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ABSTRACT

The surge of facial photos on social media has made unauthorized face recognition
(FR) a serious threat to personal privacy. Existing diffusion-based privacy meth-
ods are vulnerable to the purification effect, which weakens adversarial signals,
and their single-stage optimization struggles to balance deceptiveness and visual
quality. To address this, we propose a two-stage face privacy protection frame-
work. During the Identity Diversion stage, we introduce Negative Prompt Inver-
sion (NPI) into the diffusion reverse process and incorporate an angular margin
constraint to steer features toward a target identity in feature space—counteracting
the dilution of adversarial signals at the source and mitigating gradient conflicts
and trade-off issues. During the Visual Fidelity Restoration stage focuses on per-
ceptual quality, using perceptual loss and regularization strategies to enhance nat-
uralness while preserving the method’s ability to deceive recognizers. Extensive
experiments on the CelebA-HQ and LADN public datasets show that our approach
achieves state-of-the-art protection success rates (PSR) while maintaining high
image quality, underscoring its promise for privacy protection and real-world de-
ployment.The code is available in the Supplementary Material.

1 INTRODUCTION

With the rapid advances of deep neural networks, face recognition (FR) has become widely used
in identity authentication, mobile payments, and public security(Hill, 2022). However, the massive
sharing of facial images on social media(Besmer & Richter Lipford, 2010) (Smith et al., 2012)and
in public settings enables unauthorized FR systems to track user behavior, analyze social relation-
ships, and even commit identity theft without consent, posing serious threats to personal privacy
and security. Therefore, an urgent challenge is how to effectively defend against unauthorized face
recognition while preserving the visual quality of images.

Existing research has explored various adversarial approaches to facial privacy protection. Early
methods based on noise perturbations(Cherepanova et al., 2021) (Shan et al., 2020)(Yang et al.,
2021)or adversarial patches(Komkov & Petiushko, 2021) (Xiao et al., 2021)can reduce recognition
success to some extent, but they often introduce noticeable visual artifacts that degrade naturalness.
Subsequently, makeup-style transfer methods (Hu et al., 2022)(Shamshad et al., 2023) (Sun et al.,
2024)attempt to embed adversarial information as cosmetic effects on the face, thereby achieving
privacy protection while maintaining a natural appearance. However, these methods typically rely
on reference images or textual prompts, making fine-grained control difficult, and their cross-model
transferability under black-box settings still needs improvement.

In recent years, the powerful generative and editing capabilities of diffusion models(Sohl-Dickstein
et al., 2015) have opened new avenues for facial privacy protection. A representative work, DiffPro-
tect(Liu et al., 2023), was the first to incorporate diffusion models into adversarial face protection
by modifying semantic codes in the latent space to impersonate a specified target identity. However,
during the reverse diffusion process it is affected by the so-called “diffusion purification effect”—the
model tends to remove high-frequency adversarial perturbations during denoising—resulting in a
drop in PSR. At the same time, excessive modification of the semantic code can introduce percep-
tible distortions to facial structure. To alleviate this issue, subsequent research(Salar et al., 2025)
introduced learnable unconditional embeddings(Mokady et al., 2023) in the diffusion latent space
to strengthen the retention of adversarial information. Nevertheless, because the method relies on
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Figure 1: All the images above were generated using various facial privacy protection methods; the
number beneath each image corresponds to the verification confidence score from the Face++ API.

indirect alignment via unconditional embeddings, it struggles to eliminate biases injected by the
original content.Meanwhile, existing diffusion-based methods must trade off between image quality
and PSR, so the achievable PSR is constrained by the requirements on perceptual quality.

Accordingly, diffusion-based approaches(Liu et al., 2023)(Salar et al., 2025)to facial privacy protec-
tion have gradually demonstrated a superior trade-off between visual quality and black-box(Dong
et al., 2018) transferability compared with traditional noise perturbation and makeup-transfer strate-
gies. Inspired by this, and under the same task setting as prior work, we propose a two-stage
scheme: directly applying adversarial optimization in the latent space while introducing structure-
preservation constraints, so as to maintain high-quality, natural appearance while effectively defend-
ing against various unauthorized face recognition models.

Specifically, we build a two-stage diffusion-based adversarial optimization framework. During the
Identity Diversion stage, the model follows the reverse diffusion trajectory to generate adversarial
samples and uses target identity features as supervision, maximizing the misclassification proba-
bility in feature space and thereby substantially enhancing deception capability. During the Visual
Fidelity Restoration stage, we further minimize perceptual loss within the latent space and introduce
a dynamic rollback mechanism, which restores fine-grained textures and improves visual naturalness
without sacrificing attack success. This design breaks the conventional “single-pass diffusion with
a single objective” paradigm, enabling the protected images to combine strong misleading power
against FR systems with high perceptual quality.In conclusion, our contributions are threefold:

(i) Negative-Prompt Inversion as a de-biased initializer. We replace step-wise null-text opti-
mization with Negative-Prompt Inversion (NPI), providing a de-biased and steady starting point for
inversion. This mitigates early gradient oscillations induced by semantic bias and yields faster, more
stable convergence to the target identity.

(ii) Decoupled two-stage objective. We separate adversarial identity diversion from visual fidelity
restoration into two dedicated stages. This removes objective interference present in single-stage
designs, stabilizes training, and improves the end-to-end balance between deception success (PSR)
and visual quality.

(iii) Comprehensive evaluation under black-box settings. We conduct broad comparisons on pub-
lic benchmarks against strong baselines under black-box conditions (Dong et al., 2018). Our method
achieves substantially higher PSR while preserving high visual quality and remaining competitive
on perceptual metrics, highlighting its practical potential for facial privacy protection.

2 RELATED WORK

Noise-based methods. Noise-based privacy protection perturbs the input face at the pixel level so
that the perturbed image’s embedding in a recognition model either moves toward a target iden-
tity (impersonation) or away from the source identity. Representative transfer-based attacks include
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PGD(Madry et al., 2017), MI-FGSM(Dong et al., 2018), and TI-DIM(Dong et al., 2019), which
enhance black-box transferability via iterative updates, momentum, and translation invariance, re-
spectively; TIP-IM(Dong et al., 2019) further designs an update rule tailored for targeted identity
protection. Although such methods can achieve nontrivial protection under black-box settings, they
essentially overlay “non-semantic” noise masks across the entire image, often leaving perceptible
artifacts—e.g., noticeable grain and spurious textures—that undermine user experience and facial
naturalness. In practice, this artifact–effectiveness trade-off is a core limitation of noise-based ap-
proaches and has motivated subsequent work to reorganize adversarial evidence into more semantic,
localized edits, thereby improving visual plausibility without sacrificing attack success.

Patch-based methods. Patch-based approaches conceal identity by overlaying visually salient
adversarial patches on limited facial regions, thereby disrupting feature extraction in FR models.
Early works design wearable adversarial accessories, such as the colorful eyeglass frames of Adv-
Glasses(Sharif et al., 2019) and the adversarial brim of Adv-Hat(Komkov & Petiushko, 2021), which
can be physically worn to mislead FR systems in real-world settings. To improve black-box trans-
ferability, (Xiao et al., 2021) further construct digital adversarial patches and regularize them on a
low-dimensional data manifold represented by generative models. However, the localized/restricted
editing region of patches introduces an inherent trade-off: because perturbations are confined to
small and often conspicuous areas, their ability to fully suppress FR accuracy is limited, and they
tend to reduce the naturalness of the protected images.

Makeup-based methods. Makeup-based defenses embed adversarial cues as cosmetic edits. Early
GAN methods such as Adv-Makeup(Yin et al., 2021) and AMT-GAN(Hu et al., 2022) transfer
makeup from a reference image but often introduce artifacts and spill into non-makeup regions.
CLIP2Protect(Shamshad et al., 2023) shifts editing to the StyleGAN latent space with CLIP guid-
ance(Li et al., 2021), removing the need for reference images yet offering only coarse control. Dif-
fAM(Sun et al., 2024) adopts a text-guided diffusion pipeline that first removes and then synthesizes
fine-grained adversarial makeup, markedly improving naturalness and black-box attack success.
However, all these methods still require retraining or re-tuning when the target identity changes,
limiting practical deployment.

Diffusion-based methods. As state-of-the-art probabilistic generative models, diffusion models
can produce highly realistic, ultra–high-resolution images. Studies show this capability can also
be used to craft adversarial examples: for example, DiffProtect(Liu et al., 2023) protects faces by
modifying the semantic latent codes of Diff-AE(Preechakul et al., 2022), but such direct edits disrupt
facial structure and consistency with the original image. Another line of work(Salar et al., 2025)
(For convenience, hereafter referred to as WDP.)operates in the latent space and introduces null-
text optimization(Mokady et al., 2023) to attenuate the diffusion process’s purification effect, yet
relying on this alone cannot fully suppress it, leaving PSR limited. More critically, most methods
must balance image quality and PSR simultaneously, thereby constraining overall performance and
scalability.

3 METHOD

3.1 OVERVIEW

We propose the first two-stage, diffusion-based framework for facial privacy protection (as shown in
Fig.2). In the Identity Diversion stage, we jointly employ Negative Prompt Inversion (NPI) and an
angular-margin loss to rapidly generate intermediate images that strongly mislead recognition mod-
els in feature space, thereby boosting adversarial deceptiveness. We then move to the Visual Fidelity
Restoration stage: guided by the LPIPS(Snell et al., 2017) perceptual loss and further constrained
by latent-space L2 regularization with a dynamic rollback mechanism, we restore high-frequency
details and fine textures without weakening the attack established in Stage I, substantially improving
naturalness and perceptual quality.

This “deceive first, then restore” strategy breaks the inherent trade-off between protection success
rate (PSR) and image quality that plagues single-stage methods. Experiments on CelebA-HQ(Karras
et al., 2017) and LADN(Gu et al., 2019) show that our approach not only achieves a significantly
higher PSR than mainstream single-stage baselines, but also maintains visual quality metrics such
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Figure 2: Overview of the two-stage framework. Our method employs a two-stage strategy for
image protection:Identity Diversion takes the original face xorig as input and, guided by NPI and the
angular-margin loss, drives the sample in feature space toward the target image, yielding a highly
deceptive intermediate xp; Visual Fidelity Restoration then starts from xp, refines details using
LPIPS and a latent-space L2 regularizer, and applies a threshold-controlled dynamic rollback to
obtain a higher-quality x′

p without weakening the attack.

as FID(Heusel et al., 2017), demonstrating practical potential for real-world deployment and estab-
lishing a new two-stage diffusion paradigm for facial privacy protection.

3.2 NEGATIVE PROMPT INVERSION

Figure 3: Comparing NPI(Ours) vs purification
from null-text suppression diffusion.Rows: (1)
original image, (2) null-text, (3) NPI.

Unlike DDPM (Ho et al., 2020) and DDIM
(Song et al., 2020), which carry out diffusion
and denoising directly in pixel space—an ap-
proach that often introduces local blurring, tex-
ture degradation, and difficulties in maintaining
long-term structural consistency—Stable Dif-
fusion (Rombach et al., 2022a) moves the diffu-
sion process into latent space, markedly reduc-
ing computational and memory overhead while
further enhancing the stability and controllabil-
ity of high-resolution image generation.

Because both diffusion and denoising occur in
latent space, subsequent semantic guidance and
loss constraints can be imposed directly on this
compact representation. However, when we
wish to edit a real face xorig, the image must
first be “brought back” onto the model’s latent
trajectory to provide a valid starting point. Ac-
cordingly, we employ DDIM inversion to map
xorig into the latent sequence (z1, z2, . . . , zt).
This constructs a one-to-one trajectory on the
diffusion model’s data manifold corresponding to the original image, allowing semantic guidance
and loss constraints to be applied in situ. In doing so, we preserve reconstructability and facial-
structure consistency while avoiding the distribution shifts and artifacts caused by indiscriminate
perturbations. Because DDIM sampling can be regarded as the numerical solution of an ordinary
differential equation, it furnishes an approximately invertible mapping along with a step-wise, con-
trollable editing interface, enabling stable, high-fidelity image manipulation. The basic inversion
procedure can be expressed as:

zt+1 =

√
ᾱt+1

ᾱt
zt +

√
ᾱt+1

(√
1

ᾱt+1
− 1 −

√
1

ᾱt
− 1

)
ϵθ
(
zt, t,∅t

)
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Figure 4: (Left) Top row: original image, single-stage result, two-stage result; bottom row: the
corresponding difference maps with respect to the original. (Right) Illustration of how sample dis-
tributions change in feature space after incorporating the angular-margin loss.

Here, ᾱt denotes the noise scaling factor, and ϵθ(zt, t,∅t) is the noise term predicted by the U-Net
at timestep t. The DDIM sampling process is given as follows:

zt−1 =

√
ᾱt−1

ᾱt
zt +

√
ᾱt−1

(√
1

ᾱt−1
− 1 −

√
1

ᾱt
− 1

)
ϵθ
(
zt, t,∅t

)
To mitigate the diffusion purification effect, WDP (Salar et al., 2025) adopts an indirect alignment
based on the unconditional (null-text) embedding (Mokady et al., 2023), which requires repeatedly
updating the negative-branch embedding at every diffusion step, thereby increasing computational
and memory overhead. However, this mechanism struggles to remove biases injected by the original
image content, limiting convergence and stability in the early inversion stage. Inspired by NPI
(Miyake et al., 2025), we replace unconditional optimization at initialization with a fixed semantic
embedding, directly constraining the inversion start point and attenuating content bias, so that the
trajectory converges earlier and more stably toward the target while also improving the efficiency
of adversarial sample generation.As shown in Fig.3, NPI outperforms the null-text(Mokady et al.,
2023) optimization baseline. The core idea can be stated as:

∅t ≈ C,

Here, ∅t denotes the diffusion model’s unconditional embedding at step t, which we approximate
with a constant semantic vector C. In this paper, we set C = “face” to avoid semantic ambiguity
introduced by complex descriptions and to emphasize face editing as the core objective.

3.3 STAGE I-IDENTITY DIVERSION

As illustrated in Fig. 2, we break the intrinsic trade-off between attack success rate and image quality
that hampers single-stage pipelines (Liu et al., 2023; Salar et al., 2025) by introducing a two-stage
optimization framework. The first stage—Identity Diversion—focuses exclusively on maximizing
adversarial strength, laying a solid foundation for the subsequent high-fidelity restoration.

In striving for stronger adversarial performance, we observe that most existing face-privacy and
attack methods (Hu et al., 2022; Liu et al., 2023; Sun et al., 2024; Salar et al., 2025) rely solely on
a similarity loss to nudge the generator toward the target identity. Such a loss enforces only global
directional alignment and fails to impose explicit inter-class separability in feature space, leaving the
produced adversarial samples fragile when confronted with unseen recognition models. To address
this weakness, we introduce an ArcFace(Deng et al., 2019)-style angular-margin loss: unlike the
original ArcFace (Deng et al., 2019), which employs classification cross-entropy, our formulation
directly imposes an angular margin between source and target features. The generated image must
therefore not only approach the target in cosine space but also satisfy a tighter angular boundary,
greatly enhancing its deceptive capability and cross-model generalization (see Fig. 4(Right)). The
ArcFace-style loss used in this work is defined as:

LArc =

N∑
i=1

s max
(
0, cos θi − cos(θi +m)

)
, cos θi =

〈
e
(i)
src

∥e(i)src∥
,

e
(i)
tgt

∥e(i)tgt ∥

〉
.

Here, θi is the angle between the i-th pair of source and target embeddings, m is the angular-margin
hyperparameter, s is the scaling factor. The term N represents the number of source–target feature
pairs in one computation and is used to average the loss over all pairs.
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Method CelebA-HQ LADN AverageIRSE50 IR152 Facenet MobileFace IRSE50 IR152 Facenet MobileFace
clean 7.29 3.80 1.08 12.68 2.71 3.61 0.60 5.11 4.61

Noise-based
PGD (2017) 36.87 20.68 1.85 43.99 40.09 19.59 3.82 41.09 25.60
MI-FGSM (2018) 45.79 25.03 2.58 45.85 48.30 25.57 6.31 45.01 30.63
TI-DIM (2019) 63.46 36.17 15.30 57.12 56.36 34.18 22.11 48.30 41.64
TIP-IM (2021) 54.40 37.23 40.74 48.72 65.89 43.57 63.50 48.32 50.06

Makeup-based
Adv-Makeup (2021) 21.95 9.48 1.37 22.00 29.64 10.93 0.97 22.33 14.72
AMT-GAN (2022) 76.96 35.13 16.62 50.71 90.12 32.13 13.23 73.92 52.84
CLIP2Protect (2023) 81.10 48.42 41.72 75.26 91.57 53.31 47.91 79.94 64.90
DiffAM (2024) 92.00 63.13 64.67 83.35 95.66 66.75 65.44 92.04 77.88

Diffusion-based
DiffProtect (2023) 67.75 60.14 35.19 64.33 54.51 44.27 31.33 50.90 51.05
WDP (2025) 88.87 67.25 59.53 91.57 95.78 70.18 62.05 98.17 79.17
Ours 90.58 79.97 74.56 91.57 96.99 83.18 87.04 96.99 87.61

Table 1: Protection Success Rate (PSR, %) on CelebA-HQ and LADN under the black-box set-
ting.The highest value in each column is typeset in bold; the second highest is underlined.

As shown in Fig.2, in the first stage, the remaining loss terms include The Cosine Loss, by min-
imizing the cosine distance between the two embeddings, ensures that the adversarial sample is
closely aligned with the target identity in embedding-space direction, providing the most direct
“move-toward-target” driving force. Meanwhile, the self-attention regularization term constrains
the attention distribution in latent space, effectively preventing the generated image from suffering
severe structural distortions that could arise from an excessive focus on adversarial strength.

LCosine = 1− cos
(
F (xp), F (xt)

)
,

Lattn =
∥∥S(zadv)− S(z̄t)

∥∥2
2
,

Lstage1 = λLCosine + (1− λ)LArc + Lattn.

Here, F (xp) and F (xt) denote the feature vectors of the adversarial sample xp and the target im-
age xt, respectively. The coefficient λ ∈ [0, 1] is a balancing weight that trades off between the
traditional cosine-similarity constraint and the strengthened angular-margin constraint. Moreover,
S(zadv) and S(z̄t) represent, respectively, the perturbed and unperturbed self-attention maps of the
diffusion model at timestep t.

3.4 STAGE II-VISUAL FIDELITY RESTORATION

As shown in Fig.2, the core objective of stage of the Visual Fidelity Restoration is to further im-
prove the perceptual quality of the generated images while preserving—without diminishing—the
adversarial efficacy already achieved in the Identity Diversion stage, thereby attaining higher visual
fidelity. By adopting this divide-and-conquer design, each stage can concentrate on its own opti-
mization goal while leaving headroom for the other, breaking through the traditional single-stage
bottleneck between attack success rate and image quality and offering a clear, operational pathway
to enhance both simultaneously.(As shown in Fig.4(Left))

In this stage, we feed the adversarial images produced in the Identity Diversion stage together with
their corresponding original faces into a Stable Diffusion model and use its variational auto-encoder
to map the adversarial images to latent-space representations. All subsequent optimization is per-
formed purely in latent space, which not only greatly increases computational efficiency but also
exploits the natural-image prior inherent in the diffusion model’s latent manifold, ensuring realism
in the reconstructed results. The process can be formalized as the following constrained optimization
problem:

min
z

Lstage2(x
′
p,xorig) s.t. cos -sim(x′

p, t) ≥ τ,

Here, t denotes the feature embedding of the target identity, and τ is the face-recognition threshold
determined by a specified FAR. The primary objective is to minimize a proxy Fréchet Inception
Distance(FID)(Heusel et al., 2017) to improve perceptual quality; concretely, we use Learned Per-
ceptual Image Patch Similarity(LPIPS)(Zhang et al., 2018) as the perceptual loss. To prevent the
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Method PSR (↑) FID (↓) PSNR (↑) SSIM (↑)

TIP-IM(2021) 50.06 38.7357 33.2089 0.9214

Adv-makeup(2021) 14.72 4.2282 34.5152 0.9850
AMT-GAN(2022) 52.84 34.4405 19.5045 0.7873
DiffAM(2024) 77.88 26.1015 20.5260 0.8861

DiffProtect(2023) 51.05 28.2912 24.2070 0.8785
WDP(2025) 79.17 18.0380 27.8664 0.8538
Ours 87.61 16.0342 27.1780 0.8512

Table 2: Quantitative comparison of privacy protection (PSR) and visual-quality metrics. The high-
est value in each column is typeset in bold; the second highest is underlined.

latent variables from drifting too far from their initial values, we further include an L2 regulariza-
tion term in the loss. The overall objective can be written as

Lstage2 = LPIPS
(
x′
p, xorig

)
+ β∥z− z0∥2,

To ensure the attack remains effective during optimization, we introduce a threshold-guard mecha-
nism: after each latent-space decoding, we compute the cosine similarity with the target embedding.
If the similarity falls below the threshold τ , the algorithm immediately rolls back to the most recent
latent state verified as safe, thereby preventing the attack from failing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following the experimental protocol of AMT-GAN (Hu et al., 2022), we evaluate our
method on two public datasets—CelebA-HQ (Karras et al., 2017) and LADN (Gu et al., 2019).
CelebA-HQ(Karras et al., 2017) is a high-resolution version of CelebA containing 30 000 face im-
ages; consistent with AMT-GAN(Hu et al., 2022), we randomly sample 1 000 images, each from
a distinct identity, for our experiments. LADN(Gu et al., 2019) offers 333 no-makeup and 302
makeup images, of which 332 no-makeup images are used as the test set. For both datasets, we
further divide the data into four subsets, each linked to a specific target identity. All images within
a subset are required to impersonate that identity, mirroring the four preset target identities used in
AMT-GAN(Hu et al., 2022).

Target Models. To evaluate the defense effectiveness against face-recognition (FR) systems, we
select four widely used black-box FR models: IRSE50(Hu et al., 2018), IR152(He et al., 2016),
FaceNet(Schroff et al., 2015), and MobileFace(Chen et al., 2018). During fine-tuning, we randomly
choose three of these models to provide gradient feedback, leaving the remaining one aside for
strictly black-box testing. Following previous work(Shamshad et al., 2023), all input images are
first aligned and cropped with MTCNN(Zhang et al., 2016) before being fed into the FR models.

Baselines. We benchmark our method against ten representative approaches covering three families:
(i) Pixel–noise attacks: PGD(Madry et al., 2017), MI-FGSM(Dong et al., 2018), TI-DIM(Dong
et al., 2019) , and the strongest pixel-noise baseline TIP-IM(Yang et al., 2021); (ii) Digital-makeup
attacks: Adv-Makeup(Yin et al., 2021), AMT-GAN(Hu et al., 2022), CLIP2Protect(Shamshad et al.,
2023), and the current makeup-based SOTA DiffAM(Sun et al., 2024); (iii) Diffusion-based attacks:
DiffProtect(Liu et al., 2023) and the latest SOTA WDP(Salar et al., 2025).

Metrics. Consistent with CLIP2Protect(Shamshad et al., 2023), we use PSR to evaluate the ef-
fectiveness of the proposed method relative to baselines. PSR is computed with the false accept
rate (FAR) set to 0.01(Hu et al., 2022)(Shamshad et al., 2023). In addition, we evaluate the vi-
sual quality of protected images using Fréchet Inception Distance (FID)(Heusel et al., 2017), peak
signal-to-noise ratio (PSNR, in dB), and structural similarity index (SSIM)(Wang et al., 2004).

Implementation Details. Our implementation is built on(Salar et al., 2025). The Identity Diversion
stage fixes the text prompt to “face” and performs T1 = 35 optimization steps during inversion; the
loss weight is set to λ = 0.5. The Visual Fidelity Restoration stage II runs T2 = 70 optimization
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Figure 5: The confidence scores returned from commercial APIs, Face++ and Aliyun

steps ; the threshold τ follows the setting used in(Hu et al., 2022)(Salar et al., 2025). For more
experiments, please refer to the appendixA.6.

4.2 COMPARATIVE EXPERIMENTS

In this section, we evaluate both our method and the baselines under black-box(Dong et al., 2018)
conditions against four pre-trained face-recognition (FR) models, assessing their protective perfor-
mance and the quality of the generated images.

Personal Facial Privacy Protection Evaluation. On the CelebA-HQ(Karras et al., 2017) and
LADN(Gu et al., 2019) datasets, we adopt a black-box(Dong et al., 2018) evaluation protocol: each
of four common FR models is taken in turn as the target model, while the remaining three serve as
surrogate models to generate adversarial examples; for each target model, we evaluate four target
identities and report the average. To better reflect real-world usage, the target face images used
at test time come from the same subjects as in training but are different images.As shown in the
Tab.1 with the threshold set to FAR = 0.01 and using PSR as the metric, our method shows a clear
advantage over representative baselines—namely the noise-based TIP-IM(Dong et al., 2019), the
makeup-based DiffAM(Sun et al., 2024), and WDP(Salar et al., 2025)—with average PSR improve-
ments of approximately 37%, 9.7%, and 8.4%, respectively.

Qualitative assessment of visual quality. We evaluate the generated images from both quantitative
and qualitative perspectives; the quantitative results are reported in the Tab2. Overall, because
Adv-Makeup(Yin et al., 2021) applies only lightweight edits around the eyes, it achieves strong
performance on visual-quality metrics; however, its conservative changes markedly limit PSR. By
contrast, our method attains an advantage in FID(Heusel et al., 2017), indicating that the protected
images are closer to the real distribution and appear more natural subjectively. On individual metrics
such as SSIM and PSNR(Wang et al., 2004), we are on the same order as DiffProtect(Liu et al.,
2023),DiffAM(Sun et al., 2024)and WDP(Salar et al., 2025), while maintaining stronger privacy
protection. The qualitative visualizations likewise show that our edits are more localized with fewer
artifacts, preserving overall structure and facial recognizability and yielding more robust privacy
protection—thus achieving a better overall balance between naturalness and protection strength.

Attack Performance on Commercial APIs. In Fig.5, we evaluate our method and several baselines
under conditions closer to real-world use: we employ two mainstream commercial face recogni-
tion (FR) APIs—Face++ and Aliyun—and randomly sample 100 images from each of the CelebA-
HQ(Karras et al., 2017) and LADN(Gu et al., 2019) datasets for protection and evaluation. The
confidence scores range from 0 to 100, with higher values indicating greater similarity between the
protected image and the target identity. The results show that our approach achieves high confidence
scores on both APIs; notably, WDP(Salar et al., 2025) also performs competitively on Face++.

4.3 ABLATION STUDY

As illustrated in Tab.3, the ablation study shows that each module contributes meaningfully to the
overall pipeline: with all components enabled, we obtain a marked boost in PSR while still delivering
high-quality, visually faithful images.
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Methods Evaluation Metrics
NPI Angular-margin loss Stage II PSR (↑) FID (↓) PSNR (↑) SSIM (↑)
× × × 79.17 18.0380 27.8664 0.8538

✓ × × 79.32 29.3841 25.6454 0.8119
× ✓ × 85.60 34.2472 25.1762 0.7924
× × ✓ 79.17 12.3357 28.9720 0.8788

✓ ✓ × 87.61 31.8926 25.3224 0.8022
✓ × ✓ 79.32 15.0564 27.6237 0.8577
× ✓ ✓ 85.60 16.6114 27.2330 0.8504

✓ ✓ ✓ 87.61 16.0342 27.1780 0.8512

Table 3: Quantitative comparison of privacy-protection effectiveness and visual-quality metrics
across ablation settings.

NPI. Introducing NPI(Miyake et al., 2025) approximates the unconditional embedding(Mokady
et al., 2023) ∅t with a fixed semantic vector, giving DDIM inversion a stable, debiased starting
point in diffusion space. This strategy markedly suppresses diffusion purification, concentrates gra-
dient directions, and reduces early-stage oscillations, allowing the optimization trajectory to con-
verge faster and more stably toward the target identity(as shown in Fig.3). As shown in Tab.3, when
combined with the angular-margin loss, NPI(Miyake et al., 2025) boosts the PSR from 85.60% to
87.61% with virtually no additional computational overhead, underscoring its effectiveness.

Angular-margin loss. Introducing the angular-margin loss imposes a strict margin on the angle
between source and target feature vectors in embedding space, effectively adding an “angular gate”
beyond cosine similarity. This mechanism markedly enhances the deceptiveness of adversarial ex-
amples(As shown in Fig.4(Right)) and their cross-model generalization; even when applied in iso-
lation it delivers a substantial boost in PSR.

Stage II. The two-stage framework—“deceive first, then restore”—substantially enhances percep-
tual quality while preserving attack strength. With Visual Fidelity Restoration stage in place, our
method lowers the FID(Heusel et al., 2017) from 31.89 to 16.03 without any reduction in PSR. When
the Visual Fidelity Restoration stage is added on top of WDP (Salar et al., 2025), FID(Heusel et al.,
2017) likewise drops from 18.04 to 12.34, again with PSR unchanged. These results confirm that the
two-stage design achieves a superior trade-off between visual quality and adversarial effectiveness
compared with single-stage optimization, validating the “strengthen attack first, then refine quality”
strategy.

As shown in Tab.3, although our images are not of the highest visual quality, our method achieves the
best PSR. We prioritize PSR over purely perceptual metrics because, in black-box face-recognition
settings, a protected image attains true “unrecognizability”—and thus real security value—only
when its PSR is sufficiently high.

5 CONCLUSIONS

This paper proposes a diffusion-based two-stage framework that decouples attack enhancement from
visual restoration. In the Identity Diversion stage, the method rapidly guides samples toward the
target identity in feature space, thereby counteracting the dilution of adversarial signals caused by
diffusion denoising. Subsequently, in the Visual Fidelity Restoration stage, it further refines image
details and textures while preserving the established deception. At present, the loss function in the
Visual Fidelity Restoration stage is primarily aimed at improving FID(Heusel et al., 2017); future
work may introduce multi-objective losses that jointly optimize FID(Heusel et al., 2017), SSIM,
and PSNR(Wang et al., 2004), or adopt alternative architectural designs, to enhance visual quality
across multiple dimensions. The two stages are modular and compatible with standard inversion
pipelines and guidance schedules, enabling straightforward integration across different datasets and
face recognition (FR) backbones.
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A APPENDIX

To facilitate a deeper understanding of our work and provide comprehensive experimental details,
we include an appendix with several supplementary sections. These sections elaborate on key as-
pects that complement the main text, including the application of large language models, a detailed
background on latent diffusion models, the selection of target images, the face recognition models
used in our evaluation, specific parameter settings, and additional visualization results. This sup-
plementary material aims to ensure transparency and reproducibility while offering readers further
insights into the methodologies and experiments discussed in the main paper.

A.1 THE USE OF LARGE LANGUAGE MODELS

During the writing of this paper, we leveraged large pre-trained language models (LLMs) to rapidly
retrieve and synthesize literature highly relevant to our study, ensuring both comprehensive and up-
to-date coverage. We also used these models to polish the draft’s language and provide accurate
Chinese-English translation, standardizing terminology and streamlining the narrative so that the
manuscript more closely adheres to academic conventions.

A.2 LATENT DIFFUSION MODEL

Latent-space diffusion. Conventional diffusion models (e.g., DDPM(Ho et al., 2020), DDIM(Song
et al., 2020)) denoise images directly on the pixel grid, typically requiring hundreds of reverse steps
and substantial GPU resources to produce high-quality images. Rombach et al(Rombach et al.,
2022b). introduced the Latent Diffusion Model (LDM), which shifts the stochastic diffusion process
into the latent space of a pretrained auto-encoder. This reduces dimensionality by roughly 16× while
preserving perceptual details, enabling megapixel-scale synthesis on commodity GPUs.

Formulation in Latent Space. Let E and D denote the encoder and decoder of the auto-encoder,
respectively.For a given input image x, its latent representation is obtained as z0 = E(x). The
forward (noise-adding) diffusion process is defined by

q
(
zt | zt−1

)
= N

(
zt ;

√
1− βt zt−1, βt I

)
,

and has the closed form

q
(
zt | z0

)
= N

(
zt ;

√
ᾱt z0, (1− ᾱt) I

)
, where ᾱt =

t∏
s=1

(
1− βs

)
.

The reverse diffusion is learned by a UNet ϵθ that predicts the added noise. Using the deterministic
DDIM sampler, one denoising step is

zt−1 =

√
ᾱt−1

ᾱt
zt +

√
ᾱt−1

(√
1

ᾱt−1
− 1−

√
1

ᾱt
− 1

)
ϵθ
(
zt, t, c

)
,

where c is an optional conditioning vector. Modeling the diffusion process in latent space retains
the mathematical elegance of diffusion models while drastically reducing memory and computation,
which is critical for image-wise optimization in privacy-protection pipelines.

Inversion and Editable Latent Representations. In editable latent modeling for real photographs,
we first apply deterministic DDIM inversion to map the input image x into a noise trajectory {zt}.
Once this latent representation is obtained, two editing routes are available: (i) directly manipulating
the noise codes—the approach adopted in this work—which is computationally lightweight and
better preserves the image’s overall structure; and (ii) adjusting the representation via cross-attention
or embedding vectors (e.g., Null-text Inversion(Mokady et al., 2023)). Both routes support gradient-
based objective optimization, enabling tasks such as identity transfer, watermark removal, or text
insertion. The edited latent is subsequently decoded back into pixel space by the decoder D.

A.3 NEGATIVE-PROMPT INVERSION

In null-text inversion(Mokady et al., 2023) (NTI), multiple gradient-descent updates of the uncon-
ditional embedding ∅t must be carried out at every diffusion step to achieve faithful reconstruction
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Figure 6: Target identities used for impersonation. The first row contains images used for training,
while the second includes images used for testing

under classifier-free guidance (CFG), making NTI the principal computational bottleneck. Negative-
prompt Inversion(Miyake et al., 2025) (NPI) eliminates this overhead by directly substituting the
conditional prompt embedding C for the negative branch’s ∅t, so that the positive and negative
prediction paths in the CFG formulation share an identical embedding; consequently, the whole in-
version is completed with a single forward DDIM(Song et al., 2020) pass and requires no backward
optimization. Theoretical analysis shows that once NTI converges, the reconstruction error tends to
zero when the two velocity fields coincide; under this condition the optimal ∅t gradually aligns with
C in semantic space, implying that C ≈ ∅t yields the same reconstruction fidelity without step-wise
refinement. Empirical evidence supports(Miyake et al., 2025) this approximation: at a resolution of
512 × 512 with 50 sampling steps, NPI finishes one inversion in about 5 second, whereas NTI still
needs over 130 second, delivering a 30× speed-up while maintaining virtually identical PSNR(Wang
et al., 2004), LPIPS(Zhang et al., 2018), and CLIP(Hessel et al., 2022) scores. Therefore, NPI pre-
serves high fidelity yet drastically reduces computational and memory costs, making it an ideal
replacement for NTI within our two-stage attack–restoration framework.

A.4 TARGET IMAGES

Our proposed model aims to generate protected face images that cause malicious face recognition
(FR) systems to misidentify them as a specified target identity. Figure 6 shows the four target
identities provided by AMT-GAN(Hu et al., 2022), as referenced in the Experiments (Section 4(?)
of the main paper. To better approximate real-world scenarios, we ensure that the target images used
for training are distinct from those used for testing.

A.5 FACE RECOGNITION MODELS

For a fair comparison, we used publicly available pretrained face recognition (FR) models. Three
of these models are based on the state-of-the-art ArcFace algorithm, which processes face images
at a resolution of 112×112 and encodes them into 512-dimensional feature vectors. These three
models differ in network architecture and training data: IR152(He et al., 2016) uses ResNet-152,
IRSE50(Hu et al., 2018) uses ResNet-50, and MobileFace(Chen et al., 2018) is built on Mobile-
FaceNet. In contrast, Facenet(Schroff et al., 2015) adopts the Inception-ResNet architecture and fol-
lows its original training protocol with an input resolution of 160×160. To evaluate performance, we
report recognition accuracy on the CelebA-HQ(Karras et al., 2017) dataset: 90.70% for IR152(He
et al., 2016), 90.80% for IRSE50(Hu et al., 2018), 83.00% for MobileFace(Chen et al., 2018), and
91.20% for Facenet(Schroff et al., 2015).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.6 PARAMETER SETTINGS

Effect of Balance Coefficient λ. Progressively decreasing the balance coefficient λ in the Identity
Diversion Stage loss shows(As shown in Tab.4) that moderately blending the angular-margin term
markedly boosts deception: when λ = 0.75–0.5, the PSR jumps from 79.17% to roughly 87%.
However, further reducing λ to 0.25 or 0 introduces an overly strong margin that destabilizes op-
timization, causing the PSR to fall to 59% and 21%, respectively. Meanwhile, the visual-quality
metrics—FID(Heusel et al., 2017), PSNR, and SSIM(Wang et al., 2004)—vary inversely: a pure co-
sine constraint (λ = 1) yields the best FID(Heusel et al., 2017), whereas dominance of the angular-
margin term significantly degrades naturalness. Overall, setting λ in the range 0.5–0.75 achieves
the best trade-off between deception strength and visual quality, while relying exclusively on either
constraint breaks this balance.

λ PSR (↑) FID (↓) PSNR (↑) SSIM (↑)

1 79.17 18.0380 27.8664 0.8538
0.75 86.14 31.3818 25.5461 0.8052
0.5 87.61 31.8926 25.3224 0.8022
0.25 59.00 30.9101 25.4267 0.8026
0 20.63 28.3098 25.6824 0.8077

Table 4: Effect of Balance Coefficient λ

Effect of Step Count in Identity Diversion. In the step-count ablation for the Identity Diversion
stage (Tab.5), we increase the optimization iterations from 30 to 35 and 40 while tracking PSR,
FID, PSNR, and SSIM. As the step count rises, deception strength improves consistently: PSR in-
creases from 84.32% to 87.61% and then to 88.85%. However, the 40-step setting noticeably raises
per-image inference time and prolongs the overall training schedule relative to 35 steps. Balancing
accuracy and efficiency, 35 steps achieve nearly the same PSR as 40 steps while substantially reduc-
ing runtime and compute, making 35 steps the more cost-effective choice for practical deployment.

Step PSR (↑) FID (↓) PSNR (↑) SSIM (↑)

30 84.32 29.6444 25.8829 0.8123
35 87.61 31.8926 25.3224 0.8022
40 88.85 34.8996 24.8544 0.7859

Table 5: Effect of Step Count in Identity Diversion.

Effect of Step Count in Visual Fidelity Restoration. In the step-count ablation for Visual Fidelity
Restoration, we evaluated 0, 50, 100, 150, and 200 iterations. The jump from 0 to 50 steps yields
the most pronounced quality gain: FID(Heusel et al., 2017) drops from 31.89 to 17.05, while PSNR
and SSIM(Wang et al., 2004) improve in tandem. Increasing to 100 steps brings further, but clearly
diminishing, returns. Beyond 100 (i.e., at 150 and 200 steps), the metrics nearly plateau, whereas
inference and training time grow almost linearly. Following these trends, we adopt a 30–70 step
window: this range already delivers strong image quality while keeping computational overhead
moderate, offering a favorable balance between visual fidelity and efficiency.

Step FID (↓) PSNR (↑) SSIM (↑)

0 31.8926 25.3224 0.8022
50 17.0469 26.8686 0.8424
100 15.8143 27.1990 0.8509
150 15.5435 27.2784 0.8528
200 15.4212 27.3156 0.8540

Table 6: Effect of Step Count in Visual Fidelity Restoration.
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A.7 MORE VISUALIZATION RESULTS

This section presents additional visualizations to validate the proposed two-stage framework. The
first row shows the original images; the second row displays the results produced by the Identity
Diversion stage; and the third row presents the outputs of the Visual Fidelity Restoration stage. As
observed, the second row achieves a substantial increase in PSR but at the cost of some degrada-
tion in visual quality; by contrast, the third row largely preserves PSR while effectively restoring
naturalness and fine details, resulting in superior overall perceptual quality.

Figure 7: More Visualization Results
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