme song to the 2008 James Bond film Quantum of Solace, it was released as a single in the United States on September 30, 2008, and in Europe on October 20, 2008.</p> <p>III. Tomorrow Never Dies is the song, performed by Sheryl Crow, which served as the theme song to the James Bond film of the same name. The song was co-written by Crow and the song’s producer Mitchell Froom, and became her fifth UK Top 20 hit, peaking at No. 12 in 1997. Another song, Tomorrow Never Dies, written by the movie’s composer David Arnold and performed by k.d. lang, was originally produced as the official theme tune. When Crow’s song became the official theme, the k.d. lang song was relegated to the end credits, and renamed Surrender.</p>	<p>The model’s initial response, A1 (North by Northwest), is a significant factual error, as this film is not even part of the James Bond series. This indicates a substantial knowledge gap or a “hallucination” in the model’s internal knowledge base. After the RAG intervention, the model successfully corrected the answer to A2 (Octopussy). The retrieved information in paragraph I contains all the key details required to rectify the error. The passage explicitly states, “The opening theme, All Time High is sung by Rita Coolidge” and that the soundtrack was for the film Octopussy. The model simply needed to match the key entity from the question, “Rita Coolidge”, with the retrieved text to directly find the name of the film for which she sang the theme. The entire process involves direct information extraction and localization, requiring almost no complex reasoning. We denote this process as Explicitly Supported Correction.</p>

1128
1129
1130
1131
1132
1133

1134

1135

1136

1137

Table 7: Case Study Analysis 3 of Model Responses. Specifically, A denotes Ground Truth, **A1** denotes the policy model’s output, and **A2** denotes the final output.

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Type	Question & Answer	Retrieved Passages	Our Analysis
Misleading Override	<p>Q: Which grand slam did Pete Sampras not win in the 20th century?</p> <p>A: French</p> <p>A1: French Open</p> <p>A2: Wimbledon</p>	<p>I. As the Swiss national anthem played Federer was overcome with emotion after finally capturing the elusive title at Roland Garros. This match was momentous in the history of tennis. After missing the chance to equal Pete Sampras’ then-record of fourteen Grand Slam championships of all time when he lost to Rafael Nadal in the final of the Australian Open earlier in the year, Federer finally did so by winning the French Open for the first time. Sampras himself commented on Federer following the victory saying, Regardless he [Federer] goes down as the greatest ever.</p> <p>II. In the eight Wimbledons inclusive between 1993 and 2000, 1996 was the only year that Sampras would fail to win the championship at Wimbledon. Sampras lost in the quarterfinals of Wimbledon to the eventual winner, Richard Krajicek, the tournament’s 17th-seed. The match lasted three long sets, with Krajicek winning 7-5, 7-6, 6-4. In the quarterfinals of the US Open, Sampras vomited on the court at 1-1 in the final set tiebreak (due to dehydration) while facing Alex Corretja; nonetheless, Sampras would win that match.</p> <p>III. He beat former champion Michael Stich in the fourth round and met Sampras in the quarterfinals. By that time, he had managed to turn his notably weak slice backhand into an aggressive topspin shot. Krajicek shocked the tennis world by defeating Sampras in straight sets, becoming the only player to beat Sampras in a Wimbledon singles match in the eight-year period from 1993 until Sampras’ fourth-round loss to Roger Federer in the 2001 tournament.</p>	<p>This is a failure case of a ‘correct-to-incorrect’ reversal caused by the RAG. The model’s initial judgment, A1 (French Open), was correct, indicating that its internal knowledge base already contained the key fact about Sampras’s career. However, the intervention of RAG instead led to a degradation in performance. The core of the failure lies in the Retrieval stage. The retrieved information, though related to the key entities “Pete Sampras” and “Grand Slam”, did not align with the question’s specific requirement (“did not win” in the 20th century). The retrieved content, particularly in paragraphs II and III, repeatedly and in detail described a specific loss Sampras had at Wimbledon (in 1996 to Krajicek). Phrases like “fail to win the championship at Wimbledon” became a strong and irrelevant distracting signal. When generating the final answer, the model over-relied on this incorrectly retrieved and distracting content, thereby ignoring its own correct prior knowledge. It was misled into outputting the incorrect answer A2 (Wimbledon). We denote this process as Misleading Override.</p>

1188
1189

A.8 LIMITATIONS

1190
1191
1192
1193
1194

Reward Function Design. Our reward function is derived from heuristic rules that are straightforward to formulate and intuitively easy to interpret. In practice, we observe that this design works well empirically and provides meaningful guidance for aligning model behavior. However, the current formulation lacks rigorous theoretical guarantees, leaving room for future work to establish a stronger theoretical foundation for its effectiveness.

1195
1196
1197
1198
1199
1200

Computational Overhead. During dataset construction, we sample K responses and build a vector database. At inference time, our pipeline first uses Est_τ to estimate the knowledge state s , then applies the policy model π_ϕ to generate an answer, and finally employs π_{rag} for rectification. Even without rectification, two model inferences are required, rather than a single end-to-end pass. For future work, we plan to explore more efficient approaches for cognitive-state estimation, such as lightweight estimators derived from LLM internal representations (Zhu et al., 2025)⁴.

1201
1202
1203
1204
1205
1206
1207

Unexplored Aspects of RAG Effectiveness. Our current study does not investigate how the quality of the data used to build the vector database affects FAITH’s performance. For example, on the SciQ dataset with Mistral-7B, incorporating external knowledge does not improve correction effectiveness, which may be related to the quality of the retrieved context. In addition, we have not explored more effective ways of leveraging external knowledge for rectification, such as integrating RAFT directly the SFT stage and accordingly applying PPO training on top of the RAFT-enhanced model, rather than additionally train a RAG model.

1208
1209

A.9 REPRODUCIBILITY STATEMENT

1210
1211
1212
1213
1214

We have made several efforts to ensure the reproducibility of our work. We provided detailed descriptions of the datasets used in our experiments, all of which are publicly available. Our method is thoroughly explained in dedicated sections § 4, and we also provide detailed training parameters § 5.1. Finally, we have submitted the code via this anonymous repository at <https://anonymous.4open.science/r/FAITH-33A3>

1215
1216
1217

We hope that these measures will facilitate the replication of our work by other researchers and further advance the field.

1218
1219
1220
1221
1222

A.10 THE USE OF LARGE LANGUAGE MODEL

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

The authors acknowledge the use of OpenAI ChatGPT solely for enhancing the coherence of the final manuscript, and providing assistance with coding for data processing.

⁴This related work has been publicly available on arXiv since September 16, 2025, a week before the ICLR paper submission deadline.