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Abstract

We study a sequential decision-making problem on a n-node graph G where each
node has an unknown label from a finite set Ω, drawn from a joint distribution
P that is Markov with respect to G. At each step, selecting a node reveals its
label and yields a label-dependent reward. The goal is to adaptively choose nodes
to maximize expected accumulated discounted rewards. We impose a frontier
exploration constraint, where actions are limited to neighbors of previously selected
nodes, reflecting practical constraints in settings such as contact tracing and robotic
exploration. We design a Gittins index-based policy that applies to general graphs
and is provably optimal when G is a forest. Our implementation runs in O(n2 ·|Ω|2)
time while using O(n · |Ω|2) oracle calls to P and O(n2 · |Ω|) space. Experiments
on synthetic and real-world graphs show that our method consistently outperforms
natural baselines, including in non-tree, budget-limited, and undiscounted settings.
For example, in HIV testing simulations on real-world sexual interaction networks,
our policy detects nearly all positive cases with only half the population tested,
substantially outperforming other baselines.2

1 Introduction

We study a sequential decision-making problem on a graph G, where each node has an unknown
discrete label from Ω. The labels follow a joint distribution P , which we assume is specified by a
Markov random field (MRF) defined over G [KF09]. When we act on a node, its label is revealed
and we receive a label-dependent reward. Crucially, the entire process is history-sensitive: label
realizations are stochastic and depend on previously observed labels, a setting that naturally arises in
Bayesian adaptive planning [GK11]. In this paper, we study a setting where actions are subject to a
frontier exploration constraint: the first node in each connected component is selected based on a
pre-defined priority rule, and subsequent actions are restricted to neighbors of previously selected
nodes. This constraint reflects realistic settings where local neighborhood information becomes
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accessible only through exploration, as in active search on graphs [GKX+12], robotic exploration
[KK14], and cybersecurity applications [LCH+25]. The objective is then to maximize the expected
accumulated discounted reward over time by sequentially selecting nodes to act upon.

Definition 1 (The Adaptive Frontier Exploration on Graphs (AFEG) problem). An AFEG instance
is defined by a triple (G,P, β), where G = (X,E) is a graph, P is a joint distribution over node
labels that is Markov with respect to G, and β ∈ (0, 1) is a discount factor. The process unfolds over
n = |X| time steps, with the state St at time t consisting of the current frontier and the revealed
labels. Acting on a frontier node reveals its label, grants a label-dependent reward, and updates beliefs
about other nodes via Bayesian inference under P . The goal is to compute a policy π that maps each
state to a frontier node, maximizing the expected total discounted reward:

π∗ = argmax
π

n∑
t=1

βt−1
∑
v∈Ω

P(Xπ(St−1) = v | St−1) · r(Xπ(St−1), v),

where Xπ(St−1) is the node selected by policy π at time t, and r(·, ·) is the label-dependent reward.

While the optimal policy can be computed via dynamic programming, it is intractable for general
graphs due to the exponential state space. A natural strategy is to leverage adaptive submodularity,
which guarantees that greedy policies achieve a (1 − 1/e)-approximation [GK11]. Unfortunately,
the objective in AFEG is not adaptively submodular in general: for instance, in disease detection,
observing an infected neighbor can increase the marginal benefit of testing a node, violating the
diminishing returns property of adaptive submodularity.

Our problem is closely related to the setting of active search on graphs [GKX+12, WGS13, JMC+17,
JMA+18], where the goal is to identify as many target-labeled nodes as possible under a fixed
budget, without exploration constraints. Since exact optimization is intractable, these works focused
on practical heuristics such as search space pruning. AFEG differs in two key respects: (i) we
impose a frontier constraint, and (ii) we consider an infinite-horizon objective with discounting,
rather than a fixed budget. These differences are not merely technical but they enable provable
optimality in meaningful special cases, particularly when the input graph G is a forest. Forest
structures naturally arise in several relevant domains, including transmission trees in contact tracing
[KFH06] and recruitment trees in respondent-driven sampling [Hec97, GS09]. Moreover, algorithms
with guarantees on forests can be efficiently applied to sparse real-world interaction graphs, such as
sexual contact graphs, which tend to be tree-like in practice.

1.1 Motivating application: network-based disease testing

A key motivating example of AFEG is network-based infectious disease testing where the goal
is to identify infected individuals as early as possible. In particular, we focus on diseases that are
transmitted through person-to-person contact3, e.g., sex, exposure of blood through injecting drug
use, or birth, where interaction information can be collected through interviews. In this context,
frontier testing is both natural and operationally motivated: test outcomes substantially alter beliefs
about neighboring individuals, making sequential expansion along the frontier an efficient strategy.

Public health motivation. The 95-95-95 HIV4 targets proposed by UNAIDS [UNA22] aim for
95% of people with HIV to know their status, 95% of those to receive treatment, and 95% of treated
individuals to achieve viral suppression — aligned with UN Sustainable Development Goal 3.3
[Nat]. Yet, the 2024 UNAIDS report [UNA24] reveals that the “first 95” remains the most elusive,
with roughly one in seven people living with HIV still undiagnosed, and there continues to be 1.3
million new infections every year. Studies have shown that virally suppressed individuals will not
infect others [CCM+11, RCB+16, BPP+18], leading to the U=U (undetectable = untransmittable)
campaign [oAD19, OG20]. Thus, the faster we can detect infected individuals, the faster they
can be enrolled onto treatment and limit the spread of the disease. To address this gap, the WHO
recommends network-based testing strategies to reach underserved populations [Org24a]. These
include partners and biological children of people with HIV, as well as those with high ongoing
HIV risk. Network-based interventions have shown effectiveness in South Africa [JPC+19] and

3This is in contrast to illnesses like flu where transmission can occur to a room full of strangers.
4The human immunodeficiency virus (HIV) attacks the immune system and can lead to AIDS. It remains a

major global health issue, having claimed over 42 million lives to date [Org24b].
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have also been explored for other infectious diseases beyond HIV [JSK+17, MWBDM+25]; see also
[CLJ+24] for a WHO-commissioned systemic review on social network-based HIV testing.
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Figure 1: Illustration of how a real-world transmission graph (left) can be framed as an AFEG
instance (right). Here, the joint distribution P over the labels XA, XB , XC , XD ∈ {+,−} may
depend on the covariates cA, cB , cC , cD ∈ Rd and underlying interaction graph structure.

Fig. 1 illustrates how we can model the network-based disease testing problem into a AFEG instance.
Firstly, we use the network G as is, where nodes represent individuals and edges represent sexual
interactions. Each node has a binary infection status (infected or not) that is drawn from some
underlying joint distribution P on X over the labels Ω = {+,−}, where P may depend on the
individual covariates and graph structure. The reward for testing individual X and revealing status
b ∈ {0, 1} is then r(X, b) = b. See Fig. 1 for an illustration. The goal is of trying to identify
infected individuals as early as possible is implicitly enforced by the presence of any discount
factor β < 1. Importantly, discounting reflects both practical constraints – such as sudden funding
cuts [UNA25] – and clinical importance of early diagnosis, which improves patient outcomes and
limits transmission [CCM+11]. See also [RN21] for other natural justifications for using discount
factors β in modeling long-term policy rewards. While transmission graphs of sexually transmitted
diseases are not truly forests and may have high-degree nodes (e.g., sex workers), empirical studies
have also shown that such transmission graphs are often sparse and exhibit tree-like structure
[BMS04, YJM+13, WKPF+17]. Finally, to apply the infinite horizon framework of AFEG in our
finite testing setting, we give zero subsequent rewards after every individual has been already tested.

2 Our contributions

We state and discuss our contributions here.5

2.1 Gittins index-based policy for AFEG and new results for branching bandits

We show that when G is a forest, AFEG reduces exactly to the branching bandit framework [Wei88,
Tsi94, KO03], for which Gittins index policies are known to be optimal [KO03]; see Fig. 2.
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Figure 2: Reduction to a branching bandit on 8 nodes with root X1. After acting on {X1, X3}, the
frontier is {X2, X4, X6}. Note that we have P(x2 | x1, x3) = P(x2 | x1) by the Markov property.

While [KO03] established the existence of an optimal Gittins index policy, they did not characterize
the index explicitly nor provide an efficient method for computing it. We provide a novel characteri-
zation of Gittins indices for discrete branching bandits using piecewise linear functions, and develop
a practical implementation that runs in O(n2 · |Ω|2) time while using O(n · |Ω|2) oracle calls to P

5Please see https://arxiv.org/abs/2505.21671 for the full version.
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and O(n2 · |Ω|) space. Our policy also works for general non-tree AFEG instances, but without
optimality guarantees, by first projecting G into a forest using breadth-first search from the root nodes
of each connected component. Despite this, our proposed method still demonstrates strong empirical
performance in experimental evaluations. Full derivation details are given in our full version.

2.2 Formalizing network-based disease testing as an AFEG instance

As shown in Section 1.1, network-based infectious disease testing can be cast as an instance of AFEG.
To our knowledge, this is the first formal framework to model frontier-based testing as sequential
decision-making on a probabilistic graph model for principled exploitation of network effects in
diseases such as HIV. In the appendix of our full version, we propose a method to learn parameters
from past disease data to define a joint distribution P on new interaction networks so as to define new
AFEG instances.

2.3 Empirical evaluation

We benchmark our proposed GITTINS policy against several natural baselines — RANDOM, GREEDY,
DQN, and OPTIMAL — on both synthetic and real-world graphs to evaluate performance on AFEG.
To reflect the network-based disease testing application discussed in Section 1.1, we consider binary
node labels, and define the immediate reward to be 1 if and only if the revealed label is positive. As
such, it is natural to define the first node in every connected component as the node with the highest
marginal probability of being positive amongst all nodes in that connected component.

Benchmarked policies. Given a problem instance (G,P, β), a state in AFEG consists of the current
set of frontier nodes and the revealed labels of previously tested nodes.
• RANDOM: Selects a random node from the frontier without using any state information.
• GREEDY: Selects the frontier node with the highest posterior probability of being positive,

conditioned on the currently observed labels.
• DQN: Implements a deep Q-network baseline [MKS+15], using the NNConv architecture

from PyTorch Geometric [FL19]. This model applies a message-passing GNN with edge-
conditioned weights [GSR+17] to capture graph structure and node covariates.

• OPTIMAL: Computes the action that maximizes the expected total discounted reward for each
possible state via brute-force dynamic programming. This method is tractable only on small
graphs due to the combinatorial explosion of the state space.

• GITTINS: Our proposed method, which is provably optimal when G is a forest.

We present our full experimental details and results in our full version. On synthetic experiments,
our Gittins index-based policy performs strongly even in settings where it is not provably optimal,
including non-trees and finite-horizon scenarios. It also outperforms other baselines on public-use
real-world sex interaction graphs on 5 sexually transmitted diseases (Gonorrhea, Chlamydia, Syphilis,
HIV, and Hepatitis) from ICPSR [MR11].

3 Conclusion and discussion

We introduced and studied the adaptive frontier exploration on graphs problem (Definition 1), a
framework for sequential decision-making with label-dependent rewards under a frontier exploration
constraint. Our Gittins index-based policy is provably optimal on trees, runs in polynomial time, and
demonstrates strong empirical performance on general graphs.

Broader impact and fairness. This work is motivated by public health challenges, where limited
resources and reduced funding [UNA25] highlight the need for more efficient testing strategies.
The AFEG framework supports targeted, adaptive exploration of interaction networks, guided by a
joint distribution P can incorporate domain knowledge. It also enables fairness-aware interventions
through reward shaping, allowing practitioners to prioritize specific subpopulations within the same
decision-making framework. Our proposed Gittins index-based policy operates within this flexible
setup, making it suitable for responsible and context-aware deployment. Additional discussion of
limitations and fairness considerations is provided in our full version.
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