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ABSTRACT

Few-shot segmentation (FSS) aims to segment new category images given only a
few labeled samples. Most previous works concentrate on the design of intricate
query decoders to perform feature matching or aggregation between the support
and query. In this paper, we revisit a widely overlooked aspect of existing FSS
methods, i.e., the exploration of fixed pre-trained backbone features. We find that
treating all feature channels equally is suboptimal and propose a Task-specific
Channel-wise Modulation Network (TCMNet) to focus more attention on task-
aware channels, facilitating more effective utilization of pre-trained features. The
proposed TCMNet enjoys several merits. First, we design a self-modulation block
that injects the gradient information into channel-wise attention layers, thereby
enhancing the discriminability between target and background features. Second,
a cross-calibration block is introduced to align the support features toward the
query according to the target gradient and representations, which mitigates the
impact of intra-class diversity. Extensive experimental results on COCO-20i

and Pascal-5i benchmarks demonstrate that the TCMNet, as a general plugin,
consistently achieves significant improvements over different query decoders and
also achieves state-of-the-art results. In addition, the decent performance achieved
by exploring the backbone features may inspire another direction for developing
more comprehensive FSS models.

1 INTRODUCTION

Semantic segmentation has achieved conspicuous achievements benefiting from large-scale annotated
datasets (Lin et al., 2014; Mottaghi et al., 2014; Kirillov et al., 2023) and elaborate deep-learning
techniques (Long et al., 2015; Vaswani et al., 2017; Ronneberger et al., 2015; He et al., 2016).
However, the dependence on extensive annotated data constrains the capabilities of segmentation
models to predefined training categories, severely limiting their practical applications. To overcome
such inherent category sensitivity and in pursuit of human-like intelligence of learning from scarce
samples, few-shot segmentation (FSS) (Shaban et al., 2017) is proposed to derive segmentation
models capable of quickly generalizing to novel classes.

Concretely, FSS aims at segmenting new category images (i.e., query images) with only a handful
of labeled reference images (i.e., support images). Tackling diverse query images with extremely
limited support reference poses great challenges as: (1) Significant intra-class diversity between
support and query targets is frequently encountered, as shown by the two persons in Figure 1. (2)
Cluttered query backgrounds often contain distractors, such as training classes (Lang et al., 2022a)
or similar interfering objects (e.g., colored boxes in Figure 1 (b)). These factors elevate the risk of
errors or incompleteness in target segmentation, constituting two fundamental challenges in FSS.

The current top-performing FSS frameworks usually comprise a ImageNet (Russakovsky et al.,
2015) pre-trained Siamese backbone (Liu et al., 2020a) to encode support and query images into
the shared feature space, as well as a support-guided query decoder to excavate the query target
through cross-image feature matching (Shi et al., 2022a; Li et al., 2021; Zhang et al., 2021c) or
aggregation (Min et al., 2021; Hong et al., 2022). To alleviate the challenges discussed above, most
recent research has delved into the design of the decoder, yielding considerable progress such as
prototypical learning-based (Liu et al., 2020b; Li et al., 2021; Wu et al., 2021; Wang et al., 2024)
or affinity learning-based decoders (Zhang et al., 2021c; Wang et al., 2023b; Shi et al., 2022a;
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(a) Observation (b) Fundamental challenge of FSS (b) Our Solution TCMNet

Figure 1: (a)T-SNE visualization of foreground prototypes of all the training samples. We find that
channel manipulation can enhance the discriminability of specific categories. (b)Illustration of two
fundamental challenges of the FSS task. (c) Illustration of the feature modulation process.

Min et al., 2021; Peng et al., 2023). Meanwhile, the pre-trained Siamese backbone is typically
frozen during the training and testing processes to prevent model overfitting on small datasets, thus
facilitating generalization on widely distributed categories. However, through an in-depth analysis
of backbone features pre-trained via classification objectives, we argue that employing the pre-
trained backbone features straightforwardly is suboptimal. In fact, multiple channels of backbone
features respectively model distinct levels of meta-characteristics. As illustrated in Figure 2(a), the
fully supervised classification or segmentation models (Long et al., 2015; Ronneberger et al., 2015)
are equipped with category-customized classifiers (fully connected layer or convolutional head) to
adaptively combine different channels with various weights for discriminative prediction. While in
current FSS approaches, all channels of input features are of equal importance when they are fed into
the FSS query decoders (as shown in Figure 2 (b)). This exacerbates the principal challenges of FSS
because the meta-characteristics shared across classes might be interfering factors in distinguishing
query targets from cluttered backgrounds, and the intra-class meta-characteristics discrepancy implies
the potential bias in support guidance. Therefore, exploring a more reasonable utilization of backbone
features may offer another avenue for effective FSS.
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Figure 2: Comparison of how backbone features are
used in fully supervised segmentation models (a), previ-
ous FSS models (b), and our TCMNet (c).

Drawing upon insights from the realm of
feature visualization (Zhou et al., 2016;
Selvaraju et al., 2016), we deem that fo-
cusing on specific feature channels can ef-
fectively enhance the discriminability of
features to corresponding categories. As
illustrated in Figure 1(a), after randomly
dropping some channels of backbone fea-
tures, there emerges a category that ex-
hibits notable distinguishability from oth-
ers. Such explicit feature adjustment can
serve as an ideal solution tailored for FSS-
like binary segmentation. Nevertheless, in
the absence of category-customized clas-
sifiers in the FSS scenario, a natural ques-
tion arises: How to identify and focus on
category-related channels when tackling
objects of a specific class?

Driven by this question, in this work, we
carefully design the Task-specific Channel Modulation (TCM) network, which can be applied as
a generic plugin to adaptively highlight category-relevant parts of the backbone features before
processing by the query decoder as shown in Figure 2(c). TCM coherently alleviates the impacts
of the two foundational FSS challenges by incorporating a Self-Modulation Block (SMB) and a
Cross-Calibration Block (CCB). Specifically, to deal with cluttered background, inspired by deep
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explanation methods (Guidotti et al., 2018), we resort to the gradient information to evaluate the
importance of different channels for the current task, which is then injected into the channel-wise
attention layer as explicit guidance, facilitating the concentration on the task-relevant channels. To
deal with intra-class diversity, in CCB, we introduce a dual calibration strategy that incorporates
two support-to-query channel transformation matrices to adjust the support features to align with
the query features. The matrices are respectively built upon the gradient vectors and holistic target
representations, serving as the bridge of the intra-class feature gap. Through the synergy of SMB
and CBB, the proposed TCMNet not only enhances the target awareness of support and query
backbone features but also reconciles the inherent tension between them. Superior feature matching
or aggregation within the query decoder can then be achieved on the basis of optimized backbone
features.

We evaluate the proposed TCMNet on two widely used benchmarks, i.e., COCO-20i (Lin et al.,
2014) and Pascal-5i (Everingham et al., 2010) with different backbones. Extensive experiments
demonstrate that the lightweight TCMNet consistently boosts performance when integrated with
various existing FSS query decoders. Furthermore, the explicit modulation also expedites model
convergence. In summary, our contributions can be concluded as follows: (i) We jump out of
the design of query decoder and steer toward a new perspective of FSS, i.e., employing gradient
information to modulate the pre-trained backbone features for more reasonable utilization. (ii) We
put forward a novel Task-specific Channel Modulation network (TCMNet), that can be integrated into
various FSS methods as a general plugin, to coherently tackle two foundational FSS challenges. (iii)
Extensive experimental under different settings demonstrate that our TCMNet consistently elevates
the performance of several FSS methods and achieves state-of-the-art results.

2 RELATED WORK

2.1 SEMANTIC SEGMENTATION

Semantic segmentation aims to classify each pixel within the given image into a specific category
and has been widely applied to autonomous driving (Kerner, 2016), medical image processing (Ron-
neberger et al., 2015), and so on. The seminal Fully-Connected Network (FCN) (Long et al., 2015)
achieved significant advances in semantic segmentation and inspired a lot of works (Zhao et al., 2017;
Xiao et al., 2018; Ronneberger et al., 2015). Numerous architectures enhance context recognition
by expanding the receptive field of CNNs through dilated convolutions (Chen et al., 2017; 2018),
global pooling (Liu et al., 2015), and pyramid pooling (Chen et al., 2017; Yang et al., 2018). Besides
CNN-based architectures, the emergence of the Vision Transformer (ViT)(Dosovitskiy et al., 2020)
has spurred the development of transformer-based segmentation models(Strudel et al., 2021; Zheng
et al., 2021; Zhang et al., 2022b; 2021d). Notably, MaskFormer (Cheng et al., 2021b) utilizes the
transformer decoder (Carion et al., 2020) for mask classification using a set prediction approach. This
framework has been refined by numerous subsequent studies (Cheng et al., 2021a; Zhang et al., 2023;
Luo et al., 2023; Sun et al., 2023). Among them, the Segment Anything Model (SAM) (Kirillov
et al., 2023) proposes the prompt segmentation paradigm and achieves astonishing segmentation
performance after training on extremely huge datasets. Despite their success, these methods struggle
to generalize to novel classes in low-data scenarios.

2.2 FEW-SHOT SEMANTIC SEGMENTATION

Few-shot segmentation (FSS) (Shaban et al., 2017) is designed to segment new category images
with only a few labeled samples as references. Most of the recent FSS frameworks consist of two
fundamental components, i.e., a Siamese backbone (Liu et al., 2020a) to extract features and a
query decoder to excavate the target within the query image under the guidance of support features.
Current researches mainly focus on the design of the query decoder, which can be roughly divided
into two categories: prototypical learning decoders and affinity learning decoders. Inspired by
PrototypicalNet (Snell et al., 2017), prototypical learning decoders adopt a single (Zhang et al., 2020;
Wang et al., 2019; Cao et al., 2022; Liu et al., 2022c; Jiao et al., 2022) or multiple prototypes (Lang
et al., 2022b; Yang et al., 2020; Liu et al., 2022b;a; Zhang et al., 2021a; 2022a; Okazawa, 2022; Wang
et al., 2022) to represent the target and then conduct feature comparison or aggregation to mine the
query target. To capture fine-grained support information, affinity learning decoders (Wang et al.,
2020; Min et al., 2021; Hong et al., 2022; Wang et al., 2023b) constructs pixel-level associations
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Figure 3: Illustration of the proposed TCMNet. We resort to the gradient information from the initial
prediction to local the task-related channels. The gradients are then adopted to guide the attention
process within the self-modulation block. The cross-calibrated block employs the gradient vectors
and the holistic target representations to align the support features with the query. The processed
features possess higher task awareness and lower intra-class diversity, facilitating more reliable
feature matching or aggregation within the query decoder.

between query and support features via cost volume aggregation (Min et al., 2021; Hong et al., 2022)
or attention techniques (Zhang et al., 2021c; Shi et al., 2022a; Peng et al., 2023). Though achieving
promising results, most of these methods only concentrated on the design of the query decoders,
neglecting the exploration of backbone features. Some recent works try to solve this problem by
fine-tuning (Sun et al., 2022) the backbone or adopting trainable ViTs (Hu et al., 2022). Despite
achieving promising performance, it comes with significant additional computational overhead. In
this paper, we focus on exploring a more rational utilization of backbone features and introduce a
lightweight task-specific channel-wise modulation network (TCMNet) to address the fundamental
challenges of FSS from a novel perspective.

3 METHOD

3.1 PROBLEM DEFINITION

Few-shot Segmentation (FSS) aims to perform novel category object segmentation with only a few
densely-annotated samples. Most existing FSS methodologies leverage the meta-training paradigm to
enhance the model generalization. Specifically, the datasets are divided into the training set Dtrain

and testing set Dtest with class set Ctrain and Ctest respectively. Note that the two class sets are
disjoint, i.e., Ctrain ∩ Ctest = ∅. To train the FSS model in the K-shot setting (K=1 or K=5 in
this paper), a set of episodes are sampled from Dtrain, each of which consists of the support set
S = {Iks ,Mk

s }Kk=1 and the query set Q = {Iq,Mq}, where I and M denote the RGB image and
corresponding ground-truth mask, respectively. The FSS model is optimized to predict the target
mask of the query image Iq under the supervision of Mq . For testing, the trained model is evaluated
on Dtest across all the sampled episodes without further optimization.

3.2 TASK-SPECIFIC CHANNEL MODULATION NETWORK

3.2.1 OVERVIEW

Most of the previous FSS methods adopt the ImageNet pre-trained backbone to extract the features,
keeping it fixed during both meta-training and meta-testing. The extracted features (Fs and FQ

in Figure 3) are fed directly into the query decoder for prediction. We propose modulating the
features using gradient information before inputting them into the query decoder. The modulated
features (F̂s and F̂Q in Figure 3) are less susceptible to the impact of intra-class diversity and
cluttered backgrounds. The proposed Task-specific Channel Modulation network (TCMNet), as
shown in Figure 3, comprises three major procedures, i.e., 1) channel-wise importance assessment, 2)
importance-guided self-modulation, 3) support-to-query cross-calibration. We employ the gradient
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information to assess the channel-wise importance of backbone features in procedure 1). In procedure
2), the Self-Modulation Block (SMB) leverages the importance as auxiliary cues of channel-wise
attention to enhance the task perceptibility of features. Then, the Cross-Calibration Block (CCB) in
procedure 3) adapts the support features to bridge the intra-class feature gap according to the holistic
representation as well as grad vector discrepancy. The details are as follows.

3.2.2 CHANNEL-WISE IMPORTANCE ASSESSMENT

Meta-characteristics encoded by different feature channels hold differing importance when represent-
ing distinct categories. To identify the task-related channels in the absence of category-customized
classifiers, motivated by visual explanation techniques (Selvaraju et al., 2016; Guidotti et al., 2018),
we employ the gradients to evaluate the importance of different channels for backbone features.
Specifically, for a class-agnostic task, we calculate the gradient of the foreground prediction scores
for query target pixels, with respect to the support features Fs ∈ Rh×w×c and query features
Fq ∈ Rh×w×c immediately before the decoder, respectively. Here we denote the corner mark as ∗
and ∗ ∈ {s, q} for concise:

∇∗ =
∂Sfg

∂F∗
∈ Rh×w×c, (1)

where Sfg denotes the average foreground prediction scores within the query target area, which is
calculated based on the two-channel prediction logits through equation 2. It should be noted that we
adopt the logits instead of the ground truth mask to determine the foreground area, which alleviates
the discrepancy between training and testing, as the query mask is not available at test time, formally,

Sfg =

∑
(i,j) Pfg(i, j) ·M(i, j)∑

(i,j) M(i, j))
, M(i, j) =

{
1 if Pfg(i, j)−Pbg(i, j) > δ

0 otherwise
, (2)

the Pfg and Pbg above represent the probabilities of the corresponding query pixels being predicted
as foreground and background, respectively. Due to the presence of ambiguous regions in the
prediction, we use δ to select the more confident parts. Additionally, we compute the gradient of
these ambiguous regions ∇′

∗ according to equation 1 and equation 2, but modify the condition of
the M(i, j) = 1 to |Pfg(i, j) − Pbg(i, j)| < δ. After obtaining ∇∗ and ∇′

∗, we employ ReLU to
activate the gradients and then adopt spatial average pooling to get the channel-wise weights:

G∗ = Average Pool(ReLU(∇∗)), G
′

∗ = Average Pool(ReLU(∇
′

∗)). (3)

Larger values in G∗ ∈ Rc suggest the corresponding channels contribute more to the determination
of the current target. Conversely, greater values in G

′

∗ ∈ Rc indicate the channels that may lead to
confusion, which are more likely to encode classes-shared meta-characteristics.

3.2.3 IMPORTANCE-GUIDED SELF-MODULATION

The self-modulation block (SMB) is designed to enhance the task-relevant channels of backbone
features under the guidance of channel-wise importance. It is non-trivial to modulate the backbone
features as inappropriate manipulations (e.g., weighting using importance directly) may damage the
inherent rich semantic cues as demonstrated in Table 9. In SMB, the G∗ and G

′

∗ are injected into
successive channel-wise self-attention layers to facilitate adaptive feature highlighting. Specifically,

A = Softmax(
Q(K)T√

d
+ λ(G∗ −G

′

∗)), (4)

among which the λ is a hyper-parameter that controls the proportion of attention and gradient
information. The Q and K are obtained by:

Q = φ(F∗)W
Q, K = φ(F∗)W

K, (5)

where φ : Rh×w×c → Rc×hw refers to the reshape function, WQ and WK ∈ Rhw×d are learnable
projections and

√
d is the scaling factor. Note that the G∗ and G

′

∗ are min-max normalized and
expanded to the appropriate dimensions before being added to the original attention matrix. The
enhanced features are obtained according to the adjusted attention matrix A, and a feed-forward
network (FFN) is applied to transform the fused features further:

F̂∗ = φ−1(FFN(AV)), V = φ(F∗)W
V , (6)
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where the WV ∈ Rhw×d is linear projection. Intuitively, SMB models the channel-wise dependencies
with the heightened focus on task-specific channels, tailoring the backbone features for distinguishing
targets from the cluttered background.

3.2.4 SUPPORT-TO-QUERY CROSS-CALIBRATION

To further mitigate bias in support guidance stemming from intra-class feature variations like ap-
pearance, scale, pose, etc., the cross-calibration block (CCB) combines a dual strategy to adapt
modulated support features F̂s to align with query features F̂q. The channel-wise calibration is
implemented with two cross-instance transformation matrices Tg ∈ Rc×c and Th ∈ Rc×c, which
are respectively derived from support and query grad vectors (g∗ ∈ R1×c, ∗ ∈ {s, q}) and holistic
target representations (h∗ ∈ R1×c, ∗ ∈ {s, q}), formulated as:

Tg = Softmax(gT
qgs), Th = Softmax(hT

qhs), (7)

where the g∗ and h∗ are obtained by mask average pooling (MAP) of corresponding backbone
features or gradients, formally:

gs = MAP(∇s,Ms), gq = MAP(∇q,M), (8)

hs = MAP(F̂s,Ms), hq = MAP(F̂q,M), (9)

among which, Ms is the support target mask, as in equation 2, M represents the predicted query
target area with relatively higher confidence. The calibrated support features are obtained by:

F̃s = F̂s + F̂s(Tg +Th), (10)

note that a residual connection is retained for the stable training. The transformation matrices
establish channel-wise correspondences between support and query target features from both the
holistic representation and the gradient perspective. Through dual transformation, CBB facilitates
the task-specific category-compactness of the feature pairs, which paves the way for the processing
of the query decoder. The proposed TCMNet can be easily integrated with different decoders and
extended to 5-shot settings with minimal method-independent changes.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We evaluate the proposed TCMNet on two popular few-shot segmentation benchmarks, i.e., Pascal-
5i (Shaban et al., 2017) and COCO-20i (Nguyen & Todorovic, 2019). Among them, Pascal-5i is
built based on the PASCAL VOC 2012 dataset (Everingham et al., 2010) with additional annotations
from SBD (Hariharan et al., 2014). We follow the baseline works (Tian et al., 2020; Lang et al.,
2022a; Peng et al., 2023) to divide the 20 categories into four folds, with three folds for training and
one for testing. COCO-20i is a larger dataset with more categories and more complex scenes built
from MSCOCO dataset (Lin et al., 2014). 80 categories are partitioned for cross-validation, with
60 classes used for training and 20 classes for testing. When testing, 1000 episodes are randomly
sampled for performance evaluation. For a fair comparison, we follow the common practice to
mean intersection-over-union (mIoU) and foreground-background intersection-over-union (FBIoU)
as quantitative metrics.

4.2 BASELINE METHODS AND IMPLEMENTATION DETAILS

Baseline Methods. The proposed TCMNet focuses on task-specific backbone feature modulation,
effectively collaborating with various query decoders to enhance FSS performance. To verify this, we
conduct experiments on three different models, including PFENet (Tian et al., 2020), BAM (Lang
et al., 2022a) and HDMNet (Peng et al., 2023). Among them, both PFENet and BAM utilize holistic
support prototypes as semantic clues to guide the query decoder. Additionally, BAM introduces a
base learner to explicitly alleviate the impact of overfitting on training classes. HDMNet employs the
affinity learning-based decoder to fully explore pixel-level support information, which represents the
most cutting-edge performance in FSS.
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Table 2: Performance on Pascal-5i(Shaban et al., 2017) in terms of mIoU for 1-shot and 5-shot
segmentation. The best mean results are show in bold.

Method backbone
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PFENet (Tian et al., 2020)

VGG16

56.9 68.2 54.4 52.4 58.0 59.0 69.1 54.8 52.9 59.0
PFENet[TPAMI2020] w/ TCM 58.7 69.2 56.5 53.9 59.6(↑1.6) 60.9 71.3 57.1 54.8 61.0(↑2.0)
BAM (Lang et al., 2022a) 63.2 70.8 66.1 57.5 64.4 67.4 73.1 70.6 64.0 68.8
BAM[CVPR2022] w/ TCM 64.8 72.0 67.5 58.5 65.7(↑1.3) 69.2 75.1 72.5 64.8 70.4(↑1.6)
HDMNet (Peng et al., 2023) 64.8 71.4 67.7 56.4 65.1 68.1 73.1 71.8 64.0 69.3
HDMNet[CVPR2023] w/ TCM 65.6 72.4 68.4 60.3 66.6(↑1.5) 69.2 74.5 72.8 65.7 70.5(↑1.2)

PFENet (Tian et al., 2020)

ResNet-50

61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
PFENet[TPAMI2020] w/ TCM 64.0 72.2 57.7 58.8 63.2(↑2.4) 65.3 73.1 58.2 60.5 64.3(↑2.4)
BAM (Lang et al., 2022a) 69.0 73.6 67.6 61.1 67.8 70.6 75.1 70.8 67.2 70.9
BAM[CVPR2022] w/ TCM 70.6 75.3 69.4 63.5 69.7(↑1.9) 72.7 77.4 72.6 69.7 73.1(↑2.2)
HDMNet (Peng et al., 2023) 71.0 75.4 68.9 62.1 69.4 71.3 76.2 71.3 68.5 71.8
HDMNet[CVPR2023] w/ TCM 72.1 76.8 71.0 64.7 71.1(↑1.7) 72.8 78.5 73.9 70.2 73.9(↑2.1)

FPTrans (Zhang et al., 2022a)
ViT-B/16

67.1 69.8 65.6 56.4 64.7 73.5 75.7 77.4 68.3 73.7
FPTrans[NeurIPS2022] w/ TCM 68.5 72.2 66.7 58.6 66.3(↑1.6) 75.9 77.5 79.2 70.2 75.7(↑2.0)

Implementation Details. For a fair comparison, the training settings of baseline methods are kept
the same as original papers unless otherwise stated.We set the number of self-attention layers adopted
in the self-modulation block as 3 and the embedding dimension of attention as (hw)/4. The λ is set
to be 0.1 to prevent excessive influence on the attention process. We calculate δ based on the average
difference of foreground and background logits, specifically, δ = 0.1 × Mean(i,j)(|Pfg(i, j) −
Pbg(i, j)|). All integrated models are trained on Pascal-5i for 200 epochs and COCO-20i for 50
epochs. We use the same optimizer and learning rate as the query decoder of baseline methods. All
experiments are run on four NVIDIA GeForce RTX 3090 GPUs.

4.3 PERFORMANCE COMPARISON AND ANALYSIS

Table 1: Performance on Pascal-5i in terms of FB-
IoU for 1-shot and 5-shot segmentation.

Method Backbone
FB-IoU (%)

1-shot 5-shot
PFENet (Tian et al., 2020)

ResNet-101
73.3 73.9

PFENet[TPAMI2020] w/ TCMNet 74.2 74.4

BAM (Lang et al., 2022a)

ResNet-50

68.2 70.7
BAM[CVPR2022] w/ TCMNet 69.2 72.1

HDMNet (Peng et al., 2023) 72.2 77.7
HDMNet[CVPR2023] w/ TCMNet 73.1 79.0

We quantitatively compare the performance of
different models with and without TCMNet
across various settings. The results on Pascal-5i
are in Table 2. It can be observed that TCM-
Net consistently boosts the performance of all
three baseline methods, which proves that TCM-
Net is compatible with both prototype-based
and affinity-based query decoders. For instance,
when employing VGG-16 backbone, the 1-shot
and 5-shot mIoU of the SOTA approach HDM-
Net improve by 1.5% and 1.2%. With ResNet-
50 backbone, the integration of TCMNet brings
the performance gain of 1.7% (1-shot) and 2.1% (5-shot) on HDMNet. More significant improvements
on the larger backbone indicate the scalability of the TCMNet. As shown in Table 3, when tackling
the larger COCO-20i dataset with more challenging scenes, TCMNet also achieves clear performance
lift on all baseline models. Especially, TCMNet enhanced HDMNet surpasses the original version
by 1.1% (1-shot)&1.2% (5-shot) and 1.4% (1-shot)&2.2% (5-shot) when using the VGG-16 and
ResNet-50 backbones, respectively. The pronounced improvements showcase the applicability of
TCMNet in complex scenarios. In addition, Table 13 shows the 1-shot and 5-shot FB-IoU increments
brought by TCMNet on different baselines. It can be observed from the quantitative comparison in
Figure 5 (a) that the integration of TCMNet can significantly reduce erroneous segmentation caused
by cluttered backgrounds or incomplete segmentation caused by intra-class differences. We also
provide comparison results with more recent works, please refer to Appendix for more details.
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Table 3: Performance on COCO-20i (Nguyen & Todorovic, 2019) in terms of mIoU for 1-shot and
5-shot segmentation. The best mean results are show in bold.

Method Backbone
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PFENet (Tian et al., 2020)

VGG-16

33.4 36.0 34.1 32.8 34.1 35.9 40.7 38.1 36.1 37.7
PFENet[TPAMI2020] w/ TCM 34.8 37.1 35.3 34.1 35.3(↑1.2) 37.6 42.0 39.7 37.8 39.3(↑1.6)
BAM (Lang et al., 2022a) 39.0 47.0 46.4 41.6 43.5 47.0 52.6 48.6 49.1 49.3
BAM[CVPR2022] w/ TCM 40.1 48.2 47.9 43.3 44.9(↑1.4) 48.4 53.9 49.8 50.6 50.7(↑1.4)
HDMNet (Peng et al., 2023) 40.7 50.6 48.2 44.0 45.9 47.0 56.5 54.1 51.9 52.4
HDMNet[CVPR2023] w/ TCM 41.6 51.8 49.3 45.1 47.0(↑1.1) 48.1 57.9 55.5 53.0 53.6(↑1.2)

PFENet (Tian et al., 2020)
ResNet-101

34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
PFENet[TPAMI2020] w/ TCM 36.5 35.4 35.1 31.9 34.7(↑2.3) 41.3 40.9 40.4 36.9 39.9(↑2.5)
BAM (Lang et al., 2022a)

ResNet-50

43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2
BAM[CVPR2022] w/ TCM 45.4 52.4 49.7 45.0 48.1(↑1.9) 51.9 56.5 53.8 51.7 53.5(↑2.3)
HDMNet (Peng et al., 2023) 43.8 55.3 51.6 49.4 50.0 50.6 61.6 55.7 56.0 56.0
HDMNet[CVPR2023] w/ TCM 45.6 56.1 52.7 51.4 51.4(↑1.4) 52.3 62.6 58.5 59.2 58.2(↑2.2)
FPTrans (Zhang et al., 2022a)

ViT-B/16
39.7 44.1 44.4 39.7 42.0 49.9 56.5 55.4 53.2 53.8

FPTrans[NeurIPS2022] w/ TCM 41.3 46.1 46.1 41.6 43.8(↑1.8) 41.8 58.8 57.5 55.3 55.9(↑2.1)

Table 4: Component ablations.

SMB CCB mIoU ∆

60.8 -
✓ 62.2 +1.4

✓ 61.4 +0.6
✓ ✓ 63.2 +2.4

Table 5: Ablations on SMB.

SA G G
′

mIoU

61.4
✓ 61.7
✓ ✓ 62.7
✓ ✓ ✓ 63.2

Table 6: Ablations on CCB.

g h mIoU

62.2
✓ 62.9

✓ 62.6
✓ ✓ 63.2

Table 7: Ablation of the order
of the two modules.

option mIoU

CBB → SMB 62.4
SMB → CBB 63.2

Table 8: Ablation studies on
Spatially Modulation.
Spatial-S Spatial-Q mIoU

60.8
✓ 61.0

✓ 60.1
✓ ✓ 60.6

Table 9: Ablations on different
modulation strategy.

strategy mIoU

baseline 60.8
dot 53.8

channel weight 57.8
SMB + CBB 63.2

4.4 ABLATION STUDY

To verify the effectiveness of each component of TCMNet, we employ the PFENet as baseline to
conduct a series of ablation studies on Pascal-5i using ResNet-50 backbone. In addition to component-
wise ablation studies, we also conduct an in-depth analysis of the impact of the detailed design of
each block.

Component-wise Ablations. We recall that TCMNet comprises two key components, i.e., the
self-modulation block (SMB) and the cross-calibration block (CCB). The corresponding ablations are
presented in Table 4. Compared to the baseline, the SMB improves the performance by 1.4% mIoU,
and solely inserting the CCB brings 0.6% mIoU gains as shown in the 2nd and 3rd rows, respectively.
This demonstrates the channel-wise self-modulation of backbone features is beneficial for feature
processing within the query decoder. It can be observed that combining SMB with CCB yields a
performance improvement greater than the sum of their individual improvements, suggesting effective
synergy between the blocks for mutual enhancement. We further analyze how the order of the two
modules affects the performance as depicted in Table 7, and discover that conducting cross-calibration
after feature self-modulation (SMB→CCB) leads to superior performance. This is expected as the
backbone features enhanced by SMB provide more target-aware holistic representation to guide the
adaptation process.

Investigation of Self-Modulation Block.

Investigation of Self-Modulation Block. In Table 5 we further investigate the impact of internal de-
signs of the SMB. We find that vanilla channel-wise self-attention leads to performance enhancements
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Figure 4: (a) Convergence curves of PFENet (Tian et al., 2020) with and without TCMNet. (b)
Similarity distribution of support and query target target features across all test episodes, ◦ denotes
outlier. (c)Similarity distribution of foreground and background features across all test query images.
(d) t-SNE visualization of gradient vectors of all training images.

(0.3% mIoU), indicating the benefits of capturing inter-channel dependencies. By incorporating
confident target gradients G, performance sees a notable boost of 1.0% mIoU, which we deem should
be attributed to a greater focus on task-relevant meta-characteristics. As for ambiguous gradients,
subtracting G

′
from the original attention matrices improves the results, suggesting that suppressing

distracting channels is beneficial for target exploration. To provide a more intuitive understanding
SMB, we conduct quantitative analyses to examine its impact on the discriminative capability of
backbone features. As illustrated in Figure 4 (c), we analyzed the similarity distribution between
background and foreground prototypes across all test samples. The SMB significantly reduces the
similarity between target features and the background, thereby enhancing the target discriminability.

Investigation of Cross-Calibration Block. We delve into the CCB to examine the contributions of
the grad vectors and the holistic representations within the dual-calibration process. As we can see
from Table 6, both the gradient vectors g and holistic representations h can guide the adaptation of
support features and the performance of g is relatively more prominent. The dual-calibration strategy
formed by their combination achieves the best, which demonstrates that g and h can well bridge the
intra-class target feature gap from different perspectives. We also visualize the quantitative results
to analyze the impact of the CCB. As shown in Figure 4(b), after dual calibration of the support
features, the similarities between the support and query target features are significantly improved.
With more aligned feature pairs, the feature matching or aggregation in the query decoder achieves
better correspondence, leading to improved segmentation results.

4.5 DISCUSSION ON TASK-SPECIFIC CHANNEL-WISE MODULATION.

We further discussed the design of TCMNet from three perspectives. (1) Why channel-wise? In the
absence of category-aware classifiers, query decoders of current FSS models indiscriminately use all
channels for feature matching. This implicit learning-based paradigm of seeking key channels not only
slows down convergence, but also tends to induce channel bias toward the training categories, and the
overfitting caused by channel bias is also a common issue in conventional channel attention methods,
e.g., SENet (Hu et al., 2018). We resort to gradients to identify the features that contribute the most to
correct predictions and focus attention on them, effectively functioning as a category-aware classifier.
Figure 4(a) shows that this explicit channel-wise manipulation can enable the model to converge
faster to higher performance. Given the gradient guidance, we further explore the effectiveness of the
self-modulation strategy in the spatial dimension. As shown in Table 8, spatial self-modulation yields
a slight performance improvement when adapting to support features, while it degrades performance
when applied to query features. We conjecture that this is due to gradient information focusing
attention on the most discriminative regions, hindering complete target extraction. (2) Modulation
strategy. In addition to the proposed self-modulation, we tested various methods of modulating
backbone features using gradient information as shown in Table 9. We find that simply weighting
features point-wise (2nd) or channel-wise (3rd) significantly degrade the performance. We deem the
reason is that the drastic changes damage the semantic information contained in backbone features.
The proposed self-modulation strategy leverages gradient information on the basis of inter-channel
relationships, which approach enhances task-relevant features while preserving the original semantic
information. (3) Visualizations of gradients. In Figure 5(b), we visualize the features of channels
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GTw/  TCMNetPFENetSupport 𝛻 𝛻′ 𝛻 𝛻′

(a) (b)

Figure 5: (a) Qualitative comparison. (b) Visualization of features with high gradients.

with high gradient values (Top 20%), It can be observed that channels with high responses in ∇ and ∇′

correspond to the target regions and confusing background or foreground areas, respectively, which
aligns with our design intuition. We collected the gradient vectors of all category samples during
training and visualized their t-SNE distributions as illustrated in Figure 4 (d). It can be observed
that the gradient distributions across channels for different categories are distinctly separable, which
further validates the rationale behind the motivation of TCMNet.

5 CONCLUSION

In this paper, we steer toward a different perspective of FSS that shifts our focus from the design
of the query decoder to the better utilization of backbone features. We propose the task-specific
channel-wise modulation network (TCMNet), which can serve as a generic plugin to combine with
different query decoders, including a self-modulation block to enhance the target awareness of
features and a cross-calibration block to bridge the intra-class variation. The decent performance on
four different baseline methods indicates that exploring backbone features is another avenue for FSS
in addition to query decoder design.
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A APPENDIX

A.1 COMPARISON WITH MORE RECENT METHODS.

Table 10 present the performance comparison on Pascal-5i dataset. It can be observed that the
proposed TCMNet significantly outperforms previous advanced approaches and achieves new state-
of-the-art results under all settings and our TCMNet can consistently boost the performance of all
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Table 10: Performance comparisons with mIoU (%) as a metric on PASCAL-5i, “TCMNet (PFENet)",
“TCMNet (BAM)", “TCMNet (FPTrans)" and “TCMNet (HDMNet)" represent the baseline is
PFENet Tian et al. (2020), BAM Lang et al. (2022a) and HDMNet Peng et al. (2023) respectively.

Method Backbone
1-shot 5-shot

Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean
SCL[CVPR2021] Zhang et al. (2021b) Resnet-50 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9
SSP[ECCV2022] Fan et al. (2022) Resnet-50 60.5 67.8 66.4 51.0 61.4 67.5 72.3 75.2 62.1 69.3
DCAMA[ECCV2022] Shi et al. (2022b) Resnet-50 67.5 72.3 59.6 59.0 64.6 70.5 73.9 63.7 65.8 68.5
NERTNet[CVPR2022] Liu et al. (2022b) Resnet-50 65.4 72.3 59.4 59.8 64.2 66.2 72.8 61.7 62.2 65.7
IPMT[NeurIPS2022] Liu et al. (2022c) Resnet-50 72.8 73.7 59.2 61.6 66.8 73.1 74.7 61.6 63.4 68.2
ABCNet[CVPR2023] Wang et al. (2023b) Resnet-50 68.8 73.4 62.3 59.5 66.0 71.7 74.2 65.4 67.0 69.6
MIANet[CVPR2023] Yang et al. (2023) Resnet-50 68.5 75.8 67.5 63.2 68.8 70.2 77.4 70.0 68.8 71.6
MSI[ICCV2023] Moon et al. (2023) Resnet-50 71.0 72.5 63.8 65.9 68.3 73.0 74.2 66.6 70.5 71.1
AMFormer[NeurIPS2023] Wang et al. (2023a) Resnet-50 71.1 75.9 69.7 63.7 70.1 73.2 77.8 73.2 68.7 73.2
PFENet[TPAMI2023] Tian et al. (2020) Resnet-50 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
BAM[CVPR2022] Lang et al. (2022a) Resnet-50 68.9 73.6 67.6 61.1 67.8 70.6 75.1 70.8 67.2 70.9
FPTrans[NeurIPS2022] Zhang et al. (2022a) ViT-B/16 67.1 69.8 65.6 56.4 64.7 73.5 75.7 77.4 68.3 73.7
HDMNet[CVPR2023)] Peng et al. (2023) Resnet-50 71.0 75.4 68.9 62.1 69.4 71.3 76.2 71.3 68.5 71.8
TCMNet (PFENet) Resnet-50 64.0 72.2 57.7 58.8 63.2 65.3 73.1 58.2 60.5 64.3
TCMNet (BAM) Resnet-50 70.6 75.3 69.4 63.5 69.7 72.7 77.4 72.6 69.7 73.1
TCMNet (FPTrans) ViT-B/16 68.5 72.2 66.7 58.6 66.3 75.9 77.5 79.2 70.2 75.7
TCMNet (HDMNet) Resnet-50 72.1 76.8 71.0 64.7 71.1 72.8 78.5 73.9 70.2 73.9

three baseline methods with a considerable margin under all settings. Additionally, we observed
that the FPTrans Zhang et al. (2022a) using ViT as the backbone performs better under the 5-shot
setting. We attribute this to the global information aggregation based on attention mechanisms, which
is advantageous in capturing more contextual information.

Table 11: Hyperparameter experiments on the
λ.

λ 0.06 0.08 0.10 0.12 0.14

mIoU 62.3 62.8 63.2 62.5 61.9

Table 12: Hyperparameter experiments on the
number of layers.

Layer 1 2 3 4 5

mIoU 61.0 62.8 63.2 63.0 63.0

A.2 HYPERPARAMETER EVALUATIONS.

Evaluations of λ. Quantitative experiments are conducted to clearly find a suitable number
of λ and the number of self-attention layers adopted in the self-modulation block. In Table
11, we report the results of different number λ on the Pascal-5i. We can find that the perfor-
mance continues to grow until λ = 0.10 and then begins to decline if λ keeps increasing. We
deem the reason is that excessive interference can damage the original semantic information.

Table 13: Computational complexity and costs.

Method Param GFLOPs Time Memory FPS

HDMNet 50.88M 10.60G 1.25 d 6.6G 36.4
HDMNet+TCMNet 52.12M 12.09G 0.5d 7.0G 32.0

Evaluations of the number of the self-
attention layers. As shown in Table 12, we
found that when the SMB consists of only one
layer, the performance is not significantly im-
proved compared to the baseline. This is ex-
pected because, with just one layer, the gradient
information does not influence the calculation
of channel-wise similarity but merely alters the result of the weighted sum. However, when the
number of attention layers exceeds one, there is a significant performance improvement, with the best
results achieved when the number of layers is three. Therefore, we adopt three layers as the default
for all experiments.
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A.3 COMPUTATIONAL COMPLEXITY AND COSTS.

Considering that our method is primarily used for modulating the backbone, the increase in the
number of parameters and GFLOPs is consistent across different FSS methods. Additionally, the
training time and memory usage are determined by the baseline method. Here we conducted a
quantitative comparison using HDMNet as an example. We adopt four Nvidia GeForce RTX 3090
GPUs for training and one for testing.

As can be seen, our method requires only a minimal increase in the number of parameters and
computational costs. Moreover, the training time can be significantly reduced as TCMNet accelerates
the convergence.
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