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ABSTRACT

Large Language Models (LLMs) can generate factually inaccurate content even
if they have corresponding knowledge, which critically undermines their reliabil-
ity. Existing approaches attempt to mitigate this by incorporating uncertainty in
QA prompt during training, but these numerical scores lack the semantic richness
for LLM to properly understand its internal states of trustworthiness and honest-
ness, leading to insufficient factuality alignment. We introduce FAITH (Factuality
Alignment through Integrating Trustworthiness and Honestness), a post-training
framework for factuality alignment that integrates natural-language uncertainty
signals with external knowledge. Specifically, we augment training datasets by
computing confidence scores and semantic entropy from LLM outputs and map-
ping them into a knowledge state quadrant that describes the model’s internal
knowledge possession (trustworthiness) and answering behaviors (honestness) in
natural language. Based on this enhanced data, we design a reward function that
considers both correctness and uncertainty signals, and fine-tune the LLM using
the Proximal Policy Optimization (PPO) algorithm. To further mitigate weakly
grounded responses, we design a retrieval-augmented module that retrieves rele-
vant external passages, improving the consistency between internal and external
knowledge representations. Extensive experiments on four knowledge-intensive
benchmarks demonstrate that FAITH enhances the factual accuracy and truthful-
ness of LLMs.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4 (OpenAl, 2023), Llama3 (Dubey et al.l [2024)
and DeepSeek-v3 (DeepSeek-Al et al.,|2024)), have demonstrated impressive performance across a
broad range of natural language processing tasks. Despite these advances, growing evidence shows
that LLMs may generate outputs that are fluent but factually incorrect or fabricated, a phenomenon
commonly known as hallucination (Huang et al., 2021 J1 et al.l 2023). Such hallucinations pose
substantial risks in knowledge-intensive and high-stakes domains, including legal, educational, and
clinical applications (Alkaissi & McFarlane, [2023} [Wang et al., |2023b)).

A particularly concerning type of hallucination emerges when the model possesses the necessary
knowledge but fails to articulate it accurately. This disconnect between internal knowledge and
external expression, often termed the know—tell gap (Saunders et al.| 2022; |Li et al., [2025)), not only
undermines the model’s ability to convey truthful information but also manifests as inconsistency of
factual expression, where the model may produce an incorrect response in one instance yet a correct
one in another (Manakul et al., 2023; ' Wang et al., [2023a)).

In this work, we propose to post-train LLMs for enhancing factuality. Our study identifies several
limitations in recent endeavors (Tian et al., [2024; Tao et al., [2024; Xue et al.| 2025 [Sun et al.| 2025)):
(1) while these work introduce uncertainty for factual alignment, they directly use the numerical
values into question-answering prompts during training, which lack semantic richness and are dif-
ficult for LLMs to understand and exploit for factuality-aligned expression; (2) they employ binary
reward function in policy training, which simply focuses on whether the response is correct or not
while ignoring to consider the confidence of LLM’s response (i.e., uncertainty), potentially encour-
aging guessing; and (3) they neglect the use of external knowledge, leaving potentially incorrect
responses unrectified.
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To address these limitations, we introduce FAITH (Factuality Alignment through Integrating
Trustworthiness and Honestness), a post-training framework designed for factuality alignment in
LLMs. FAITH incorporates three key designs: (1) When augment in-domain training datasets, be-
yond estimating the uncertainties (via consistency and semantic entropy) of LLMs for each question
in datasets, we map these numerical values into a knowledge state quadrant (Liang et al., [2024)
where each knowledge state is expressed in natural language and defined along two dimensions:
knowledge possession (trustworthiness) and answering behavior (honestness). Unlike opaque nu-
merical uncertainty values, incorporating knowledge states into QA prompt during training provides
LLMs with semantically rich and interpretable guidance. (2) For policy optimization, we design a
fine-grained reward function that consider both the correctness of response and LLM’s uncertainty,
providing more informative feedback than a binary reward, encouraging the policy model to align
its outputs with their knowledge states. (3) To further improve reliability, we construct a vector
database over the Wikipedia corpus (Karpukhin et al., 2020) and train a RAG model that retrieves
external knowledge from the database as contextual input to rectify potentially incorrect responses
generated by the policy model.

Through FAITH, we enhance LLM factuality in terms of precision and truthfulness. Extensive ex-
periments show that FAITH consistently outperforms five recent strong baselines on three in-domain
and one out-of-domain dataset. For example, on Llama3-8B, FAITH achieves 74.26% precision and
45.73% truthfulness on in-domain datasets, and 67.99% precision and 34.03% truthfulness on the
out-of-domain dataset. Similar gains are observed on Mistral-7B-v0.1, demonstrating that FAITH’s
effectiveness generalizes across both models and datasets.

In summary, our contributions are as follows:
1. We introduce FAITH, a novel post-training framework for factuality alignment. FAITH
advances the factuality alignment by its semantically rich knowledge state quadrant, fine-
grained reward function, and employing external knowledge to ground LLM’s response.

2. We conduct extensive experiments demonstrating that FAITH consistently outperforms
strong baselines, with performance gains generalizing across multiple datasets and models.
Meanwhile, we provide ablations to assess the contribution of each component.

3. We provide in-depth analyses of FAITH, including the impact of different knowledge state
estimation strategies on inference performance and training-time scaling behavior with vary-
ing numbers of sampled responses K.

2 RELATED WORK

Factuality Alignment. To enhance LLM factuality, prior work has explored training-free strate-
gies such as external knowledge augmentation (Kandpal et al., [2023}; Jiang et al.,|2023b)), decoding
methods (Chuang et al., 2024)), and self-consistency techniques grounded in uncertainty estima-
tion (Kadavath et al.| [2022; [Tian et al.| |2023)). More recently, post-training approaches, including
SFT and policy optimization, have been applied to further improve factuality (Tian et al., | 2024;|Tao
et al.,[2024;Sun et al., [2025; | Xu et al., [2024;  Xue et al., [2025; |Chen et al.,|2025)). Our work falls into
this category, where we propose to map numerical uncertainty values into natural-language knowl-
edge states and design a new reward function to enhance the model’s expression of its knowledge.

Uncertainty Estimation. Uncertainty Estimation (UE) has long been studied in machine learning
domain, including NLP, with vast majority of previous work focusing on discriminative tasks, such
as sentiment analysis (Xiao et al., 2022)). Specifically, the entropy of the predictive posterior and
the negative predictive posterior probability of the most probable answer are used to quantify uncer-
tainty in predictions (Lakshminarayanan et al., 2017; Bakman et al., 2024). However, LLMs pose
new challenges for uncertainty estimation due to their generative paradigm. Recent studies have
extended UE to generative models, introducing heuristic or probabilistic metrics such as entropy-
based scoring (Malinin & Gales| 2021)), semantic entropy that accounts for meaning equivalence in
multiple generations (Kuhn et al.|, 2023)), and similarity-based methods applied in tasks like machine
translation (Fomicheva et al.| 2020; Lin et al.,|2022b). Other works explore black-box UE by lever-
aging sampled outputs (Chen & Mueller, 2024} [Manakul et al.,[2023), or prompt-based approaches
where models verbalize their own confidence (Kadavath et al.,2022). Training-based methods have
also been proposed to enhance linguistic self-assessments of uncertainty (Lin et al., 2022a).
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Figure 1: Illustration of the FAITH framework. Panel (a) shows the procedure for augmenting
the training datasets, Panel (b) depicts model training with the augmented datasets, and Panel (c)
presents the inference pipeline.

Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) has become a
widely adopted strategy for mitigating the limitations of parametric knowledge in LLMs by ground-
ing responses in external evidence (Guu et al.| [2020; Izacard & Grave, 20215 [Zhong et al., [2023)).
However, recent studies reveal that contradictions may arise when retrieved knowledge conflicts
with internal representations (Mei et al., [2024; [Ni et al., [2024). To mitigate this, retrieval-based
methods increasingly leverage structured repositories such as knowledge graphs for more reliable
grounding (Baek et al.l 2023} Zhang et al., 2023)). Other approaches enhance factuality by incor-
porating retrieval into inference-time interventions, including memory-augmented architectures (L1
et al., 2022) and entity-level embedding integration (Kang et al., 2022} |de Jong et al., 2022). Gen-
erally, RAG provides a scalable way to continuously integrate knowledge, offering advantages over
task-specific parameter editing.

3 PRELIMINARY

Problem Definition. We consider a standard Table 1: Categories of model output for QA.
open-domain, closed-book QA setting, where a
language model LLM is given a factual ques-

Abbr. Explanation

tion ¢ and generates a short-form answer a ~ KC  Known and answered correctly
LLM(- | q) with probability LLM (a | q). KI  Known but answered incorrectly
The answer is expected to be concise and fac- KR  Known but refused to answer
tually correct, but in practice may suffer from ucC Unknown but answered correctly
failure of factuality due to uneven knowledge Ul Unknown but answered incorrectly
possession and the gap between knowledge and UR  Unknown and refused to answer

expression, while the autoregressive generation
paradigm inevitably produces responses by sampling from token distributions.

Following prior work (Xue et al.}|2025), we categorize model outputs into six types based on knowl-
edge possession and response correctness, as summarized in Table [T, The research scope of this
work is to encourage more instances of KC and UR (See §|3;1'| for evaluation metrics).

4 METHOD

As shown in Figure[I] we introduce the framework of FAITH which enhances factuality alignment
for LLMs. Specifically, we first augment three QA training datasets by estimating the uncertain-
ties of LLMs for each question in these datasets and translating the numerical uncertainty values
into natural-language descriptions drawn from the knowledge state quadrant (described in § {.T)).
We then apply Proximal Policy Optimization (PPO) to finetune LLMs on the augmented datasets,
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guiding them to answer questions combining their knowledge state; meanwhile, to mitigate internal
knowledge insufficiency for confidently expressing knowledge, we train a RAG model to rectify
potential incorrect answers produced by policy model (described in § 4.2)). Finally, we conduct the
inference in §[4.3]

4.1 TRAINING DATASET AUGMENTATION

As shown in Figure[T] Panel (a), we first sample responses to each question in in-domain QA datasets
and then conduct uncertainty estimation, which is consistent with existing works of uncertainty
estimation (Xiong et al., 2024; |Kuhn et al., 2023} |Aichberger et al., 2025 [Kang et al., 2025). We
do this for two purposes: (1) to measure the knowledge boundary of an LLM and locate whether
a given question is within it; (2) to evaluate the honestness of an LLM when answering the given
question.

Sampling Responses from Training Datasets. We sample responses from the training split of
NQ-Open (Kwiatkowski et al.l 2019)), SciQ (Welbl et al., 2017b) and TriviaQA (Joshi et al., [2017)
datasets, and each dataset D contains a set of N question-answer pairs {(z;, 9;) };._,, where z; and
y; represent the i-th question and golden answer in D, respectively. Specifically, for each question
q¢; € D, we prompt ¢; with K different one-shot exemplars and obtain K responses, denoted as
Y; = {yk }szl. We set K = 6 in the main experiment, same as in baseline UAlign (Xue et al.|
2025)). Also, for fair comparison to baselines, we adopt the same temperature T=0 . 2 with UAlign
and also randomly preserve half of data entries in NQ-Open and TriviaQA datasets while preserve
all entries in SciQ dataset.

Uncertainty Estimation. For the uncertainty estimation of generative LLMs, we employ consis-
tency and semantic entropy. Consistency serves as an accuracy-based measure of confidence, and
it reflects the accuracy of the generated K candidate responses (Xiong et al., 2024)), computed as
follows:

K
Consistency(x;) = %Z]l {yf =9} (1)
i=1

The semantic entropy (SE), on the other hand, captures uncertainty from the semantic dispersion
of generated answers, determining the likelihood of each meaning c rather than each generated
sequence yf (Kuhn et al.,2023)). It addresses the limitations of prior approaches, which are often af-
fected by response length or by semantically identical answers expressed in different surface forms.
Semantic entropy is defined as:

SE(x;) ==Y ple| ) logp(c | zi) == ((Z p(yf | m) log [2 p(yf | T)D @

c ykec ykec

By now, we augment each data entry in D from (z;, §;) to (z;, §;, Y;, Consistency(x;), SE(x;)).
However, we argue that the numerical values of uncertainty, which will be used in QA
training prompt (e.g., “Who starred in an officer and a gentleman ### Conf:
0.833 ### Entro: —0.”inXue et al.[(2025)), cannot effectively guide LLM to understand
and recognize its knowledge boundary, as raw numbers lack semantic meaning.

Knowledge State Mapping. To this end, we map consistency scores and semantic entropy onto
our defined knowledge state quadrant (described below), thus rendering otherwise opaque numeri-
cal uncertainty values in semantically rich natural language descriptions. Specifically, we describe
knowledge states of LLM based on two factors: knowledge possession and answer behavior, and
this results in a quadrant with four knowledge states expressed in natural language: (i) Have knowl-
edge and honesty (KH), (ii) Have knowledge but not honesty (K—H), (iii) Not have knowledge
but honesty (—KH), and (iv) Not have knowledge and not honesty (—K—H).

We quantify the knowledge possession of LLMs for a given question zx; through consistency de-
fined in Equation [I] and the indicator function 1 is Positive-Recall Exact Match (PREM), where
PREM(y¥, ;) = Tif y; € 9F vV §F € y;, otherwise PREM(y¥, 4j;) = 0, which is widely-used in
short-form QA. On the other hand, we model the answer behavior of LLMs via semantic entropy.



Under review as a conference paper at ICLR 2026

Overall, the procedure for mapping consistency and semantic entropy into the knowledge state quad-
rant S is defined as follows (We explain the details of knowledge states in Appendix [A.T]):

KH, if Consistency(z;) > 0 and SE(x;) = 0,

=K ledgeStat ( ) K II, if Consistency(xi) > 0 and SE(;L'Z) ?é ()7 ( )
S; nowledgestate(xr; ) =
KII, if Consistency(xi) = 0 and SE(I}) = O7

—K—H, otherwise.

The knowledge state formulation (Eq. [3) allows us to characterize LLMs in terms of trustworthiness
(knowledge posession) and honestness (answer behavior), and we finally augment each data entry
from (4, 9;) to (i, Ji, Yi, 84)-

4.2 TRAINING STAGE OF FAITH

We aim to leverage both internal and external knowledge to enhance the expression of existing
knowledge, bridging the gap between knowing and telling. To this end, as shown in Figure[I] Panel
(b), we first train a policy model using PPO to align LLM’s responses with its internal knowledge
states. We then train a RAG model to correct potentially incorrect responses by incorporating ex-
ternal knowledge. Finally, we introduce a knowledge state estimator that eliminates the need for
sampling multiple responses during inference, thereby improving efficiency. All prompt templates
used in training stage are provided in Appendix

Reference Model Training. We start from a pretrained base model and obtain a reference model
7, through supervised fine-tuning (SFT). Specifically, the model is fine-tuned using pairs of the
form (prompt(x;,s;); §;), where the prompt incorporates both the question x; and the knowledge
state s;, and j; is the golden answer. By fine-tuning the base model with these curated input—output
pairs, the reference model establishes a foundation for subsequent policy optimization.

Reward Model Training. To align generation with knowledge state, we train a reward model with
parameter 6 to evaluate the generated response combined with the knowledge state. Different from
existing binary reward r; € {0, 1} which only focuses on whether the response is correct or not and
ignores how confident the correct response is (Yao et al., 2025} Kirichenko et al., 2025}  Xue et al.,
2025)), we propose a fine-grained reward function to focus on both the correctness of response and
the uncertainty. Specifically, we propose a combined reward function:

RFAITH (SCZ‘, yqlic7 3311, 51') = Rcorrectness (yf, gz) + Runcertainty (51)

= ]lyfzgﬁ + Runcertainty (Si) s

“4)

where s; = KnowledgeState(z;) € S and the Runcerainy € {+2,+1, —1, —2} is defined by the
following rules in terms of its knowledge state s; in S:

+2 — KH, +1 — K—H, —1 —+ =KH, —2 — -K—-H.

We parameterize the reward function into a reward model RMjy. Specifically, given a dataset D
containing multiple tuples (x;, y¥, s;,7¥), where r¥ is the reward value, the reward model minimizes
the multi-class cross-entropy:

Lo =K@,y s rk)~p [log po(r¥ | =, yF, si)] - 5)

Our fine-grained reward model provides more informative feedback than a binary reward, encourag-
ing the policy model to align its generated responses with their knowledge state, where uncertainty
is expressed in natural language form rather than numeric scores.

Policy Model Training Similar to reinforcement learning from human feedback (RLHF) (Ouyang
et al.,2022), we employ PPO with a KL-divergence penalty to optimize LLMs for factuality align-
ment. Specifically, given a question x; paired with its knowledge state s;, both the reference model
m,, and the policy model 7 generate responses, while the reward model My evaluates the factual
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reliability of a generated response ¥; in terms of correctness and uncertainty (i.e., knowledge state).
The training objective is to optimize 74 to maximize the expected reward:

arg HTIF?;X EzND, s~KnowledgeState(xz), g~mg(x,s) RM9 (l‘, ga S) _B KL [Wu(x) || 7T¢(l’, S)] . (6)

reward penalty

RAG Model Training. We train a RAG model 7,4 to leverage external knowledge to rectify
potentially incorrect answers produced by the policy model. To this end, we first build a vector
database over the Wikipedia corpus (Karpukhin et al.| [2020) using the BAAI General Embedding
mode We employ IndexIVFPQ in Facebook Al Similarity Search (FAISS) (Johnson et al., 2021)
as the retriever to perform similarity search. For each question x; € D, the retriever returns the
top-3 most semantically relevant passages, denoted as ctz; = {context] ?:1, which are used as
context in prompt. Accordingly, we augment the training dataset entries from (x;, §;, Y:, s;) to
(x4, Ui, Y3, 8i, ctz;). Finally, we perform retrieval-augmented fine-tuning (RAFT) (Zhang et al.,
2024) of an LLM as the rectifier, using training pairs of the form (prompt(z;, s;, ¥:, ctx;); y;), where
1; 1s randomly selected from K responses in Y;.

Knowledge State Estimator Training. To improve inference efficiency, we additionally train a
knowledge state estimator that directly predicts the LLM’s knowledge state s; for a given question
z; € D. Since we represent knowledge possession and answer behavior within a knowledge state
quadrant, the estimator is formulated as a four-class classification task.

Specifically, given the augmented training dataset D = (z;, J;, Y, Sl)fll described in § we
perform supervised fine-tuning of an LLM to serve as the knowledge state estimator, using pairs of
the form (prompt (z;); s;), where the prompt incorporates the question z; and the target label is its
knowledge state s;. The estimator is parameterized by 7, and its SFT objective is defined as:

»C'r = _]E(xi,sq-,)ND UngT(si | xz)] . (7)

This design enables the estimator to obtain a knowledge state in a single forward pass, rather than
relying on sampling K responses and computing consistency and semantic entropy. We provide
empirical evaluations of the estimator’s impact on model performance in §[5.3]

4.3 INFERENCE STAGE OF FAITH

We employ the policy model 7, the estimator model E'st,, and the RAG model 7,44 to perform
factuality-enhanced question answering. Specifically, as shown in Figure[T] Panel (c), given a ques-
tion z, we first predict its knowledge state s in the knowledge state quadrant using the estimator
model: s = Est.(x). We then prompt the policy model 7¢ with (z, s) to generate the answer
g = mg(prompt(zx, s)). Finally, we apply the RAG model to further rectify the answer produced by
the policy model: §* = m,44(prompt(z, s, g, ctx;)), obtaining the final answer §*. We analyze the
impact of the RAG model as a rectifier in § [5.3] All prompt templates used during inference are
identical to those employed in the training stage.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. For training, we adopt the same widely used QA datasets as prior works in FAITH to
ensure fair comparison: (1) TriviaQA (Joshi et al} [2017), where questions are from various topics
and authored by trivia enthusiasts with evidence documents. (2) SciQ (Welbl et al., |2017b), which
focuses on question answering in the scientific domain; and (3) NQ-Open (Kwiatkowski et al.,
2019), consisting of Google search queries paired with annotated short-form answers.

For evaluation, we use the test splits of these three datasets as in-domain benchmarks, and employ
WebQuestions (Berant et al.,[2013a) as an out-of-domain dataset to assess the generalization capabil-
ity of our approach. Detailed descriptions and statistics of all datasets are provided in Appendix[A.4]

'"BGE-base-en-v1.5 : https://huggingface.co/BAAl/bge-base-en-v1.5
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Table 2: Precision and Truthfulness of FAITH (ours) vs. strong baselines on in-domain (ID) and
out-of-domain (OOD) QA datasets. The Average (ID) column denotes the average performance on
all three ID datasets. The subscript “sft” denotes ablation results with only supervised fine-tuning
(SFT), excluding the PPO and RAG (if applicable) module. Similarly, “sft+ppo” denotes results
with SFT and PPO, but excluding the RAG module. All results are reported in percentages.

TVQA (ID) SciQ (ID) NQ-Open (ID) Average (ID) WebQ-QA (OOD)
Method Prec. t Truth. t Prec. T Truth.t Prec. T Truth.t Prec.? Truth.t Prec.t Truth. T
Llama3-8B

ICL-CoT 66.68 53.37 72.34 45.90 57.34 23.60 65.45 40.95 65.97 30.85
SFT 70.80 52.57 72.18 45.40 41.41 16.57 61.46 38.18 66.46 31.18
RL-DPO 72.08 53.96 71.23 44.20 49.65 19.18 64.32 39.11 65.99 32.41
DTAE] 43.99 31.73 - - 56.72 21.12 - - 61.24 30.71
UAlign 79.14 57.04 76.44 48.00 56.60 26.09 70.72 43.71 66.88 33.01
UAlign, 7, 78.76 56.68 75.87 47.65 56.02 25.49 70.22 43.27 66.12 32.58

FAITH (ours)  84.19 60.69 80.61 49.99 58.13 27.58 74.26 45.73 67.99 34.03
FAITH,f¢yppo  82.95 59.80 80.29 49.70 57.99 26.52 73.79 45.69 67.31 33.75

FAITH, ;, 81.24 58.77 78.85 48.65 56.72 26.21 72.27 44.54 66.94 33.10
Mistral-7B-vO0.1
ICL-CoT 76.73 54.78 71.87 44.20 54.47 18.22 67.69 39.06 53.43 35.76
SFT 74.57 54.77 65.85 42.50 50.82 14.42 63.74 37.08 52.24 34.33
RL-DPO 72.20 52.98 66.44 41.80 50.95 16.42 63.19 37.06 52.01 33.87
DTA? 41.33 28.78 - - 41.01 20.49 - - 56.53 23.44
UAlign 82.10 59.05 73.21 46.70 54.17 19.64 70.82 41.79 56.47 37.02
UAlign, 7, 81.07 56.47 72.45 45.87 43.32 21.55 65.61 41.30 55.34 36.87

FAITH (ours)  87.20 60.72 81.42 51.40 48.05 2391 72.22 45.34 58.04 40.43
FAITH, ;¢\ ,,, 87.00 60.58 83.68 51.80 46.60 23.19 72.43 45.19 55.48 38.65
FAITH, f, 86.51 60.24 82.88 51.30 46.16 22.96 71.85 44.83 51.99 41.77

Evaluation Metrics. Consistent with baselines, we employ Precision (Prec.) and Truthfulness
(Truth.) as evaluation metrics. Precision measures the proportion of correctly answered questions
among all known questions, reflecting an LLM’s ability to accurately articulate its known knowl-
edge. Truthfulness is defined as the proportion of correctly answered known questions plus correctly
refused unknown questions over all questions. Further details are provided in Appendix

Baselines. We evaluate FAITH against five baseline methods that fall into three categories:
prompt-based, SFT-based, and RL-based. (1) ICL-CoT (Wei et all 2022): A prompt-based ap-
proach that uses few-shot exemplars with reasoning steps to improve answer accuracy. (2) Super-
vised Fine-Tuning (SFT): A standard baseline that fine-tunes LLMs by minimizing the negative
log-likelihood of ground-truth answers conditioned on the questions. (3) RL-DPO follows |Lin et al.
(2024) to construct factuality preference dataset to improve the factuality of LLMs by preference op-
timization. (4) Divide-then-Align (DTA): A framework for honest alignment of retrieval-augmented
LLMs based on knowledge boundary. It employs multi-objective training that combines DPO loss,
SFT loss, and boundary classification loss to align model behavior with knowledge boundary con-
straints (Sun et al.| 2025). (5) UAlign leverages uncertainty estimation to elicit LLMs to accurately
express factual knowledge that they cannot consistently answer correctly (Xue et al., 2025).

Training Setup. We implement our approach on Llama3-8B (Dubey et al.,|2024) and Mistral-7B-
v0.1 (Jiang et al., |2023a)), applying LoRA for parameter-efficient fine-tuning. Full training details

are provided in Appendix

5.2 MAIN RESULTS

We evaluate the effectiveness of our factuality alignment framework FAITH against strong baselines
with experimental results presented in Table[2] From the table, we have the following key findings.

(1) FAITH achieves state-of-the-art performance, outperforming advanced baselines. As
shown in Table [2] FAITH consistently surpasses five baselines on three in-domain and one out-of-

For DTA with Llama3, we directly evaluate the released checkpoint, whereas for DTA with Mistral, we
fine-tune Mistral-7B-Instruct on the released training data for Llama3 in a transfer setting. Meanwhile, since
DTA requires augmented QA datasets with RAG context and SciQ’s augmented version was not released, its
results on SciQ are unavailable (denoted as “~” in the table).
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domain dataset. For instance, on Llama3-8B model, FAITH achieves an overall precision of 74.26%
and truthfulness 45.73% on in-domain datasets, and it attains precision of 67.99% and truthfulness
of 34.03% on WebQuestions dataset. We observe similar performance superiority on Mistral-7B
model, with the exception of precision on NQ-Open, demonstrating that the effectiveness of FAITH
generalizes across models and datasets.

(2) Natural-language knowledge states are more effective than numerical uncertainty values
in guiding knowledge-boundary-aware question answering. To assess the effectiveness of our
knowledge-state-quadrant design, we compare it against numerical uncertainty values. Specifically,
we construct a variant of UAlign by eliminating its policy optimization stage and retaining the re-
maining SFT stage, i.e., we apply SFT with prompts containing numerical uncertainty values. We
keep all other settings unchanged. Similarly, we implement FAITH with SFT only, where the model
is prompted with natural-language knowledge state drawn from the knowledge-state quadrant. Their
performance is reported in Table |Z| under UAlign, s, and FAITH s, respectively.

Evaluation shows that replacing numerical uncertainty values with semantically rich knowledge
states in natural language yields clear gains in guiding LLMs to understand their knowledge bound-
ary and answer questions accordingly. For instance, on Llama3-8B, FAITH with SFT outperforms
UAlign with SFT by 2.05% in precision and 1.27% in truthfulness on average, with even larger
improvements observed on Mistral-7B. We attribute these improvements to LLMs’ preference for
semantically meaningful labels (e.g., “known”, “honest”) that better convey knowledge boundary.
In contrast to fitting abstract numerical values, LLMs more readily interpret and leverage natural
language as guidance, enabling knowledge-boundary-aware question answering.

(3) Reinforcement learning with our proposed reward function improves performance. We
examine the impact of reward function design by comparing the correctness-based binary reward
used in UAlign with our fine-grained reward function in Eq. 4 For example, on Llama3-8B, ap-
plying PPO with binary reward yields average gains of 0.7% in precision and 0.44% in truthfulness
over SFTE| on three in-domain datasets, whereas FAITH, applying PPO with our reward function,
achieves larger improvements of 1.52% in precision and 1.15% in truthfulness, which demonstrates
the effectiveness of the fine-grained reward function in incentivizing LLM’s generation from both
correctness and uncertainty.

(4) Retrieval-Augmented Fine-Tuning aligns policy model outputs with external knowledge
by rectifying potential errors. As shown in Table [2] comparing the values under FAITH with
FAITH, f: ppo, We observe consistent performance improvements across both LLMs, except for
SciQ on Mistral-7B. This demonstrates that incorporating external knowledge enhances the truth-
fulness of LLM’s responses. Besides, we manually inspect the corrections made by RAG model to
the policy model outputs. Interestingly, some rectifications fail, even altering correct answers into
incorrect ones, though such cases are rare. We provide an in-depth analysis of such cases in §[5.3]

5.3 ANALYSIS AND DISCUSSION

Performance of the RAG Model on Post-Hoc mEm Wrong - Correct Correct - Wrong
Correction to Policy Model Outputs. For

this analysis, we conduct a statistical study on

both in-domain (TriviaQA, SciQ, NQ-Open) 80% 1
and out-of-domain (WebQuestions) datasets, 70/
with results summarized in Figure 2} Specif- gz; ]
ically, we examine the responses produced by 20%
the policy model that are subsequently modi- 30% -
fied by the RAG model, and compute the pro- 20% -
portion of cases where an incorrect response is 10% A
corrected into a correct one versus the reverse. 0% -
We find that the proportion of correct rectifi- ) ]
cations consistently exceeds that of erroneous Figure 2: Ratios of on four datasets.
rectifications across all datasets. Notably, on TriviaQA, 87% of the policy model outputs modified
by the RAG model are corrected successfully, demonstrating that incorporating external knowledge
effectively compensates for the insufficiency of relying solely on internal knowledge.

87.0%

68.2%

59.7% 63:2%

0.3% 6.8%

Ratio (%)

1.8%

TriviaQA SciQ NQ-Open WebQuestions

3Calculated as the difference between the metric values reported under UAlign and UAlign, r¢ in Table
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Calculate Knowledge State: Estimator vs. Sample K Responses. We further investigate the
impact of different knowledge state estimation strategies on model performance during inference,
comparing model-based estimation and sampling-based estimation. The model-based approach cor-
responds to our trained estimator model, whereas the sampling-based approach follows a two-stage
pipeline: first sampling K responses using prompts with different one-shot examples, and then com-
puting the knowledge state with Eq. [3] For this analysis, we set KX = 6, consistent with the training
stage. We present the evaluation results for precision and truthfulness in Table [3] and we observe
that sampling-based estimation yields slightly higher precision and truthfulness in most cases.

These findings indicate the distribution of the knowledge states can be captured by a trained LLM,
while also highlighting a trade-off between efficiency and performance: sampling provides better
performance with interpretable uncertainty measures, whereas model-based estimation avoids K
rounds of inference with only minimal performance degradation.

Table 3: Performance comparison between model-based and sampling-based knowledge state esti-
mation (K = 6). Results are reported on precision and truthfulness across all datasets and models.

TVQA (ID) SciQ (ID) NQ-Open (ID) Average (ID) WebQ-QA (OOD)
Method Prec. T Truth. t Prec. ! Truth.t Prec. T Truth. T Prec. ! Truth.t Prec.T Truth. T
Llama3-8B
Estimator 82.95 59.80 80.29 49.70 57.99 26.52 73.79 45.69 67.31 33.75

Sample-based  83.99 59.86 83.20 51.50 58.23 26.93 75.14 46.10 67.85 34.07
Mistral-7B-v0.1

Estimator 87.00 60.58 83.68 51.80 46.60 23.19 72.43 45.19 55.48 38.65

Sample-based  87.43 60.88 84.01 52.00 45.66 22.71 72.37 45.20 55.70 38.80

Training-time Scaling: the Impact 100

of Number of Sampled Responses. o0 4
We study the training-time scal- 5 |, i ; RIE
ing behavior, i.e., how the number c60je—¢———¢——%| 8 06—
2 c
of sampled responses K used dur- 2,/ 2 |
. . . Qo S A— * * A
ing data augmentation influences the & El—e—o
training performance of the policy 20 —¢-TriviaQA —#-NQ-Open | 7 8- TriviaQA —#-NQ-Open
K SciQ —&— WebQ-QA SciQ —&— WebQ-QA
model. The default K we use is 0 : . . . ; : ;
6 8 10 12 6 8 10 12

6 in the main framework for effi-
ciency. Here, specifically, we in- Figure 3: Training-time scaling with different numbers of
crease K from 6 to 8, 10, and 12 sampled responses (K).

during data augmentation, resulting in augmented datasets that differ only in the values of K. These
datasets are then used to train both estimator and policy model (including reference model and re-
ward model). Finally, we evaluate the trained models and compare the performance. As shown
in Figure [3| increasing K beyond 6 does not yield noticeable improvements in either precision or
truthfulness. This suggests that sampling K = 6 responses during data augmentation is already
sufficient and effective to capture the distribution of the model’s knowledge state, while also keep-
ing the efficiency. In other words, while larger K values slightly expand the coverage of sampled
responses, they do not translate into significant gains in downstream performance, indicating minor
effects. The detailed numerical results are provided in Table d]in the Appendix[A.6]

Finally, we present case studies and discuss the limitations in Appendix and respectively.
For reproducibility, the code is available in an anonymous repository at https://anonymous.
4open.science/r/FAITH-33A3

6 CONCLUSION

We present a post-training framework, called FAITH, for factuality alignment in LLMs. Our ap-
proach estimates uncertainty and translates the numerical values into natural-language knowledge
states that measure the knowledge possession and answering behavior of LLMs. Meanwhile, we
design a fine-grained reward function to incentivize both correctness and uncertainty of LLM’s re-
sponse. Finally, we introduce a trained RAG model to rectify potentially incorrect responses gen-
erated by policy model. Experiments show that FAITH substantially outperforms recent baselines
in truthfulness and precision. We hope this work contributes to building more faithful and factual
LLMs as part of the broader community effort.


https://anonymous.4open.science/r/FAITH-33A3
https://anonymous.4open.science/r/FAITH-33A3
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A APPENDIX

A.1 DERIVATION OF RULES FOR MAPPING UNCERTAINTY VALUES TO KNOWLEDGE STATES

The proposed rule-based mapping from uncertainty values (Consistency and SFE) to natural-
language knowledge states is as follow:

LetY; = {yf}szl be K sampled responses from model and ¢ be the reference answer. Knowledge
possession is captured by Consistency, where:

+ Consistency > 0 indicates there exists at least one response y¥ matches the ground-truth
answer g, meaning the model possesses the required knowledge with a very high probabil-
ity.

» Consistency = 0 represents that the model fails to answer the question correctly with K
times, indicating the model does not possess relevant knowledge to the question. For a
given question, we assume that if the LLM possesses the relevant knowledge, the proba-
bility of answering it correctly is pp = 0.5. We set the confidence level to o = 0.05. If
none of the K sampled responses are correct, then with confidence 1 — o we can reject the
hypothesis that the model’s probability of producing a correct answer satisfies pg > 0.5.
Under the assumption pg = 0.5, sampling K = 6 responses is sufficient to show that if
none of them are correct, the model is unlikely to possess the relevant knowledge.

Answer Behavior is measured by semantic entropy:

* The magnitude of semantic entropy reflects the model’s uncertainty at the semantic level:
a higher value indicates diverse or conflicting semantic outputs (greater ambiguity), while
a lower value suggests more consistent and deterministic semantic interpretations.

» Semantic entropy equals zero when all generated outputs are semantically equivalent, i.e.,
they fall into the same semantic cluster with no competing interpretations. From the seman-
tic perspective, the model is completely certain, exhibiting neither ambiguity nor polysemy.

Given these interpretations, the mapping rules follow a logically consistent decision path:

1. If Consistency > 0 and SE = 0, the model is judged to possess the relevant knowledge of
a question and honestly provides consistent correct responses, corresponding to the knowl-
edge state KH.

2. If Consistency > 0 and SE # 0, the model produces a mix of correct and incorrect
answers, indicating insufficient mastery of the knowledge to express it accurately. The
reason for this gap could be decoding strategy, hallucination snowballing, misalignment
issues (Liang et al.}2024])). This corresponds to the knowledge state K—H.

3. If Consistency = 0 and SE = 0, the model lacks correct knowledge but converges on a
single interpretation, corresponding to the knowledge state ~KH.

4. In all other cases, the knowledge state is classified as ~K—H.

Overall, the mapping is determined by two factors:

Knowledge possession (Consistency) and Answer honesty (Semantic Entropy),

know tell

which together define a quadrant of four cognitive states, ensuring both interpretability and com-
pleteness.

A.2 PROMPT TEMPLATES

We illustrate the prompt templates used in this work in Figure [} detailing the input structure, in-
corporated knowledge states, and output format. The templates explicitly define how a question is
combined with its corresponding knowledge state, optionally with retrieved external context, and
then formatted to elicit model responses. By making this structure explicit, the figure clarifies how
prompts guide the model during both training and inference, ensuring consistency across stages.
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Moreover, the design rationale highlights how natural-language descriptions of knowledge states
are integrated into the prompt, which is essential for conveying uncertainty information in a seman-
tically interpretable way.

Prompt template for sampling responses

You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.

### Question ###: {demo_question_1}
### Answer ##H#: {demo_answer_1}
### Question ##H#: {input_question}
### Answer ###:

Prompt template for supervised fine-tuning of the reference model

You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
### Question ###: {THE QUESTION FROM DATASET}

### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}

### Output ###: { GOLDEN ANSWER}

Prompt template for policy model optimization

You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
### Question ###: {THE QUESTION FROM DATASET}

#i## Self-Eval ##H#: { THE KNOWLEDGE STATE FROM DATASET }

#i## Answer ##H#: { GOLDEN ANSWER}

Prompt template for RAFT a RAG model

You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
### Question ###: {THE QUESTION FROM DATASET}

### Self-Eval ###: {THE KNOWLEDGE STATE FROM DATASET}

### Prior Judgment ###: {RANDOMLY SELECTED RESPONSE FROM Y }

### Retrieve Documents ###: related passages: ###passage 1### ##Hpassage 2#H# #HHtpassage 3#H

### Posterior Answer ###: { GOLDEN ANSWER }

Prompt template for RAG model in inference

You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
### Question ##H#: {THE QUESTION FROM DATASET}

#i## Self-Eval ##H#: { THE KNOWLEDGE STATE FROM DATASET }

#### Prior Judgment ###: {POLICY MODEL'S OUTPUT }

#it# Retrieve Documents ###: related passages: ###passage 1##H##Hpassage 2####;#HHfpassage 3###

### Posterior Answer ###: { GOLDEN ANSWER }

Prompt template for supervised fine-tuning of the estimator model.

You are an excellent Question-Answering assistant. Please answer the following question based on your knowledge.
### Question ###: {THE QUESTION FROM DATASET}
#i## Self-Eval ##H#: { THE KNOWLEDGE STATE FROM DATASET }

Figure 4: All the prompt templates employed in FAITH (our framework).
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A.3 DETAILS OF TRAINING

All experiments are conducted on a cluster equipped with 4 x NVIDIA A40 and/or 4 x NVIDIA
4090D GPUs.

For supervised fine-tuning (SFT) of both the reference model and estimator in FAITH, we train for
3 epochs. We adopt the Adam optimizer with an initial learning rate of 2e-4. We apply LoRA with
a rank of 32, alpha of 16, and a dropout rate of 0.05, targeting all layers. The batch size per device
is set to 8, with gradient accumulation steps of 8, leading to a total batch size of 256. The learning
rate scheduler follows a cosine decay with a warmup ratio of 0.0.

For policy optimization, both the reward model (RM) and the PPO stages are trained for 2 epochs.
We adopt the Adam optimizer with an initial learning rate of le-5. LoRA is applied with a rank of
8, alpha of 16, and a dropout rate of 0.05, again targeting all layers. The per-device batch size is set
to 4, with gradient accumulation steps of 8, leading to a total batch size of 128. The learning rate
scheduler is cosine decay, and the warmup ratio is 0.0, consistent with the SFT stage.

A.4 DETAILS OF DATASET

SciQ: The SciQ dataset (Welbl et al., 2017al) contains 13,679 crowdsourced science examination
questions covering subjects such as physics, chemistry, and biology. Although originally released
in multiple-choice format, in our setting all answer options are removed, and each question is refor-
mulated as an open-ended query requiring a direct answer. For most questions, an accompanying
paragraph with supporting evidence is provided, offering factual context that can be utilized to guide
answer generation and factual alignment. In our experiments, 11,679 samples are used for training
and 1,000 samples are reserved for validation, with the remaining questions serving as an in-domain
test set.

TriviaQA: TriviaQA (Joshi et al.} 2017) is a large-scale reading comprehension dataset contain-
ing over 650K question-answer-evidence triples, with questions authored by trivia enthusiasts and
evidence documents collected from Wikipedia and the web. In our work, for constructing the aug-
mented dataset, we pre-process and sample half of the original training set.

NQ-Open: NQ-Open (Kwiatkowski et al.,|2019) is an open-domain QA benchmark derived from
the Natural Questions dataset, where real user queries are paired with English Wikipedia passages
as the knowledge source. In our work, we employ NQ-Open for augmented dataset construction.
Similarly, to ensure fair comparison and reduce computational cost, we sample half of the original
training data.

Web-Questions: The WebQuestions dataset (Berant et al., |2013b) comprises 6,642 ques-
tion—answer pairs, where each question can be answered using Freebase, a large-scale knowledge
graph. The majority of questions are centered around a single named entity and reflect typical
queries collected from the web around 2013. In our experiments, we only employ its test set (1348
item) for the evaluation under the out-of-domain evaluation setting.

A.5 DETAILS OF EVALUATION METRICS

Truthfulness quantifies the proportion of correct responses among all provided answers, reflecting
the LLM’s overall reliability in expressing knowledge. The formula for Truthfulness is given as

follows:

UR + KC
Truthfulness — 8
TUIUInesS = e+ K1+ KR + UC + Ul + UR ®)

Precision measures the proportion of correctly answered questions among those for which the model
possesses the relevant knowledge, reflecting the LLM’s ability to accurately convey known facts.
The formula for Precision is given as follows:

KC
Precision = m (9)
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A.6 NUMERICAL RESULTS OF TRAINING-TIME SCALING

Table [ reports the detailed numerical results corresponding to the training-time scaling analysis.
The table compares precision and truthfulness across different values of K (6,8, 10,12). Consis-
tent with Figure [3] the results show that increasing K beyond 6 does not yield noticeable gains,
confirming that K = 6 is sufficient to capture the model’s knowledge state distribution during data
augmentation.

Table 4:

Training-time scaling with different numbers of sampled responses (/') on Llama-3-8B.

TVQA (ID) SciQ (ID) NQ-Open (ID) Average (ID) WebQ-QA (OOD)

# Responses Prec. ©  Truth. t Prec. 1 Truth.t Prec.t Truth.t Prec.t Truth.T Prec.t Truth. T

Llama-3-8B
K=6 82.95 59.80 80.29 49.70 57.99 26.52 73.79 45.69 67.31 33.75
K=8 84.36 63.55 81.52 54.70 60.95 25.51 75.61 47.92 67.42 37.76
K=10 84.01 63.79 80.94 55.20 60.44 25.98 75.13 48.32 67.10 38.43
K=12 84.36 64.65 80.76 55.40 60.35 26.40 75.16 48.82 66.15 38.28

A.7 CASE STUDY

In our method FAITH, one focus is to train RAG model to align the policy model’s output with
external knowledge. The RAG model is provided with retrieved passages as context, allowing it to
rectify or retain the policy model’s responses. In this section, we analyze three types of corrections,
with representative cases shown in Table[5] [6] and[7] as case studies. Specifically, the three correction
types are summarized as follows:

1.

Implicitly Supported Correction: The initial answer from the policy model was incor-
rect, but after applying our trained RAG model, the final answer was corrected. Notably,
the retrieved passages did not verbatim reproduce the correct answer, but contained key
information or semantic cues related to the correct answer. Details can be found in Table[3

. Explicitly Supported Correction: The policy model initially produced an incorrect out-

put, but after applying our trained RAG model, the final output was corrected. In this
process, the retrieved content from RAG not only directly reproduced the correct answer
but also provided additional information related to it, thereby supporting the model’s cor-
rection. Details can be found in Table[6l

. Misleading Override: The policy model initially produced the correct answer. However,

after applying our trained RAG model, the output was incorrectly altered. This occurred be-
cause the retrieved content contained misleading information that contradicted the correct
answer, ultimately leading to an erroneous output. Details can be found in Table[7]

19



Under review as a conference paper at ICLR 2026

Table 5: Case Study Analysis 1 of Model Responses. Specifically, A denotes Ground Truth, Al
denotes the policy model’s output, and A2 denotes the final output.

Type

Question & Answer

Retrieved Passages

Our Analysis

Implicitly Supported Correction

Q: Protists play crit-
ically important eco-
logical roles as pro-
ducers and, on the
other end of food
webs, as what?

A: decomposers

Al: consumers

A2: decomposers

I. In real world ecosystems, there
is more than one food chain for
most organisms, since most organ-
isms eat more than one kind of food
or are eaten by more than one type
of predator. A diagram that sets out
the intricate network of intersecting
and overlapping food chains for an
ecosystem 1is called its food web.
Decomposers are often left off food
webs, but if included, they mark the
end of a food chain. Thus, food
chains start with primary pro-
ducers and end with decay and
decomposers.

II. Food webs have trophic lev-
els and positions. Basal species,
such as plants, form the first level
and are the resource-limited species
that feed on no other living crea-
ture in the web. Basal species can
be autotrophs or detritivores, in-
cluding decomposing organic mate-
rial and its associated microorgan-
isms, which we defined as detritus,
micro-inorganic material, and asso-
ciated microorganisms (MIP), and
vascular plant material.

III. The microbial food web refers
to the combined trophic interactions
among microbes in aquatic envi-
ronments. These microbes include
viruses, bacteria, algae, and het-
erotrophic protists (such as ciliates
and flagellates). In aquatic environ-
ments, microbes constitute the base
of the food web. Single-celled pho-
tosynthetic organisms such as di-
atoms and cyanobacteria are gen-
erally the most important primary
producers in the open ocean. Many
of these cells, especially cyanobac-
teria, are too small to be cap-
tured and consumed by small crus-
taceans and planktonic larvae. In-
stead, these cells are consumed by
phagotrophic protists, which are
readily consumed by larger organ-
isms.

Some protists do function
as Al (consumers), but the
model fails to accurately ad-
dress the specific context of
“the other end of food webs”
posed in the question. This
suggests the model’s insuf-
ficiency in effectively utiliz-
ing its internal knowledge
to answer the question, or
a failure to correctly un-
derstand the question, par-
ticularly its key constraints.
After introducing the re-
trieved information to our
trained RAG model, it suc-
cessfully corrected the an-
swer to A2 (decomposers).
The retrieved information,
in paragraph I, provides the
crucial background knowl-
edge: “Thus food chains
start with primary producers
and end with decay and de-
composers.” This informa-
tion does not explicitly state
that “protists are decom-
posers.” Instead, it requires
the model to synthesize this
information with “protists”
and “the other end of food
webs” to deduce the cor-
rect answer. We denote this
process as Implicitly Sup-
ported Correction.
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Table 6: Case Study Analysis 2 of Model Responses. Specifically, A denotes Ground Truth, Al
denotes the policy model’s output, and A2 denotes the final output.

Type

Question & Answer

Retrieved Passages

Our Analysis

Explicitly Supported Correction

Q: Rita Coolidge
sang the title song
for which Bond film?
A: Octopussy

A1: North by North-
west

A2: Octopussy

I. Octopussy is the soundtrack for
the eponymous thirteenth James
Bond film. The score was com-
posed by John Barry, the lyrics by
Tim Rice. The opening theme,
All Time High is sung by Rita
Coolidge and is one of six Bond
film title songs or songs that are
not named after the film’s title.
The original compact disc released
in 1985 by A&M Records, was re-
called because of a printing error
and became a rarity.

II. Another Way to Die is a song
by American musicians Jack White
and Alicia Keys. Written and pro-
duced by White as the theme song
to the 2008 James Bond film Quan-
tum of Solace, it was released as
a single in the United States on
September 30, 2008, and in Europe
on October 20, 2008.

III. Tomorrow Never Dies is the
song, performed by Sheryl Crow,
which served as the theme song to
the James Bond film of the same
name. The song was co-written
by Crow and the song’s producer
Mitchell Froom, and became her
fifth UK Top 20 hit, peaking at No.
12 in 1997. Another song, To-
morrow Never Dies, written by the
movie’s composer David Arnold
and performed by k.d. lang, was
originally produced as the official
theme tune. When Crow’s song
became the official theme, the k.d.
lang song was relegated to the end
credits, and renamed Surrender.

The model’s initial response,
Al (North by Northwest),
is a significant factual error,
as this film is not even part
of the James Bond series.
This indicates a substantial
knowledge gap or a “hallu-
cination” in the model’s in-
ternal knowledge base. Af-
ter the RAG intervention,
the model successfully cor-
rected the answer to A2
(Octopussy). The retrieved
information in paragraph I
contains all the key details
required to rectify the er-
ror. The passage explicitly
states, “The opening theme,
All Time High is sung by
Rita Coolidge” and that the
soundtrack was for the film
Octopussy. The model sim-
ply needed to match the
key entity from the ques-
tion, “Rita Coolidge”, with
the retrieved text to di-
rectly find the name of the
film for which she sang the
theme. The entire process
involves direct information
extraction and localization,
requiring almost no complex
reasoning. We denote this
process as Explicitly Sup-
ported Correction.
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Table 7: Case Study Analysis 3 of Model Responses. Specifically, A denotes Ground Truth, Al
denotes the policy model’s output, and A2 denotes the final output.

Type ‘ Question & Answer

Retrieved Passages

Our Analysis

Misleading Override

Q: Which grand slam
did Pete Sampras not
win in the 20th cen-
tury?

A: French

Al: French Open
A2: Wimbledon

I. As the Swiss national anthem
played Federer was overcome with
emotion after finally capturing the
elusive title at Roland Garros. This
match was momentous in the his-
tory of tennis.  After missing
the chance to equal Pete Sampras’
then-record of fourteen Grand Slam
championships of all time when he
lost to Rafael Nadal in the final
of the Australian Open earlier in
the year, Federer finally did so by
winning the French Open for the
first time. Sampras himself com-
mented on Federer following the
victory saying, Regardless he [Fed-
erer] goes down as the greatest ever.
II. In the eight Wimbledons in-
clusive between 1993 and 2000,
1996 was the only year that Sam-
pras would fail to win the cham-
pionship at Wimbledon. Sampras
lost in the quarterfinals of Wimble-
don to the eventual winner, Richard
Krajicek, the tournament’s 17th-
seed. The match lasted three long
sets, with Krajicek winning 7-5, 7-
6, 6-4. In the quarterfinals of the
US Open, Sampras vomited on the
court at 1-1 in the final set tiebreak
(due to dehydration) while facing
Alex Corretja; nonetheless, Sam-
pras would win that match.

III. He beat former champion
Michael Stich in the fourth round
and met Sampras in the quarterfi-
nals. By that time, he had man-
aged to turn his notably weak slice
backhand into an aggressive top-
spin shot. Krajicek shocked the
tennis world by defeating Sampras
in straight sets, becoming the only
player to beat Sampras in a Wim-
bledon singles match in the eight-
year period from 1993 until Sam-
pras’ fourth-round loss to Roger
Federer in the 2001 tournament.

This is a failure case of a
"correct-to-incorrect’ rever-
sal caused by the RAG. The
model’s initial judgment, A1
(French Open), was cor-
rect, indicating that its inter-
nal knowledge base already
contained the key fact about
Sampras’s career. However,
the intervention of RAG in-
stead led to a degradation
in performance. The core
of the failure lies in the
Retrieval stage. The re-
trieved information, though
related to the key entities
“Pete Sampras” and “Grand
Slam*, did not align with
the question’s specific re-
quirement (“did not win” in
the 20th century). The re-
trieved content, particularly
in paragraphs II and III, re-
peatedly and in detail de-
scribed a specific loss Sam-
pras had at Wimbledon (in
1996 to Krajicek). Phrases
like “fail to win the cham-
pionship at Wimbledon” be-
came a strong and irrelevant
distracting signal. = When
generating the final answer,
the model over-relied on this
incorrectly retrieved and dis-
tracting content, thereby ig-
noring its own correct prior
knowledge. It was mis-
led into outputting the in-
correct answer A2 (Wimble-
don). We denite this process
as Misleading Override.
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A.8 LIMITATIONS

Reward Function Design. Our reward function is derived from heuristic rules that are straightfor-
ward to formulate and intuitively easy to interpret. In practice, we observe that this design works
well empirically and provides meaningful guidance for aligning model behavior. However, the cur-
rent formulation lacks rigorous theoretical guarantees, leaving room for future work to establish a
stronger theoretical foundation for its effectiveness.

Computational Overhead. During dataset construction, we sample K responses and build a vector
database. At inference time, our pipeline first uses E'st, to estimate the knowledge state s, then
applies the policy model 74 to generate an answer, and finally employs 7,4 for rectification. Even
without rectification, two model inferences are required, rather than a single end-to-end pass. For
future work, we plan to explore more efficient approaches for cognitive-state estimation, such as
lightweight estimators derived from LLM internal representations (Zhu et al., ZOZSﬂ

Unexplored Aspects of RAG Effectiveness. Our current study does not investigate how the qual-
ity of the data used to build the vector database affects FAITH’s performance. For example, on
the SciQ dataset with Mistral-7B, incorporating external knowledge does not improve correction
effectiveness, which may be related to the quality of the retrieved context. In addition, we have not
explored more effective ways of leveraging external knowledge for rectification, such as integrating
RAFT directly the SFT stage and accordingly applying PPO training on top of the RAFT-enhanced
model, rather than additionally train a RAG model.

A.9 REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. We provided detailed
descriptions of the datasets used in our experiments, all of which are publicly available. Our
method is thoroughly explained in dedicated sections § |4, and we also provide detailed train-
ing parameters § [5.1] Finally, we have submitted the code via this anonymous repository at
https://anonymous.4open.science/r/FAITH-33A3

We hope that these measures will facilitate the replication of our work by other researchers and
further advance the field.

A.10 THE USE OF LARGE LANGUAGE MODEL

The authors acknowledge the use of OpenAl ChatGPT solely for enhancing the coherence of the
final manuscript, and providing assistance with coding for data processing.

“This related work has been publicly available on arXiv since September 16, 2025, a week before the ICLR
paper submission deadline.
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