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ABSTRACT

Sharpness-Aware Minimization (SAM) algorithms have effectively improved neu-
ral network generalization by steering model parameters away from sharp regions
of the training loss landscape, which tend to generalize poorly. However, the un-
derlying mechanisms of SAM are not fully understood, and recent studies ques-
tion whether its bias toward flatter regions is why it improves generalization. In
this work, we introduce Generalization-Aware Minimization (GAM), a general-
ized version of SAM that employs multiple perturbation steps instead of SAM’s
single-step perturbations. This allows GAM to directly guide model parameters
toward regions of the landscape that generalize better. We show that the expected
true (test) loss landscape is a rescaled version of the observed training loss land-
scape and demonstrate how GAM’s multiple perturbative updates can be designed
to optimize this expected test loss. Finally, we present a practical online algorithm
that adapts GAM’s perturbative steps during training to improve generalization,
and we empirically validate its superior performance over SAM on benchmark
datasets. We believe that GAM provides valuable insights into how sharpness-
based algorithms improve generalization and can inspire the development of opti-
mizers with even better generalization.

1 INTRODUCTION

Generalization is a fundamental challenge in training deep neural networks, where the goal is to
perform well on unseen data rather than just fitting the training set. One promising approach to
enhance generalization is Sharpness-Aware Minimization (SAM) (Foret et al., 2021), which has
empirically demonstrated success by guiding model parameters away from sharp minima in the
training loss landscape. The underlying intuition is that flatter minima correspond to solutions that
are less sensitive to perturbations and thus generalize better to new data.

Despite its empirical effectiveness, the theoretical understanding of why SAM improves generaliza-
tion remains limited. Recent studies have questioned whether SAM’s bias toward flatter regions is
the primary reason for its success (Wen et al., 2023). This ambiguity highlights the need for a deeper
exploration of the mechanisms through which SAM and similar algorithms enhance generalization.
Understanding the mechanisms behind SAM is crucial for developing more effective optimization
algorithms that consistently improve generalization across various architectures and datasets.

In this work, we adopt a Bayesian perspective to investigate what the observed training loss land-
scape reveals about the expected test loss. Specifically, we consider the relationship between the
training and test loss landscapes in the context of quadratic loss functions. Our analysis reveals that
the expected test loss landscape is a rescaled version of the training loss landscape. This rescal-
ing implies that directly optimizing the expected test loss could lead to better generalization than
indirectly promoting flatness.

Building on this insight, we introduce Generalization-Aware Minimization (GAM), a generalization
of SAM that employs multiple perturbation steps designed to transform the observed training loss
landscape to the rescaled expected test loss landscape. GAM moves beyond SAM’s heuristic of
flatness by directly targeting the expected test loss, thereby enabling better generalization. Moreover,
we develop a practical online algorithm that adapts the perturbation sizes during training by using
the training loss on auxiliary minibatches as a proxy for the test loss.

Our contributions are as follows:
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• Theoretical Insight: We demonstrate that for quadratic loss functions, the expected test
loss landscape is a rescaled version of the observed training loss landscape. This provides
a direct link between training dynamics and generalization performance.

• Gradient Transformation: We show that the gradient of the expected test loss can be
obtained by evaluating the gradient of the training loss after applying a specific sequence
of parameter perturbations. This finding bridges the gap between optimizing for training
loss and directly targeting test loss.

• Algorithm Design: Based on our theoretical results, we propose GAM, an algorithm that
extends SAM by using multiple perturbation steps with higher-order derivatives and by
tuning perturbation sizes online during training. This makes GAM practical for use in
large-scale neural network training.

• Empirical Validation: We empirically validate GAM on benchmark datasets including
MNIST, CIFAR-10, and SVHN. Our results show that GAM consistently outperforms
SAM and standard gradient descent in terms of generalization performance.

2 RELATED WORK

2.1 SHARPNESS-AWARE MINIMIZATION (SAM) ALGORITHMS

Sharpness-Aware Minimization (SAM) algorithms were introduced to improve the generalization of
neural networks by favoring solutions in flatter regions of the training loss landscape, which have
empirically been linked to better generalization performance (Foret et al., 2021). SAM perturbs
model parameters in the direction of the loss gradient and then optimizes using a second gradient
step, effectively minimizing the sharpness of the loss function. Numerous extensions and variants of
SAM have since been proposed, focusing on improving computational efficiency and generalization
(Mi et al., 2022; Liu et al., 2022a;b; Du et al., 2022a;b; Li et al., 2024).

Despite its empirical success, the theoretical understanding of SAM remains limited and an active
area of research (Andriushchenko et al., 2023; Zhuang et al., 2022; Chen et al., 2024; Si & Yun,
2024; Dai et al., 2024). Recent studies have raised questions about whether SAM’s generalization
improvements stem directly from its bias toward flatter regions of the loss landscape. For instance,
some works argue that SAM’s effectiveness may not always be directly attributable to sharpness,
but instead to other implicit regularization effects introduced by the perturbation procedure (Wen
et al., 2023; Andriushchenko & Flammarion, 2022). Our work builds on this debate by introducing
a generalized framework that moves beyond the sharpness heuristic and directly targets the expected
test loss.

2.2 BAYESIAN OPTIMIZATION

Bayesian optimization is a well-established framework for optimizing functions that are expensive
to evaluate, and it has been successfully applied in hyperparameter tuning and low-dimensional op-
timization problems (Snoek et al., 2012; Frazier, 2018). The fundamental principle of Bayesian
optimization is to maintain a probabilistic model of the objective function and update it using new
observations, guiding the search toward areas of the input space that are likely to yield better out-
comes.

While Bayesian optimization has shown promise in various applications, its applicability to high-
dimensional settings, such as neural network training, has been limited. Methods that rely on Gaus-
sian processes or other surrogate models struggle to scale due to the curse of dimensionality and high
computational costs. Although some efforts have extended Bayesian optimization to use gradient-
based information for more scalable updates (Wu & Frazier, 2016; Wu et al., 2017; Shekhar &
Javidi, 2021), these approaches have yet to achieve widespread practical adoption in deep learning
beyond hyperparameter optimization.

Our approach draws inspiration from Bayesian principles by modeling the relationship between
training and test losses. We leverage this perspective to derive a more direct optimization strategy
for neural networks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 GENERALIZATION AWARE MINIMIZATION

In this section, we present our theoretical framework and introduce Generalization-Aware Minimiza-
tion (GAM), a novel optimization algorithm designed to directly improve generalization by aligning
the training loss landscape with the expected test loss landscape.

3.1 PROBLEM SETUP AND NOTATION

Consider a parametric model with parameters θ ∈ Rd. Let L(θ) denote the true (test) loss function,
which measures the expected loss over the data distribution D. In practice, we have access only
to the empirical training loss L̃(θ) computed over a finite training dataset sampled from D. Our
objective is to find the parameter vector θ that minimizes L(θ), even though we can only observe
and optimize L̃(θ).

To formalize our analysis, we focus on quadratic loss functions, which serve as local approximations
to general smooth loss landscapes. Specifically, we consider the true loss function L(θ) and the
observed training loss function L̃(θ) given by:

L(θ) =
1

2
(θ − θ∗)TM(θ − θ∗) + c, (1)

L̃(θ) =
1

2
(θ − θ̃∗)T M̃(θ − θ̃∗) + c̃, (2)

where θ∗, θ̃∗ ∈ Rd represent the minima of the loss functions, M,M̃ ∈ Rd×d are symmetric
positive-definite matrices characterizing the curvature of the loss landscapes, and c, c̃ ∈ R are con-
stants. The parameters θ∗,M, c of the test loss are unknown, while θ̃∗, M̃ , c̃ of the training loss can
be estimated from data.

Our goal is to understand how the expected test loss landscape relates to the observed training loss
landscape and to devise an optimization strategy that minimizes L(θ) by appropriately manipulating
L̃(θ).

3.2 EXPECTED TEST LOSS LANDSCAPE RESCALES THE TRAINING LOSS LANDSCAPE

We begin by examining the relationship between the expected test loss landscape and the observed
training loss landscape under the assumption of quadratic losses. We show that, under certain con-
ditions, the expected test loss can be expressed as a rescaled version of the training loss.

The intuition behind this result is that, while the training loss provides an estimate of the true loss,
it is subject to sampling variability and noise. By modeling the loss functions as random quadratics,
we can analyze how the expected test loss relates to the observed training loss. Specifically, we aim
to determine how the curvature (represented by the Hessian matrices) and the minima of the two
loss functions are related in expectation.
Theorem 1. Consider an unknown quadratic loss function:

L(θ) =
1

2
(θ − θ∗)TM(θ − θ∗) + c (3)

where θ∗ ∈ Rd, M ∈ Rd×d and c ∈ R are drawn from a known distribution. Without loss of
generality, we assume M is symmetric. Suppose we observe another random quadratic loss L̃(θ):

L̃(θ) =
1

2
(θ − θ̃∗)T M̃(θ − θ̃∗) + c̃ (4)

where θ̃∗, M̃ and c̃ are random variables dependent on θ∗, M and c. Again, suppose M̃ is symmet-
ric. Assume, θ∗, θ̃∗ ⊥ M, M̃, c, c̃ and M ⊥ c̃|M̃ , where ⊥ indicates independence. Furthermore,
assume pθ∗,θ̃∗ = pθ̃∗,θ∗ , where p denotes probability density. We also assume the following rotation
invariance conditions:

pM |M̃ (UMUT |UM̃UT ) = pM |M̃ (M |M̃) (5)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for all orthogonal matrices U and E[M |M̃ ] is diagonal when M̃ is diagonal. Suppose for all θ,

E[L̃(θ)|θ∗,M, c] = L(θ) (6)

Denote Q̃Λ̃Q̃T the diagonalization of M̃ for some diagonal matrix Λ̃ and orthogonal matrix Q̃.
Then,

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − θ̃∗)T Q̃D(Λ̃)Q̃T (θ − θ̃∗) + C(θ̃∗, M̃ , c̃) (7)

for some function D that outputs a diagonal matrix and function C outputting a scalar.

Please see Appendix A for a proof and Appendix C for justifications of our theoretical assumptions
(including the rotational invariance of conditional distributions and independence assumptions). The
proof involves leveraging the rotational invariance and the independence assumptions to show that
the expected test loss maintains the same eigenvectors as the training loss but with rescaled eigen-
values. This implies that the curvature (Hessian) of the expected test loss is a rescaled version of
that of the training loss, aligned along the same principal directions.

Theorem 1 intuitively suggests that the curvature directions of the expected test loss are aligned with
that of the training loss but rescaled in each direction. This rescaling affects the sharpness of the loss
landscape in different directions, suggesting that optimizing for flatter regions in the training loss
(as in SAM algorithms) may not necessarily correspond to optimizing the expected test loss without
additional assumptions.

3.3 A SERIES OF PERTURBATIONS TRANSFORMS THE TRAINING LOSS TO THE TEST LOSS

Having established the relationship between the expected test loss and the training loss, we now
explore how to approximate the gradient of the test loss using the training loss. We show that a
sequence of perturbations applied to the parameters allows us to transform the training loss gradient
into an approximation of the test loss gradient.

The key idea is that higher-order derivatives of the training loss can capture information about the
curvature of the loss landscape. By recursively computing these derivatives through perturbations,
we can construct a series that approximates the effect of rescaling the eigenvalues in the Hessian of
the training loss, effectively transforming it into the Hessian of the test loss.
Theorem 2. Consider two quadratic loss functions:

L̃(θ) =
1

2
(θ − θ̃∗)T M̃(θ − θ̃∗) + c̃ (8)

L̄(θ) =
1

2
(θ − θ̃∗)T Q̃f(Λ̃)Q̃T (θ − θ̃∗) + c̄ (9)

where M̃ ∈ Rd×d is symmetric with eigendecomposition M̃ = Q̃Λ̃Q̃T , and f is an elementwise
continuous function satisfying f(0) = 0, f ′(0) = 1. Suppose elements of Λ̃ are bounded. Define
Dt(θ) ∈ Rd recursively as:

D1(θ) = ∇L̃(θ) (10)

Dt(θ) =
∂

∂ζ
D1(θ + ζDt(θ))|ζ=0 (11)

for t > 1. Then, for all ϵ > 0, there exists a sequence γ1, γ2, ...γT ∈ R such that:

||∇L̄(θ)−∇L̃(θ̂)|| ≤ ϵ||θ − θ̃∗|| (12)

where

θ̂ = θ +

T∑
t=1

γtD
t(θ) (13)

Please see Appendix B for a proof. The proof constructs the perturbation coefficients γt to ap-
proximate the effect of the function f on the eigenvalues of M̃ . By iteratively applying directional
derivatives along the sequence Dt(θ), we adjust the gradient of the training loss to closely match
that of the transformed loss L̄(θ). See Appendix C for justifications of our theoretical assumptions
(including assumptions on the function f ). Notably, we assume the eigenvalue transformation f is

4
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Figure 1: Schematic diagram of generalization aware minimization (GAM) vs stochastic gradient
descent (SGD). Black and red contour lines indicate the observed and expected loss landscapes. Note
that the expected loss landscape corresponds to the observed loss landscape with rescaled contour
lines. SGD takes a gradient step directly against the gradient of the observed loss (black arrow).
GAM first makes a series of perturbations in the parameters (orange dashed arrows), computes the
update step from the observed loss at the perturbed value (red dashed arrow), and applies the step
at the original parameter value (red arrow). This direction corresponds to gradient descent on the
expected loss.

elementwise, differing from the more general eigenvalue transformation derived in Theorem 1; in
essence, this assumes orthogonal directions in the parameter space can be treated independently.

Theorem 2 provides a method to approximate the gradient of the expected test loss by applying a
series of perturbations to the parameters and computing higher-order derivatives of the training loss.
This result suggests that we can design an optimization algorithm that adjusts the parameter updates
based on these perturbations to directly minimize the expected test loss.

3.4 A PRACTICAL ONLINE ALGORITHM TO LEARN PERTURBATIONS

While the theoretical results are derived for quadratic losses, we may extend the approach to general
loss functions by considering local quadratic approximations. We propose a practical algorithm that
adapts the perturbation sizes during training to improve generalization.

Algorithm Design Based on Theorem 2, we design the Generalization-Aware Minimization
(GAM) algorithm. GAM uses multiple perturbation steps with higher-order derivatives and tunes
the perturbation coefficients γt online during training. This allows GAM to approximate gradients
of the expected test loss instead of using training loss gradients as illustrated in Figure 1. The key
components of GAM are:

• Higher-Order Perturbations: We compute a sequence of directional derivatives Dt(θ) to
capture higher-order information about the loss landscape.

• Adaptive Perturbation Sizes: We update the perturbation coefficients γt by minimizing a
discrepancy function ∆ between the gradient on perturbed parameters and an estimate of
the test loss gradient; in practice, we use negative dot product as our discrepancy measure.

• Auxiliary Minibatches: We use the training loss on auxiliary minibatches as a proxy for
the test loss to guide the adaptation of γt.

Notably, if the number of perturbation steps is fixed at one and γ1 is fixed at a constant value, we
recover SAM exactly: thus, SAM is a special case of GAM.

Algorithm Details Algorithm 1 outlines the steps of GAM.

5
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Algorithm 1 Generalization Aware Minimization
Require: Initial parameters θ0, training set D, GAM steps T , training iterations N , gradient dis-

crepancy function ∆, small constant ϵ > 0
1: Initialize γ1, γ2, ...γT = 0
2: Initialize θ = θ0

3: Sample minibatch X̄, Ȳ ∼ D
4: for iteration = 1, ..., N do
5: Sample minibatch X,Y ∼ D
6: d1 = ∇L(θ, (X,Y ))
7: for t = 2, ...T do
8: dt = 1

ϵ (∇L(θ + ϵdt−1, (X,Y ))− d1)
9: end for

10: θ̂ = θ +
∑T

t=1 γtd
t

11: gθ = ∇L(θ̂, (X,Y ))
12: ḡθ = ∇L(θ, (X̄, Ȳ ))
13: gγ = ∂

∂γ1,γ2,...γT
∆(gθ, ḡθ)

14: Update γ following −gγ
15: Update θ following −gθ
16: end for
17: Return θ

Explanation of Steps

• Lines 6–9 (Higher-Order Derivatives): We recursively compute the directional deriva-
tives dt using finite differences. The small constant ϵ ensures numerical stability.

• Line 10 (Perturbed Parameters): We obtain the perturbed parameter vector θ̂ by combin-
ing the directional derivatives weighted by the coefficients γt.

• Lines 11–12 (Gradient Computation): We compute the gradient at the perturbed param-
eters gθ and the gradient on the auxiliary minibatch ḡθ, which serves as a proxy for the test
loss gradient.

• Line 13 (Perturbation Coefficient Update): We compute the gradient of the discrepancy
between gθ and ḡθ with respect to the perturbation coefficients and update γt accordingly.

• Line 14 (Parameter Update): We perform a standard gradient descent update on the pa-
rameters using gθ.

Practical Considerations

• Computational Overhead: Computing higher-order derivatives increases computational
cost. However, since we use finite differences and a small number of perturbation steps T ,
the overhead remains manageable.

• Stability and Convergence: The choice of ϵ and the learning rates ηγ , ηθ can affect the
stability of the algorithm. In practice, these hyperparameters are tuned based on validation
performance.

• Extension to Non-Quadratic Losses: While theoretically motivated for quadratic losses,
GAM can be applied to general loss functions by assuming local quadraticity. This allows
GAM to be used with complex neural networks and loss functions encountered in deep
learning.

Empirical Validation To empirically validate that GAM effectively learns the perturbation coef-
ficients γt, we conduct experiments on a synthetic quadratic optimization problem where we control
the relationship between the observed (training) loss and the expected (test) loss. This setup allows
us to directly assess whether GAM can learn the true transformation from the training loss landscape
to the expected test loss landscape.

6
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Figure 2: Comparison of the true Hessian eigenvalue transformation (blue line) with the estimated
transformation obtained from the learned coefficients (red line). Blue dots indicate the eigenvalues
of the true loss Hessian. The red dashed line indicates the negative of the estimated eigenvalue
transformation.

We consider observed and true quadratic loss landscapes with the same Hessian eigenvectors, but
different Hessian eigenvalues. To simulate the observed training Hessian M̃ , we define a nonlinear
transformation f that relates the observed eigenvalues λ̃ to the true eigenvalues λ:

λ̃ = f(λ) =
1

2
λ+

1

20
sin(10λ). (14)

This transformation introduces both scaling and oscillatory behavior, mimicking complex discrep-
ancies between the training and test loss landscapes. Our objective is to learn the perturbation
coefficients γt such that the gradient of the perturbed training loss ∇L̃(θ̂) closely approximates the
gradient of the true loss ∇L(θ); we use squared error as our discrepancy metric ∆. See Appendix D
for further details.

As shown in Figure 2, the estimated transformation matches the true transformation well across
the range of Hessian eigenvalues in the observed loss. This indicates that the learned perturbation
coefficients effectively capture the nonlinear mapping between the training and test loss landscapes.
We highlight, however, that the transformation may be inaccurate outside of the range of observed
Hessian eigenvalues.

4 RESULTS

4.1 EXPERIMENTAL SETUP

In this section, we evaluate the performance of Generalization-Aware Minimization (GAM) in com-
parison to Sharpness-Aware Minimization (SAM) and standard stochastic gradient descent (SGD)
on standard image classification benchmarks: MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al.,
2009), and SVHN (Netzer et al., 2011). We employ three neural network architectures of varying
complexity:

• Multilayer Perceptron (MLP): A fully connected network with two hidden layers.

• Convolutional Neural Network (CNN): A standard CNN architecture with convolutional
and pooling layers.

• Wide Network (WN): A wider version of the CNN with increased channel sizes and depth
to assess performance on larger models.

7
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Table 1: Test set accuracies of various network architectures trained on the MNIST, CIFAR-10
and SVHN datasets with different methods: stochastic gradient descent (SGD), sharpness aware
minimization (SAM) with different parameter values γ1, and generalization aware minimization
(GAM). Mean results and standard errors are reported over 5 trials. Best results are bolded.

MNIST

Method MLP CNN

SGD 0.97368 ± 0.00072 0.96216 ± 0.00117
SAM 0.001 0.97356 ± 0.00082 0.96224 ± 0.00111
SAM 0.01 0.97352 ± 0.00032 0.96244 ± 0.00117
SAM 0.1 0.97466 ± 0.00046 0.96298 ± 0.00088
GAM 0.97518 ± 0.00063 0.96392 ± 0.00036

CIFAR-10

Method MLP CNN WN

SGD 0.54500 ± 0.00216 0.66334 ± 0.00104 0.83430 ± 0.00237
SAM 0.001 0.54552 ± 0.00241 0.66716 ± 0.00123 0.83138 ± 0.00231
SAM 0.01 0.54404 ± 0.00216 0.66974 ± 0.00232 0.83328 ± 0.00213
SAM 0.1 0.55394 ± 0.00170 0.68100 ± 0.00140 0.84288 ± 0.00345
GAM 0.56356 ± 0.00162 0.69396 ± 0.00154 0.85074 ± 0.00122

SVHN

Method MLP CNN WN

SGD 0.79729 ± 0.00223 0.87824 ± 0.00055 0.93852 ± 0.00084
SAM 0.001 0.79909 ± 0.00246 0.87919 ± 0.00033 0.93937 ± 0.00069
SAM 0.01 0.80234 ± 0.00169 0.87853 ± 0.00033 0.94156 ± 0.00048
SAM 0.1 0.80627 ± 0.00220 0.88334 ± 0.00095 0.94252 ± 0.00143
GAM 0.81175 ± 0.00217 0.88357 ± 0.00057 0.94299 ± 0.00025

For SAM, which corresponds to a special case of GAM with T = 1 and fixed perturbation size γ1,
we experiment with perturbation magnitudes γ1 ∈ {0.001, 0.01, 0.1} to evaluate its sensitivity to
this hyperparameter. GAM adaptively learns the perturbation coefficients γt during training using
multiple perturbation steps (T > 1) and higher-order gradient information.

All methods are trained using the same optimization settings, including learning rates, batch sizes,
and training epochs, to ensure a fair comparison. We report the mean and standard error over five
independent runs for each experiment. Detailed hyperparameter settings and training procedures are
provided in Appendix D. Appendix E Figure 6 shows the performance of GAM under different hy-
perparameter settings; in summary, we find that GAM can become unstable under large T , performs
best at small batch sizes, and is relatively insensitive to ϵ.

4.2 GAM OUTPERFORMS SAM ON BENCHMARKS

Table 1 presents the test accuracies achieved by each method across different datasets and network
architectures. The results demonstrate that GAM consistently and statistically significantly outper-
forms both SAM and standard SGD on all benchmarks. For instance, on CIFAR-10 with the wide
network architecture, GAM achieves a test accuracy of 85.07%, surpassing the best-performing
SAM variant by a significant margin.

Appendix E Figure 5 shows the test error over the course of training for each method. Notably, GAM
may underperform relative to other methods during the early stages of training as it learns the op-
timal perturbation coefficients γt. However, as training progresses, GAM adjusts these coefficients
effectively, leading to superior generalization performance by the end of training. This adaptive
learning of perturbations allows GAM to fine-tune its optimization strategy based on the evolving
loss landscape. These results suggest that GAM’s ability to adaptively learn perturbation sizes and
use higher-order gradient information contributes to its enhanced generalization performance across
different models and datasets.
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(a) MNIST, MLP (b) MNIST, CNN

(c) CIFAR-10, MLP (d) CIFAR-10, CNN (e) CIFAR-10, WN

(f) SVHN, MLP (g) SVHN, CNN (h) SVHN, WN

Figure 3: Visualization for different dataset-architecture combinations of Hessian eigenvalue trans-
formation of different training methods: stochastic gradient descent (SGD), sharpness aware mini-
mization (SAM) with different parameter values γ1, and generalization aware minimization (GAM).
Input eigenvalue corresponds to the observed loss Hessian while the output eigenvalue corresponds
to the transformed loss Hessian. Margins for GAM indicate standard errors over 5 trials.

4.3 ANALYZING THE TRANSFORMATION FROM TRAINING TO TEST LOSS

To gain further insight into how GAM improves generalization, we analyze the transformation ap-
plied by GAM to the loss landscape. Specifically, we examine how GAM modifies the eigenvalues
of the Hessian of the training loss, which correspond to the curvature along different parameter
directions.

Figure 3 visualizes the relationship between the original Hessian eigenvalues (input eigenvalues)
and the transformed eigenvalues (output eigenvalues) for different methods. For GAM, we compute
the effective transformation induced by the learned perturbation coefficients γt. We observe that
GAM tends to sharpen already sharp directions (i.e., directions with large eigenvalues), qualitatively
similar to SAM. As GAM is tuned specifically to optimize for generalization, the results suggest
that SAM generalizes well because of its similarity to GAM.

Interestingly, GAM’s transformation exhibits a higher contrast between small and large curvature
directions than SAM, selectively sharpening sharp directions while maintaining others. This more
complex behavior arises from the higher-order gradient information used by GAM, ultimately yield-
ing better generalization.
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Figure 4: Test set accuracies and training time of a CNN model trained on the CIFAR-10 dataset
with stochastic gradient descent (SGD), sharpness aware minimization (SAM) with γ1 = 0.01, and
generalization aware minimization (GAM). The x-axis indicates the period at which GAM updates
its perturbation coefficients. Mean results and standard errors are reported over 5 trials. Training
times are on an NVIDIA RTX 4090 GPU.

4.4 MITIGATING GAM’S COMPUTATIONAL COST

One of GAM’s disadvantages is its computational cost relative to SGD and SAM: it requires com-
puting the derivative of parameter updates with respect to perturbation coefficients γt which can
be quite costly. We propose mitigating this cost by updating the γt periodically instead of at each
training step as done in Algorithm 1.

As shown in Figure 4, when updating the γt every time step, GAM’s computational cost is roughly
4× that of SGD (relative to roughly 1.3× for SAM). However, this cost can be reduced to roughly
3× when updating the perturbation coefficients periodically. Although this reduces test accuracy,
the accuracy of GAM still exceeds that of SAM or SGD.

5 DISCUSSION

In this work, we introduced Generalization-Aware Minimization (GAM), a novel optimization al-
gorithm that directly targets the expected test loss by using higher-order gradient information and
adaptive perturbations. Unlike Sharpness-Aware Minimization (SAM) algorithms, which rely on
the heuristic that flatter regions of the loss landscape generalize better, GAM is grounded in a theo-
retical framework that aligns the optimization process with the expected test loss. By demonstrating
that the expected test loss landscape is a rescaled version of the observed training loss landscape for
quadratic losses, we provided a principled approach to improve generalization.

The surprising similarity between the update mechanisms of SAM and GAM offers a new perspec-
tive on why SAM improves generalization. Our analysis suggests that SAM may implicitly approx-
imate the expected test loss through its single-step perturbations, which could explain its empirical
success. However, GAM’s use of multiple perturbation steps and higher-order derivatives allows it
to more accurately capture the transformation between the training and test loss landscapes. Our
empirical results on benchmark datasets confirm that GAM consistently outperforms SAM, high-
lighting the benefits of directly optimizing for generalization.

While GAM shows promising results, it relies on using higher-order derivatives, which may be
computationally challenging for large or non-differentiable networks. Future work could explore
approximations or scalable implementations of higher-order derivatives.

We believe that GAM opens new avenues for developing optimization algorithms that can further
enhance generalization in deep learning models, potentially leading to more robust and reliable AI
systems. By incorporating higher-order gradient information and adaptive strategies, future optimiz-
ers can more effectively navigate the loss landscape to find solutions that generalize well. We hope
that our work inspires further research into optimization techniques that bridge theoretical insights
and practical performance, ultimately contributing to the advancement of generalization in machine
learning.
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Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer
reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
zu Berlin, 2(633-639):364, 1885.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
sharpness? In ICLR, 2023.

Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch bayesian optimization.
NeurIPS, 29, 2016.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. NeurIPS, 30, 2017.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. In ICLR, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Proof. First, observe that

E[L(θ)|θ̃∗, M̃ , c̃] = E[
1

2
(θ − θ∗)TM(θ − θ∗) + c|θ̃∗, M̃ , c̃]

=
1

2
θTE[M |θ̃∗, M̃ , c̃]θ − θTE[Mθ∗|θ̃∗, M̃ , c̃] + E[c|θ̃∗, M̃ , c̃] (15)

Since θ∗ and θ̃∗ are independent of M̃ and c̃, and M is independent of θ̃∗, we have:

=
1

2
θTE[M |M̃, c̃]θ − θTE[M |M̃, c̃]E[θ∗|θ̃∗] + E[c|θ̃∗, M̃ , c̃] (16)

Factoring:

=
1

2
(θ − E[θ∗|θ̃∗])TE[M |M̃, c̃](θ − E[θ∗|θ̃∗]) + 1

2
E[θ∗|θ̃∗]TE[M |M̃, c̃]E[θ∗|θ̃∗] + E[c|θ̃∗, M̃ , c̃]

(17)
Letting C(θ̃∗, M̃ , c̃) = 1

2E[θ
∗|θ̃∗]TE[M |M̃, c̃]E[θ∗|θ̃∗] + E[c|θ̃∗, M̃ , c̃]:

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − E[θ∗|θ̃∗])TE[M |M̃, c̃](θ − E[θ∗|θ̃∗]) + C(θ̃∗, M̃ , c̃) (18)

Next, we use the fact that E[L̃(θ)|θ∗,M, c] = L(θ). Expanding using the definition of L̃(θ) and
L(θ):

1

2
(θ − θ∗)TM(θ − θ∗) + c =

1

2
θTE[M̃ |θ∗,M, c]θ − θTE[M̃ θ̃∗|θ∗,M, c] + E[c̃|θ∗,M, c] (19)

Once again using the independence between θ∗ and θ̃∗ from M and c, and the independence of M̃
is θ∗:

1

2
(θ − θ∗)TM(θ − θ∗) + c =

1

2
θTE[M̃ |M, c]θ − θTE[M̃ |M, c]E[θ̃∗|θ∗] + E[c̃|θ∗,M, c] (20)

Since this holds for all θ, we may equate coefficients:

M = E[M̃ |M, c] (21)

θ∗ = E[θ̃∗|θ∗] (22)

Next, note that pθ∗,θ̃∗ = pθ̃∗,θ∗ implies that θ∗ and θ̃∗ have the same marginal distributions, and
same conditional distributions conditioned on each other. Since θ∗ = E[θ̃∗|θ∗], by symmetry, we
must have:

θ̃∗ = E[θ∗|θ̃∗] (23)
Thus, we may write the expectation of L(θ) as:

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − θ̃∗)TE[M |M̃, c̃](θ − θ̃∗) + C(θ̃∗, M̃ , c̃) (24)

Next, we consider E[M |M̃, c̃]. Since M ⊥ c̃|M̃ , we have E[M |M̃, c̃] = E[M |M̃ ]. Expanding:

E[M |M̃, c̃] =
∑
M

MpM |M̃ (M |M̃) (25)

We denote the eigendecomposition of M̃ = Q̃Λ̃Q̃T . Note that since M̃ is symmetric, Q̃ is orthogo-
nal. Substituting:

E[M |M̃, c̃] =
∑
M

MpM |M̃ (M |Q̃Λ̃Q̃T ) (26)

By the rotation invariance of pM |M̃ , we have:

E[M |M̃, c̃] =
∑
M

MpM |M̃ (Q̃TMQ̃|Λ̃) (27)

13
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Making a change of variables in the summation, M ′ = Q̃TMQ̃:

E[M |M̃, c̃] = Q̃[
∑
M ′

M ′pM |M̃ (M ′|Λ̃)]Q̃T (28)

Note that the term in the brackets is simply E[M |Λ̃] which is diagonal by assumption. Thus, for
some diagonal matrix D(Λ̃), we may write

E[M |M̃, c̃] = Q̃D(Λ̃)Q̃T (29)

Finally, the expectation of L(θ) becomes:

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − θ̃∗)T Q̃D(Λ̃)Q̃T (θ − θ̃∗) + C(θ̃∗, M̃ , c̃) (30)

B PROOF OF THEOREM 2

Proof. First, observe that
Dt(θ) = M̃ t(θ − θ̃∗) (31)

We may see this by induction. D1(θ) = ∇L̃(θ) = M̃(θ − θ̃∗). If Dt(θ) = M̃ t(θ − θ̃∗), then

Dt+1(θ) =
∂

∂ζ
D1(θ + ζDt(θ))|ζ=0 =

∂

∂ζ
M̃ [θ + ζM̃ t(θ − θ̃∗)− θ̃∗]|ζ=0

=
∂

∂ζ
M̃(θ − θ̃∗) + ζM̃ t+1(θ − θ̃∗)|ζ=0 = M t+1(θ − θ̃∗) (32)

Now consider ∇L̄(θ) and ∇L̃(θ̂).

∇L̄(θ) = Q̃f(Λ̃)Q̃T (θ − θ̃∗) (33)

and

∇L̃(θ̂) = M̃(θ̂ − θ̃∗) = M̃(θ − θ̃∗ +

T∑
t=1

γtM̃
t(θ − θ̃∗)) = (M̃ +

T∑
t=1

γtM̃
t+1)(θ − θ̃∗) (34)

Using the eigendecomposition of M̃ , we have:

∇L̃(θ̂) = Q̃(Λ̃ +

T∑
t=1

γtΛ̃
t+1)Q̃T (θ − θ̃∗) (35)

Now, we compare f(Λ̃) to Λ̃ +
∑T

t=1 γtΛ̃
t+1. Observe that the function P (λ̃) = λ̃+

∑T
t=1 γtλ̃

t+1

can represent any polynomial with intercept P (0) = 0 and slope P ′(0) = 1. By the Weierstrass
approximation theorem (Weierstrass, 1885), because the elements of Λ̃ are bounded and f is contin-
uous, we may construct the following uniform bound:

||Λ̃ +

T∑
t=1

γtΛ̃
t+1 − f(Λ̃)||F ≤ ϵ (36)

for all ϵ > 0 and diagonal Λ, for some choice of sequence γ1, γ2, ...γT . By the rotation invariance
of the Frobenius norm, we have:

||Q̃(Λ̃ +

T∑
t=1

γtΛ̃
t+1)Q̃T − Q̃f(Λ̃)Q̃T ||F ≤ ϵ (37)

Finally, since the Frobenius norm is an upper bound on the maximum eigenvalue of a matrix, we
have:

||Q̃(Λ̃+

T∑
t=1

γtΛ̃
t+1)Q̃T (θ− θ̃∗)− Q̃f(Λ̃)Q̃T (θ− θ̃∗)|| = ||∇L̃(θ̂)−∇L̄(θ)|| ≤ ϵ||θ− θ̃∗|| (38)
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C JUSTIFICATION OF THEORETICAL ASSUMPTIONS

In this section, we provide practical justifications for the theoretical assumptions made in Theorems
1 and 2. These assumptions are critical for the validity of our theoretical results and are grounded in
common practices and observations in machine learning.

Assumption 1: M and M̃ are symmetric matrices. Explanation: In the context of quadratic
loss functions, M and M̃ represent the Hessian matrices (second derivatives) of the true loss L(θ)
and the training loss L̃(θ), respectively. By definition, Hessian matrices of scalar-valued functions
are symmetric because mixed partial derivatives commute (i.e., ∂2L

∂θi∂θj
= ∂2L

∂θj∂θi
) when the function

is twice continuously differentiable. In practice, loss functions used in machine learning, such as
mean squared error and cross-entropy loss, satisfy these smoothness conditions. Therefore, assum-
ing that M and M̃ are symmetric is both standard and justifiable.

Assumption 2: θ∗ and θ̃∗ are independent of M , M̃ , c, and c̃. Explanation: This assumption
simplifies the analysis by decoupling the location of the minima from the curvature and offset of
the loss functions. In practical terms, it means that the position of the minimum (i.e., the parameter
values that minimize the loss) does not influence the curvature of the loss landscape or the constant
term. This is a reasonable approximation when considering local behavior around θ, especially in
high-dimensional parameter spaces where the curvature is determined by the structure of the model
and the data distribution rather than the specific parameter values.

Assumption 3: M is independent of c̃ given M̃ , i.e., M ⊥ c̃ | M̃ . Explanation: This assump-
tion asserts that, conditioned on the training loss curvature M̃ , the curvature of the true loss M is
independent of the constant offset c̃ of the training loss. In practical scenarios, the constant term
c̃ does not affect the gradient or Hessian of the loss function and, therefore, does not influence the
optimization process. Since c̃ merely shifts the loss landscape vertically without changing its shape
or curvature, it is reasonable to consider M independent of c̃ given M̃ .

Assumption 4: The joint distribution of θ∗ and θ̃∗ is symmetric, i.e., pθ∗,θ̃∗ = pθ̃∗,θ∗ . Explana-
tion: This symmetry assumption implies that the statistical relationship between the true minimum
θ∗ and the observed training minimum θ̃∗ is bidirectional and unbiased. In practical terms, it sug-
gests that there is no preferential direction in the estimation errors between θ∗ and θ̃∗. This is a
reasonable assumption when the training data is a representative sample of the underlying data dis-
tribution, and there are no systematic biases affecting the estimation of the minima. It facilitates the
theoretical analysis by ensuring consistent behavior regardless of the direction of estimation.

Assumption 5: Rotation invariance condition: pM |M̃ (UMUT |UM̃UT ) = pM |M̃ (M |M̃) for all
orthogonal matrices U . Explanation: The rotation invariance assumption states that the con-
ditional distribution of the true loss curvature M given the training loss curvature M̃ is invariant
under orthogonal transformations (rotations) of the parameter space. Practically, this means that the
orientation of the coordinate system does not affect the statistical relationship between M and M̃ .
This assumption is justified in many machine learning models where the parameter space does not
have a natural orientation, especially in isotropic settings where all directions are treated equally.
It allows us to generalize results without loss of generality and simplifies the analysis by enabling
diagonalization of matrices through rotations.

Assumption 6: The conditional expectation E[M |M̃ ] is diagonal when M̃ is diagonal. Expla-
nation: This assumption suggests that if the training loss curvature matrix M̃ is diagonal (indicating
no interaction between different parameters), then the expected test loss curvature matrix M con-
ditioned on M̃ is also diagonal. In practical terms, when the training loss landscape exhibits axis-
aligned curvature, it is reasonable to expect that the true loss landscape will have similar properties
in expectation. Without this assumption, we must break the symmetry provided by the training loss
landscape by assuming the expected test loss has a different and arbitrary set of curvature axes.
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Assumption 7: For all θ, the expected training loss equals the true loss, i.e., E[L̃(θ)|θ∗,M, c] =
L(θ). Explanation: This assumption embodies the idea that, conditioned on the true loss parame-
ters, the training loss is an unbiased estimator of the true loss at any point θ. Practically, this means
that the training data provides an accurate reflection of the true loss landscape on average. This
assumption is justified when the training data is an independent and identically distributed (i.i.d.)
sample from the same distribution as the test data, and there are no systematic errors or biases in the
data collection process. It underpins the validity of using the training loss to make inferences about
the true loss.

Assumption 8: The function f is element-wise. Explanation: In Theorem 1, recall that the
eigenvalues of the observed Hessian and the expected test loss Hessian are related by an arbitrary
function D(Λ̃). Here, we make the assumption that the function is applied independently to each
eigenvalue. We believe this is reasonable because in many machine learning models, especially
those with large numbers of parameters, the interactions between different parameters can often
be approximated as negligible. This means that curvature transformation between train and test
landscapes for one principle parameter direction is independent of the transformation for another
principle parameter direction.

Assumption 9: The function f is element-wise continuous with f(0) = 0 and f ′(0) = 1.
Explanation: In Theorem 2, f is used to modify the eigenvalues of the training loss curvature
matrix M̃ to approximate the curvature of the true loss. The conditions f(0) = 0 and f ′(0) = 1
ensure that f behaves smoothly near zero and that small eigenvalues are not disproportionately
affected, which is important for stability. In practice, we believe it is reasonable to expect that very
flat directions of the expected test loss correspond to similarly flat directions of the training loss and
vice versa, which is what these conditions on f imply.

Assumption 10: The elements of Λ̃ are bounded. Explanation: The boundedness of the eigen-
values in Λ̃ prevents extreme curvature in the training loss landscape. In practice, deep learning
models are initialized with weights near 0 and activation functions with bounded derivatives; thus,
it is reasonable to expect curvature to be practically boundable.

D EXPERIMENTAL DETAILS

D.1 SYNTHETIC QUADRATIC PROBLEM

We set the parameter dimension to d = 15 and use T = 12 perturbation steps. We use a finite
difference constant of ϵ = 0.1 to approximate higher order derivatives. The perturbation coefficients
γt are optimized using the Adam (Kingma, 2015) optimizer with a learning rate of 10−3 over 100000
training iterations.

We generate the true Hessian M by sampling:

• A random orthogonal matrix Q ∈ Rd×d via QR decomposition of a random Gaussian
matrix.

• True eigenvalues λ ∈ Rd sampled uniformly from [1, 2], ensuring positive definiteness.

The true Hessian is then constructed as M = Qdiag(λ)QT .

To simulate noise in the observed Hessian (as would occur due to sampling variability in real
datasets), we add Gaussian noise to the true eigenvalues:

λnoisy = λ+ σ · η, (39)

where η ∼ N (0, I) and σ = 0.01. The observed eigenvalues are then computed as λ̃ = f(λnoisy)
using the transformation in Equation 14.
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D.2 MNIST

We consider two networks, 1) a softplus-activated MLP network with 3 fully-connected layers of
hidden layer size 256, 2) a softplus-activated CNN with 2 stride-2, kernel-3 convolutional layers
with channel sizes 32 and 64, followed by global average pooling and a final linear layer. Each
learnable weight layer is preceeded by batch normalization.

We train all methods for 10 epochs with batch size 100 using Adam optimizer (Kingma, 2015) at
learning rate 10−3. For GAM, we use T = 3 perturbation steps and tune γs using Adam at learning
rate 10−3. All experiments are conducted over 5 random seeds. For GAM, we use the following
discrepancy function: ∆(gθ, ḡθ) = −gTθ ḡθ and set ϵ = 10−3.

D.3 CIFAR-10 AND SVHN

We consider three networks, 1) a softplus-activated MLP network with 3 fully-connected layers of
hidden layer size 1024, 2) a softplus-activated CNN with 4 stride-2, kernel-3 convolutional layers
with channel sizes 32, 64, 128 and 256, followed by global average pooling and a final linear layer, 3)
a softplus-activated wide convolutional neural network (WN) with 13 convolutional layers followed
by global average pooling and a final linear layer. In WN, all convolutions have stride 1 except
for the sixth and tenth, and have channel sizes 16, 32, 32, 32, 32, 64, 64, 64, 64, 128, 128, 128, 128.
Each learnable weight layer is preceeded by batch normalization.

We train all methods for 20 epochs with batch size 100 using Adam optimizer (Kingma, 2015) at
learning rate 10−3. For GAM, we use T = 2 perturbation steps and tune γs using Adam at learning
rate 10−3. All experiments are conducted over 5 random seeds. For GAM, we use the following
discrepancy function: ∆(gθ, ḡθ) = −gTθ ḡθ and set ϵ = 10−3.
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E ADDITIONAL RESULTS

(a) MNIST, MLP (b) MNIST, CNN

(c) CIFAR-10, MLP (d) CIFAR-10, CNN (e) CIFAR-10, WN

(f) SVHN, MLP (g) SVHN, CNN (h) SVHN, WN

Figure 5: Test error over the course of training for various networks trained on MNIST, CIFAR-10
and SVHN with different methods: stochastic gradient descent (SGD), sharpness aware minimiza-
tion (SAM) with different parameter values γ1, and generalization aware minimization (GAM).
Margins indicate standard errors over 5 trials.

Figure 6: Test set accuracies of a CNN model trained on the CIFAR-10 dataset with generalization
aware minimization (GAM) under different hyperparameter choices. By default, we use T = 2,
batch size of 100, and ϵ = 10−3. Mean results and standard errors are reported over 5 trials.
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