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Abstract

In imitation learning, it is common to learn a behavior policy to match an unknown
target policy via max-likelihood training on a collected set of target demonstrations.
In this work, we consider using offline experience datasets – potentially far from
the target distribution – to learn low-dimensional state representations that provably
accelerate the sample-efficiency of downstream imitation learning. A central
challenge in this setting is that the unknown target policy itself may not exhibit
low-dimensional behavior, and so there is a potential for the representation learning
objective to alias states in which the target policy acts differently. Circumventing
this challenge, we derive a representation learning objective that provides an
upper bound on the performance difference between the target policy and a low-
dimensional policy trained with max-likelihood, and this bound is tight regardless
of whether the target policy itself exhibits low-dimensional structure. Moving to
the practicality of our method, we show that our objective can be implemented as
contrastive learning, in which the transition dynamics are approximated by either
an implicit energy-based model or, in some special cases, an implicit linear model
with representations given by random Fourier features. Experiments on both tabular
environments and high-dimensional Atari games provide quantitative evidence for
the practical benefits of our proposed objective.1

1 Introduction

In the field of sequential decision making one aims to learn a behavior policy to act in an environment
to optimize some criteria. The well-known field of reinforcement learning (RL) corresponds to one
aspect of sequential decision making, where the aim is to learn how to act in the environment to
maximize cumulative returns via trial-and-error experience [38]. In this work, we focus on imitation
learning, where the aim is to learn how to act in the environment to match the behavior of some
unknown target policy [25]. This focus puts us closer to the supervised learning regime, and, indeed,
a common approach to imitation learning – known as behavioral cloning (BC) – is to perform
max-likelihood training on a collected a set of target demonstrations composed of state-action pairs
sampled from the target policy [31, 34].

Since the learned behavior policy produces predictions (actions) conditioned on observations (states),
the amount of demonstrations needed to accurately match the target policy typically scales with the
state dimension, and this can limit the applicability of imitation learning to settings where collecting
large amounts of demonstrations is expensive, , in health [18] and robotics [24] applications. The
limited availability of target demonstrations stands in contrast to the recent proliferation of large
offline datasets for sequential decision making [28, 19, 7, 21]. These datasets may exhibit behavior
far from the target policy and so are not directly relevant to imitation learning via max likelihood

1Find experimental code at https://github.com/google-research/google-research/tree/
master/rl_repr.
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training. Nevertheless, the offline datasets provide information about the unknown environment,
presenting samples of environment reward and transition dynamics. It is therefore natural to wonder,
is it possible to use such offline datasets to improve the sample efficiency of imitation learning?

Recent empirical work suggests that this is possible [40, 10], by using the offline datasets to learn
a low-dimensional state representation via unsupervised training objectives. While these empirical
successes are clear, the theoretical foundation for these results is less obvious. The main challenge in
providing theoretical guarantees for such techniques is that of aliasing. Namely, even if environment
rewards or dynamics exhibit a low-dimensional structure, the target policy and its demonstrations
may not. If the target policy acts differently in states which the representation learning objective
maps to the same low-dimensional representation, the downstream behavioral cloning objective may
end up learning a policy which “averages” between these different states in unpredictable ways.

In this work, we aim to bridge the gap between practical objectives and theoretical understanding. We
derive an offline objective that learns low-dimensional representations of the environment dynamics
and, if available, rewards. We show that minimizing this objective in conjunction with a downstream
behavioral cloning objective corresponds to minimizing an upper bound on the performance difference
between the learned low-dimensional BC policy and the unknown and possibly high-dimensional
target policy. The form of our bound immediately makes clear that, as long as the learned policy
is sufficiently expressive on top of the low-dimensional representations, the implicit “averaging”
occurring in the BC objective due to any aliasing is irrelevant, and a learned policy can match the
target regardless of whether the target policy itself is low-dimensional.

Extending our results to policies with limited expressivity, we consider the commonly used parameter-
ization of setting the learned policy to be log-linear with respect to the representations (, a softmax of a
linear transformation). In this setting, we show that it is enough to use the same offline representation
learning objective, but with linearly parameterized dynamics and rewards, and this again leads to
an upper bound showing that the downstream BC policy can match the target policy regardless of
whether the target is low-dimensional or log-linear itself. We compare the form of our representation
learning objective to “latent space model” approaches based on bisimulation principles, popular in the
RL literature [20, 41, 22, 13], and show that these objectives are, in contrast, very liable to aliasing
issues even in simple scenarios, explaining their poor performance in recent empirical studies [40].

We continue to the practicality of our own objective, and show that it can be implemented as a
contrastive learning objective that implicitly learns an energy based model, which, in many common
cases, corresponds to a linear model with respect to representations given by random Fourier
features [33]. We evaluate our objective in both tabular synthetic domains and high-dimensional Atari
game environments [11]. We find that our representation learning objective effectively leverages
offline datasets to dramatically improve performance of behavioral cloning.

2 Related Work

Representation learning in sequential decision making has traditionally focused on learning repre-
sentations for improved RL rather than imitation. While some works have proposed learning action
representations [8, 30], our work focuses on state representation learning, which is more common
in the literature, and whose aim is generally to distill aspects of the observation relevant to control
from those relevant only to measurement [3]; see [27] for a review. Of these approaches, bisimulation
is the most theoretically mature [17, 13], and several recent works apply bisimulation principles
to derive practical representation learning objectives [20, 41, 6]. However, the existing theoretical
results for bisimulation fall short of the guarantees we provide. For one, many of the bisimulation
results rely on defining a representation error which holds globally on all states and actions [1].
On the other hand, theoretical bisimulation results that define a representation error in terms of an
expectation are inapplicable to imitation learning, as they only provide guarantees bounding the
performance difference between policies that are “close” (, Lipschitz) in the representation space and
say nothing regarding whether an arbitrary target policy in the true MDP can be represented in the
latent MDP [20]. In Section 4.4, we will show that these shortcomings of bisimulation fundamentally
limit its applicability to an imitation learning setting.

In contrast to RL, there are comparatively fewer theoretical works on representation learning for
imitation learning. One previous line of research in this vein is given by [9], which considers
learning a state representation using a dataset of multiple demonstrations from multiple target policies.
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Accordingly, this approach requires that each target policy admits a low-dimensional representation.
In contrast, our own work makes no assumption on the form of the target policy, and, in fact, this is
one of the central challenges of representation learning in this setting.

As imitation learning is close to supervised learning, it is an interesting avenue for future work
to extend our results to more common supervised learning domains. We emphasize that our own
contrastive objectives are distinct from typical approaches in image domains [15] and popular in
image-based RL [26, 37, 36], which use prior knowledge to generate pairs of similar images (, via
random cropping). We avoid any such prior knowledge of the task, and our losses are closer to
temporal contrastive learning, more common in NLP [29].

3 Background

We begin by introducing the notation and concepts we will build upon in the later sections.

MDP Notation We consider the standard MDP framework [32], in which the environment is given
by a tupleM := 〈S,A,R,P, µ, γ〉, where S is the state space, A is the action space,R : S ×A→
[−Rmax, Rmax] is the reward function, P : S ×A→ ∆(S) is the transition function,2 µ ∈ ∆(S) is
the initial state distribution, and γ ∈ [0, 1) is the discount factor. In this work, we restrict our attention
to finite action spaces, |A| ∈ N. A stationary policy in this MDP is a function π : S → ∆(A). A
policy acts in the environment by starting at an initial state s0 ∼ µ and then at time t ≥ 0 sampling
an action at ∼ π(st). The environment then produces a reward rt = R(st, at) and stochastically
transitions to a state st+1 ∼ P(st, at). While we consider deterministic rewards, all of our results
readily generalize to stochastic rewards, in which case the same bounds hold forR(s, a) denoting
the expected value of the reward at (s, a).

The performance associated with a policy π is its expected future discounted reward when acting in
the manner described above:

JPerf(π) := E

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ π,M
]
. (1)

The visitation distribution of π is the state distribution induced by the sequential process:

dπ(s) := (1− γ)

∞∑
t=0

γt · Pr [st = s|π,M] . (2)

Behavioral Cloning (BC) In imitation learning, one wishes to recover an unknown target policy
π∗ with access to demonstrations of π∗ acting in the environment. More formally, the demonstrations
are given by a dataset Dπ∗N = {(si, ai)}Ni=1 where si ∼ dπ∗ , ai ∼ π∗(si). A popular approach to
imitation learning is behavioral cloning (BC), which suggests to learn a policy π to approximate
π∗ via max-likelihood optimization. That is, one wishes to use the N samples to approximately
minimize the objective

JBC(π) := E(s,a)∼(dπ∗ ,π∗)[− log π(a|s)]. (3)
In this work, we consider using a state representation function to simplify this objective. Namely,
we consider a function φ : S → Z. Given this representation, one no longer learns a policy
π : S → ∆(A), but rather a policy πZ : Z → ∆(A). The BC loss with representation φ becomes

JBC,φ(πZ) := E(s,a)∼(dπ∗ ,π∗)[− log πZ(a|φ(s))]. (4)

A smaller representation space Z can help reduce the hypothesis space for πZ compared to π, and this
in turn reduces the number of demonstrations N needed to achieve small error in JBC,φ. However,
whether a small error in JBC,φ translates to a small error in JBC depends on the nature of φ, and thus
how to determine a good φ is a central challenge.

Offline Data In this work, we consider learning φ via offline objectives. We assume access to a
dataset of transition tuples Doff

M = {(si, ai, ri, s′i)}Mi=1 sampled independently according to

si ∼ doff , ai ∼ UnifA, ri = R(si, ai), s
′
i ∼ P(si, ai), (5)

2We use ∆(X ) to denote the simplex over a set X .
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where doff is some unknown offline state distribution. We assume that the support of doff includes the
support of dπ∗ ; , dπ∗(s) > 0⇒ doff(s) > 0. The uniform sampling of actions inDoff follows similar
settings in related work [5] and in principle can be replaced with any distribution uniformly bounded
from below by η > 0 and scaling our derived bounds by 1

|A|η . At times we will abuse notation and
write samples of these sub-tuples as (s, a) ∼ doff or (s, a, r, s′) ∼ doff .

Learning Goal Similar to related work [9], we will measure the discrepancy between a candidate
π and the target π∗ via the performance difference:

PerfDiff(π, π∗) := |JPerf(π)− JPerf(π∗)|. (6)

At times we will also use the notation PerfDiff(πZ , π∗), and this is understood to mean PerfDiff(πZ ◦
φ, π∗). While we focus on the performance difference, all of our results may be easily modified to
alternative evaluation metrics based on distributional divergences, , DTV(dπ∗‖dπ) or DKL(dπ∗‖dπ),
where DTV is the total variation (TV) divergence and DKL is the Kullback Leibler (KL) divergence.
Also note that we make no assumption that π∗ is an optimal or near-optimal policy inM.

In the case of vanilla behavioral cloning, we have the following relationship between JBC and the
performance difference, which is a variant of Theorem 2.1 in [34].

Lemma 1. For any π, π∗, the performance difference may be bounded as

PerfDiff(π, π∗) ≤
Rmax

(1− γ)2

√
2Edπ∗ [DKL(π∗(s)‖π(s))] =

Rmax

(1− γ)2

√
const(π∗) + 2JBC(π). (7)

See Appendices B and C for all proofs.

Remark (Quadratic dependence on horizon). Notice that the guarantee above for vanilla BC
includes a quadratic dependence on horizon in the form of (1− γ)−2, and this quadratic dependence
is maintained in all our subsequent bounds. While there exists a number of imitation learning works
that aim to reduce this dependence, the specific problem our paper focuses on – aliasing in the context
of learning state representations – is an orthogonal problem to quadratic dependence on horizon.
Indeed, if some representation maps two very different raw observations to the same latent state, no
downstream imitation learning algorithm (regardless of sample complexity) will be able to learn a
good policy. Still, extending our representation learning bounds to more sophisticated algorithms
with potentially smaller dependence on horizon, like DAgger [35], is a promising direction for future
work.

4 Representation Learning with Performance Bounds

We now continue to our contributions, beginning by presenting performance difference bounds
analogous to Lemma 1 but with respect to a specific representation φ. The bounds will necessarily
depend on quantities which correspond to how “good” the representation is, and these quantities then
form the representation learning objective for learning φ; ideally these quantities are independent of
π∗, which is unknown.

Intuitively, we need φ to encapsulate the important aspects of the environment. To this end, we
consider representation-based models PZ : Z ×A→ ∆(S) andRZ : Z ×A→ [−Rmax, Rmax] of
the environment transitions and rewards. We define the error incurred by these models on the offline
distribution as,

JR(RZ , φ)2 := E(s,a)∼doff
[
(R(s, a)−RZ(φ(s), a))2

]
, (8)

JT(PZ , φ)2 :=
1

2
E(s,a)∼doff [DKL(P(s, a)‖PZ(φ(s), a))] . (9)

We will elaborate on how these errors are translated to representation learning objectives in practice
in Section 5, but for now we note that the expectation over doff already leads to a connection between
theory and practice much closer than exists in other works, which often resort to supremums over
state-action errors [30, 41, 1] or zero errors globally [17].
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4.1 General Policies

We now relate the representation errors above to the performance difference, analogous to Lemma 1
but with JBC,φ. We emphasize that the performance difference below measures the difference in
returns in the true MDPM, rather than, as is commonly seen in model-based RL [23], the difference
in the latent MDP defined byRZ ,PZ .
Theorem 2. Consider a representation function φ : S → Z and modelsRZ ,PZ as defined above.
Denote the representation error as

εR,T :=
|A|

1− γ
JR(RZ , φ) +

2γ|A|Rmax

(1− γ)2
JT(PZ , φ). (10)

Then the performance difference inM between π∗ and a latent policy πZ : Z :→ ∆(A) may be
bounded as,

PerfDiff(πZ , π∗) ≤ (1 +Dχ2(dπ∗‖doff)
1
2 ) · εR,T︸ ︷︷ ︸

offline pretraining

+C

√
1

2
Ez∼dπ∗Z [DKL(π∗,Z(z)‖πZ(z))]︸ ︷︷ ︸
= const(π∗, φ) + JBC,φ(πZ)︸ ︷︷ ︸

downstream behavioral cloning

, (11)

where C = 2Rmax

(1−γ)2 and dπ∗Z , π∗,Z are the marginalization of dπ∗ , π∗ onto Z according to φ:

dπ∗Z (z) := Pr[z = φ(s) | s ∼ dπ∗ ] ; π∗,Z(z) := E[π∗(s) | s ∼ dπ∗ , z = φ(s)]. (12)

Proof in Appendix B.2.

We thus have a guarantee showing that πZ can match the performance of π∗ regardless of the form
of π∗ (, whether π∗ itself possesses a low-dimensional parameterization). Indeed, as long as φ is is
learned well enough (εR,T → 0) and the space of candidate πZ is expressive enough, optimizing
JBC,φ can achieve near-zero performance difference, since the latent policy optimizing JBC,φ is
πZ = π∗,Z , and this setting of πZ zeros out the second term of the bound in (11). Note that, in
general π∗ 6= π∗,Z ◦ φ, yet the performance difference of these two distinct policies is nevertheless
zero when εR,T = 0. The bound in Theorem 2 also clearly exhibits the trade-off due to the offline
distribution, encapsulated by the Pearson χ2 divergence Dχ2(dπ∗‖doff).
Remark (Representations agnostic to environment rewards). In some imitation learning settings,
rewards are unobserved and so optimizing JR is infeasible. In these settings, one can consider setting
RZ to an (unobserved) constant function Edoff [R(s, a)], ensuring JR(RZ , φ) ≤ Rmax. Furthermore,
in environments where the reward does not depend on the action, ,R(s, a1) = R(s, a2)∀a1, a2 ∈ A,
the bound in Theorem 2 can be modified to remove JR altogether (see Appendix B for details).

4.2 Log-linear Policies

Theorem 2 establishes a connection between the performance difference and behavioral cloning over
representations given by φ. The optimal latent policy for BC is π∗,Z , and this is the same policy
which achieves minimal performance difference. Whether we can find πZ ≈ π∗,Z depends on how
we parameterize our latent policy. If πZ is tabular or if πZ is represented as a sufficiently expressive
neural network, then the approximation error is effectively zero. But what about in other cases?

In this subsection, we consider Z ⊂ Rd and log-linear policies of the form

πθ(z) = softmax(θ>z) :=

(
exp{θ>a z}∑
ã exp{θ>ã z}

)
a∈A

, (13)

where θ ∈ Rd×|A|. In general, π∗,Z cannot be expressed as πθ for some θ. Nevertheless, we can still
derive strong bounds for this scenario, by considering factored linear [4] modelsRZ ,PZ :
Theorem 3. Consider Z ⊂ Rd, a representation function φ : S → Z, and linear modelsRZ ,PZ:

RZ(z, a) := r(a)>z ; PZ(s′|z, a) := ψ(s′, a)>z for some r : A→ Rd ; ψ : S ×A→ Rd.
Denote the representation error εR,T as in Theorem 2. Then the performance difference between π∗
and a latent policy πθ(z) := softmax(θ>z) may be bounded as,

PerfDiff(πθ, π∗) ≤ (1 +Dχ2(dπ∗‖doff)
1
2 ) · εR,T + C ·

∥∥∥∥ ∂∂θJBC,φ(πθ)

∥∥∥∥
1

, (14)
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where C = 1
1−γ ‖r‖∞ + γRmax

(1−γ)2 ‖ψ‖∞.

Proof in Appendix B.3.

The statement of Theorem 3 makes it clear that realizability of π∗,Z is irrelevant for log-linear policies.
It is enough to only have the gradient with respect to learned θ be close to zero, which is a guarantee
of virtually all gradient-based algorithms. Thus, in these settings performing BC on top of learned
representations is provably optimal regardless of both the form of π∗ and the form of π∗,Z .
Remark (Kernel-based models). It is possible to extend the statement of Theorem 3 to generalized
linear dynamics and reward models based on kernels by replacing the gradient in the bound with the
functional gradient with respect to the kernel [16].

4.3 Sample Efficiency

The previous theorems show that we can reduce imitation learning to (1) representation learning on
an offline dataset, and (2) behavioral cloning on target demonstrations with the learned representation.
How does this compare to performing BC on the target demonstrations directly? Intuitively, repre-
sentation learning should help when the learned representation is “good” (, εR,T is small) and the
complexity of the representation space Z is low (, |Z| is small or Z ⊂ Rd for small d). In this subsec-
tion, we formalize this intuition for a simple setting. We consider finite S,Z. For the representation
φ, we assume access to an oracle φM := OPT φ(Doff

M ) which yields an error εR,T(φM ). For BC we
consider learning a tabular πZ on the finite demonstration set Dπ∗N . We have the following theorem,
which characterizes the expected performance difference when using representation learning.
Theorem 4. Consider the setting described above. Let φM := OPT φ(Doff

M ) and πN,Z be the policy
resulting from BC with respect to φM . Then we have,

EDπ∗N [PerfDiff(πN,Z , π∗)] ≤ (1 +Dχ2(doff‖dπ∗) 1
2 ) · εR,T(φM ) + C ·

√
|Z||A|
N

, (15)

where C is as in Theorem 2.

Proof in Appendix C.1.

Note that application of vanilla BC to this setting would achieve a similar bound but with εR,T = 0
and |Z| = |S|. Thus, an improvement from representation learning is expected when εR,T(φM ) and
|Z| are small.

4.4 Comparison to Bisimulation

The form of our representation learning objectives – learning φ to be predictive of rewards and next
state dynamics – recalls similar ideas in the bisimulation literature [17, 20, 41, 13]. However, a key
difference is that in bisimulation the divergence over next state dynamics is measured in the latent
representation space; , a divergence between φ◦P(s, a) and f(φ(s), a) for some “latent space model”
f , whereas our proposed representation error is between P(s, a) and PZ(φ(s), a). We find that this
difference is crucial, and in fact there exist no theoretical guarantees for bisimulation similar to those
in Theorems 2 and 3. Indeed, one can construct a simple example where the use of latent space
models leads to a complete failure, see Figure 1.

5 Learning the Representations in Practice

The bounds presented in the previous section suggest that a good representation φ should be learned
to minimize JR, JT in (8) and (9). To this end we propose to learn φ in conjunction with auxiliary
models of rewardRZ and dynamics PZ . The offline representation learning objective is given by,

Jrep(RZ ,PZ , φ) :=
1

2
E(s,a,r,s′)∼doff [αR · (r −RZ(φ(s), a))2 − αT · logPZ(s′|φ(s), a)], (16)

where αR, αT are appropriately chosen hyperparameters; in our implementation we choose αR =
1, αT = (1 − γ)−1 to roughly match the coefficients of the bounds in Theorems 2 and 3. Once
one chooses parameterizations of RZ ,PZ , this objective may be optimized using any stochastic
sample-based solver, SGD.
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z2

R(z1, left) = 1

𝛑*
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s1
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s3

s4

s5

R(s4, left) = 1

𝛑Z⚬𝜙

𝜙(sk) = zk (mod 3)

𝛑*, Z = 𝛑Zdoff = d𝛑*

Latent MDP: Zero bisimulation error on doff.True MDP True MDP

Figure 1: An example where a latent space model (bisimulation) approach would fail. The MDP
has six states and two actions (‘left’ and ‘right’); arrows denote action dynamics and the green-colored
arrows denote the action selection of π∗ (left); rewards are zero everywhere except forR(s4, left) = 1.
In this example, we consider an offline distribution doff = dπ∗ , thus there is no distribution shift. The
representation φ given by φ(sk) = zk mod 3 perfectly preserves rewards (φ(s), a) → r and latent
transitions (φ(s), a)→ φ(s′) on (s, a) ∼ (doff ,UnifA), ensuring zero bisimulation error. Imitation
learning on this representation yields a policy πZ which exactly matches π∗,Z (orange-colored arrows
in the middle) but which achieves significantly worse performance compared to π∗ on the original
MDP (right). Unlike latent space model approaches, our approach measures the dynamics error on
(φ(s), a)→ s′, and so would rightfully reject the φ presented here.

5.1 Contrastive Learning

One may recover a contrastive learning objective by parameterizing PZ as an energy-based model.
Namely, consider parameterizing PZ as

PZ(s′|z, a) ∝ ρ(s′) exp
{
−||z − g(s′, a)||2/2

}
, (17)

where ρ is a fixed (untrainable) distribution over S (typically set to the distribution of s′ in doff ) and
g is a learnable function S ×A→ Z (, a neural network). Then Edoff [− logPZ(s′|φ(s), a)] yields a
contrastive loss:

Edoff [− logPZ(s′|φ(s), a)] =
1

2
Edoff [||φ(s)−g(s′, a)||2]+logEs̃′∼ρ[exp{−||φ(s)−g(s̃′, a)||2/2}].

Similar contrastive learning objectives have appeared in related works [10, 40], and so our theoretical
bounds can be used to explain these previous empirical successes.

5.2 Linear Models with Contrastive Fourier Features

While the connection between temporal contrastive learning and approximate dynamics models has
appeared in previous works [30], it is not immediately clear how one should learn the approximate
linear dynamics required by Theorem 3. In this section, we show how the same contrastive learning
objective can be used to learn approximate linear models, thus illuminating a new connection between
contrastive learning and near-optimal sequential decision making; see Appendix A for pseudocode.

We propose to learn a dynamics model P(s′|s, a) ∝ ρ(s′) exp{−||f(s) − g(s′, a)||2/2} for some
functions f, g (, neural networks), which admits a similar contrastive learning objective as mentioned
above. Note that this parameterization does not involve φ. To recover φ, we may leverage random
Fourier features from the kernel literature [33]. Namely, for k-dimensional vectors x, y we can
approximate exp{−||x − y||2/2} ≈ 2

dϕ(x)>ϕ(y), where ϕ(x) := cos(Wx + b) for W a d × k
matrix with entries sampled from a standard Gaussian and b a vector with entries sampled uniformly
from [0, 2π]. We can therefore approximate P as follows, using E(s, a) := Es̃′∼ρ[exp{−||f(s)−
g(s̃′, a)||2/2}]:

P(s′|s, a) =
ρ(s′)

E(s, a)
exp{−‖f(s)− g(s′, a)‖2/2} ≈ 2ρ(s′)

d · E(s, a)
ϕ(f(s))>ϕ(g(s′, a)). (18)

Finally, we recover φ : S → R|A|d, ψ : S ×A→ R|A|d as

φ(s) := [ϕ(f(s))/E(s, a)]a∈A ; ψ(s′, a) := [1a=ã · 2ρ(s′)ϕ(s′, ã)/d]ã∈A , (19)
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( M / 3 = 500, |S| / 8 = 10, |Z| = 1024 ) ( N / 3 = 5, |S| / 8 = 10, |Z| = 1024 ) ( N / 3 = 5, M / 3 = 500, |Z| = 1024 ) ( N / 3 = 5, M / 3 = 500, |S| / 8 = 100 )

Figure 2: Advantages of representation learning over vanilla behavioral cloning in the tree environ-
ment across different N,M, |S|, |Z|. Each subplot shows the average performance and standard
error across five seeds. Black dotted line shows the performance of the target policy. Representation
learning consistently yields significant performance gains.

ensuring P(s′|s, a) ≈ φ(s)>ψ(s′, a) (, PZ(s′|z, a) = ψ(s′, a)>z), as required for Theorem 3.3
Notably, during learning explicit computation of ψ(s′, a) is never needed, while E(s, a) is straight-
forward to estimate from data when ρ(s′) = doff(s′),4 thus making the whole learning procedure –
both the offline representation learning and downstream behavioral cloning – practical and easy to
implement with deep neural network function approximators for f, g,RZ ; in fact, one can interpret
φ as simply adding an additional untrainable neural network layer on top of f , and so these deriva-
tions may partially explain why previous works in supervised learning found benefit from adding a
non-linear layer on top of representations [15].

6 Experiments

We now empirically verify the performance benefits of the proposed representation learning objective
in both tabular and Atari game environments. See environment details in Appendix D.

6.1 Tree Environments with Low-Rank Transitions

For tabular evaluation, we construct a decision tree environment whose transitions exhibit low-rank
structures. To achieve this, we first construct a “canonical” three-level binary tree where each node is
associated with a stochastic reward for taking left or right branch and a stochastic transition matrix
indicating the probability of landing at either child node. We then duplicate this canonical tree in the
state space so that an agent walks down the duplicated tree while the MDP transitions are determined
by the canonical tree, thus it is possible to achieve εR,T = 0 with |Z| = 8. We collect the offline data
using a uniform random policy and the target demonstrations using a return-optimal policy.

We learn contrastive Fourier features as described in Section 5.2 using tabular f, g. We then fix these
representations and train a log-linear policy on the target demonstrations. For the baseline, we learn a
vanilla BC policy with tabular parametrization directly on target demonstrations.

We also experiment with representations given by singular value decomposition (SVD) of the
empirical transition matrix, which is another form of learning factored linear dynamics. Figure 2
shows the performance achieved by the learned policy with and without representation learning.
Representation learning consistently yields significant performance gains, especially with few target
demonstrations. SVD performs similar to contrastive Fourier features when the offline data is
abundant with respect to the state space size, but degrades as the offline data size reduces or the state
space grows.

6.2 Atari 2600 with Deep Neural Networks

We now study the practical benefit of the proposed contrastive learning objective to imitation learning
on 60 Atari 2600 games [11], taking for the offline dataset the DQN Replay Dataset [7], which for

3While we use random Fourier features with the radial basis kernel, it is clear that a similar derivation can be
used with other approximate featurization schemes and other kernels.

4In our experiments, we ignore the scaling E(s, a) altogether and simply set φ(s) := ϕ(f(s)). We found
this simplification to have little effect on results.
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Figure 3: Performance improvements of contrastive Fourier features (setting of Theorem 3), energy-
based model (setting of Theorem 2), and bisimulation – DeepMDP [20] and DBC [41] – over vanilla
BC. In the baselines, ‘end2end’ refers to allowing gradients to pass into the representation during
downstream imitation learning; by default, the representation is fixed during this phase. Each box
and whisker shows the percentiles of normalized improvements (see details in Appendix D) among
the 60 Atari games.

each game provides 50M steps collected during DQN training. For the target demonstrations, we take
10k single-step transitions from the last 1M steps of each dataset, corresponding to the data collected
near the end of the DQN training. For the offline data, we use all 50M transitions of each dataset.

For our learning agents, we extend the implementations found in Dopamine [14]. We use the standard
Atari CNN architecture to embed image-based inputs to vectors of dimension 256. In the case of
vanilla BC, we pass this embedding to a log-linear policy and learn the whole network end-to-end with
behavioral cloning. For contrastive Fourier features, we use separate CNNs to parameterize g, f in
the objective in Section 5.2, and the representation φ := ϕ ◦ f is given by the random Fourier feature
procedure described in Section 5.2. A log-linear policy is then trained on top of this representation,
but without passing any BC gradients through φ. This corresponds to the setting of Theorem 3. We
also experiment with the setting of Theorem 2; in this case the setup is same as for contrastive Fourier
features, only that we define φ := f (, PZ is an energy-based dynamics model) and we parameterize
πZ as a more expressive single-hidden-layer softmax policy on top of φ.

We compare contrastive learning with Fourier features and energy-based models to two latent
space models, DeepMDP [20] and Deep Bisimulation for Control (DBC) [41], in Figure 3. Both
linear (Fourier features) and energy-based parametrization of contrastive learning achieve dramatic
performance gains (> 40%) on over half of the games. DeepMDP and DBC, on the other hand,
achieve little improvement over vanilla BC when presented as a separate loss from behavioral cloning.
Enabling end-to-end learning of the latent space models as an auxiliary loss to behavioral cloning
leads to better performance, but DeepMDP and DBC still underperform contrastive learning. See
Appendix D for further ablations.

7 Conclusion

We have derived an offline representation learning objective which, when combined with BC, provably
minimizes an upper bound on the performance difference from the target policy. We further showed
that the proposed objective can be implemented as contrastive learning with an optional projection to
Fourier features. Interesting avenues for future work include (1) extending our theory to multi-step
contrastive learning, popular in practice [40, 10], (2) deriving similar results for policy learning in
offline and online RL settings, and (3) reducing the effect of offline distribution shifts. We also
note that our use of contrastive Fourier features for learning a linear dynamics model may be of
independent interest, especially considering that a number of theoretical RL works rely on such an
approximation (, [4, 39]), while to our knowledge no previous work has demonstrated a practical
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and scalable learning algorithm for linear dynamics approximation. Determining if the technique of
learning contrastive Fourier features works well for these settings offers another interesting direction
to explore.

Limitations One of the main limitations inherent in our theoretical derivations is the dependence
on distribution shift, in the form of 1 +Dχ2(doff‖dπ∗) 1

2 in all bounds. Arguably, some dependence
on the offline distribution is unavoidable: Certainly, if a specific state does not appear in the offline
distribution, then there is no way to learn a good representation of it (without further assumptions on
the MDP). In practice one potential remedy is to make sure that the offline dataset sufficiently covers
the whole state space; the inequality 1 +Dχ2(p‖q) ≤ ‖p/q‖2∞ will ensure this limits the dependence
on distribution shift.
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