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Abstract

The availability of large pre-trained models is changing the landscape of Machine
Learning research and practice, moving from a “training from scratch” to a “fine-
tuning” paradigm. While in some applications the goal is to “nudge” the pre-trained
distribution towards preferred outputs, in others it is to steer it towards a different
distribution over the sample space. Two main paradigms have emerged to tackle this
challenge: Reward Maximization (RM) and, more recently, Distribution Matching
(DM). RM applies standard Reinforcement Learning (RL) techniques, such as
Policy Gradients, to gradually increase the reward signal. DM prescribes to first
make explicit the target distribution that the model is fine-tuned to approximate.
Here we explore the theoretical connections between the two paradigms, and
show that methods such as KL-control developed for RM can also be construed
as belonging to DM. We further observe that while DM differs from RM, it can
suffer from similar training difficulties, such as high gradient variance. We leverage
connections between the two paradigms to import the concept of baseline into DM
methods. We empirically validate the benefits of adding a baseline on an array of
controllable language generation tasks such as constraining topic, sentiment, and
gender distributions in texts sampled from a language model. We observe superior
performance in terms of constraint satisfaction, stability and sample efficiency.

1 Introduction

Pre-trained language models (Devlin et al., 2019; Radford et al., 2019) are changing the landscape of
Machine Learning research and practice. Due to their strong generative capabilities many studies have
found it sufficient to “nudge” these models to conform to global preferences defined over the generated
sequences instead of training from scratch using annotated data. These preferences could include
topic and sentiment (Dathathri et al., 2020), valid musical notes and molecular structures (Jaques et al.,
2017a), code compilability (Korbak et al., 2021), reducing distributional biases (Khalifa et al., 2021;
Weidinger et al., 2021), evaluation metrics for Machine Translation and Summarization (Ranzato
et al., 2016; Bahdanau et al., 2016), or direct human feedback (Ziegler et al., 2019; Stiennon et al.,
2020). This large body of studies is driven by two different paradigms: Reward Maximization (RM)
and Distribution Matching (DM).

⇤Work partly done during an internship at Naver Labs Europe.
†Independent Researcher. Work done at Naver Labs Europe.
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Figure 1: In this study we make a connection between two popular paradigms for aligning language models to
human preferences: Reward maximization (RM) and Distribution matching (DM).

Reward Maximization RM intuitively nudges pre-trained models towards certain preferences
by providing global sequence-level rewards when the model generates outputs that satisfy desired
features. For instance, if the model is producing toxic content, we can apply Reinforcement Learning
(RL) techniques to discourage it from producing similar content. However, naively applying RL
yields a model that can undergo catastrophic forgetting of its original distribution. For example, it
can degenerate into producing a single nonsensical but at least nontoxic sequence. Although several
studies have considered hand-crafting general rewards to ensure desirable features like fluency (Liu
et al., 2016a; Tambwekar et al., 2019), coming up with complete or perfect rewards is highly non-
trivial (Wu et al., 2016; Vedantam et al., 2015). This has sparked a wide discussion on the overall
effectiveness of RM for some tasks such as machine translation (Choshen et al., 2020; Kiegeland &
Kreutzer, 2021).

Reward Maximization with KL-Control To tackle the aforementioned issues of “catastrophic
forgetting”, several studies, still under an RM paradigm, have considered incorporating a distributional
term inside the reward to be maximized. In particular Jaques et al. (2017b, 2019) and Ziegler et al.
(2019) or more recently Stiennon et al. (2020), Ouyang et al. (2022), Bai et al. (2022) and Perez
et al. (2022) have applied variations of KL-control (Todorov, 2007; Kappen et al., 2012) which adds
a penalty term to the reward term so that the resulting policy does not deviate too much from the
original one in terms of KL-divergence. The overall objective with the KL-penalty is maximized using
an RL algorithm of choice including: PPO (Schulman et al., 2017a) as in Ziegler et al. (2019) or Bai
et al. (2022) or Q-learning (Mnih et al., 2013) as in Jaques et al. (2017b). Adding this distributional
KL-penalty to the reward raises some important questions: What effect does it have on the shape of
the optimal policy? Does this new objective have any interpretation from a distributional perspective?

Distribution Matching A different recent paradigm for fine-tuning language models to satisfy
downstream preferences formulates the problem as Distribution Matching (DM). This paradigm
consists of two steps: first a target distribution incorporating the desired preferences is defined
as an Energy-Based Model (LeCun et al., 2006). Then the forward KL divergence is minimized
between this target distribution and an auto-regressive policy using a family of algorithms referred
to as Distributional Policy Gradients (DPG) (Parshakova et al., 2019b; Khalifa et al., 2021; Korbak
et al., 2021, 2022a). This approach capitalizes on the flexibility of EBMs in specifying the target
distribution. For example, the EBM can be defined so that it conforms to all downstream preferences
while its corresponding normalized distribution has a minimal KL divergence from the original,
pre-trained language model, therefore tackling the problem of “catastrophic forgetting” (Khalifa et al.,
2021). Interestingly, this DM paradigm can also deal with distributional preferences, for instance, for
de-biasing language models by specifying that the generated sequences should be gender-balanced,
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i.e. that 50% of generations contain female mentions. Such distributional constraints cannot be
defined in the RM paradigm where a reward is calculated for a single sequence.

We can notice the promises and limitations of these two paradigms for fine-tuning language models.
RM approaches are equipped with an arsenal of RL algorithms and optimization techniques that can
be efficient in reward maximization, however they lack the distributional aspect to avoid catastrophic
forgetting and impose distributional preferences over LMs. DM approaches are suited to tackle those
limitations, however, the family of DPG algorithms currently used is not as rich as its RL counterpart.

While the connections between these two seemingly distinct paradigms have been noted (Parshakova
et al., 2019b; Korbak et al., 2022b), they have not been explored in detail. Clarifying such connections
might help import ideas from one approach to the other. This is our goal in this paper, detailing
the nuanced connections and applying them to a case-study in variance reduction. Overall, our
contributions are the following:

• We clarify relations between the RM and DM paradigms through a detailed comparison between
the family of DPG algorithms and Policy Gradients (Table 1), stressing the differences between
parametric and non-parametric rewards that are important in this regard.

• We introduce an interpretation of KL-control techniques from a distribution matching perspective,
placing such techniques at an intermediate place between RM and DM (Theorem 1).

• We show how these connections can enable cross-pollination between the two perspectives by
applying baselines — a variance reduction technique from RL — to DPG and derive a particular
choice of a baseline (Facts 1 and 2). On an array of controllable language generation experiments,
we show that adding baselines leads to superior performance on constraint satisfaction (Figure 3),
stability on small batch sizes, and sample efficiency (Figure 4).

2 Background

Standard Policy Gradients One popular method for adapting the behaviour of language models
to certain preferences has been that of assigning a “reward” score R(x) for sequences x sampled
from an autoregressive language model (policy) ⇡✓. Then, the simplest policy gradient algorithm in
reinforcement learning, namely, REINFORCE (Williams, 1992a), aims to find the policy ⇡✓(x) that
maximizes the average reward Ex⇠⇡✓R(x), and this leads, via the so-called “log derivative trick”, to
a gradient ascent algorithm that iteratively samples x from ⇡✓ and update parameters by increments
proportional to R(x)r✓ log ⇡✓(x) via the following identity:

r✓Ex⇠⇡✓R(x) = Ex⇠⇡✓R(x)r✓ log ⇡✓(x). (1)

KL-control (Todorov, 2007; Kappen et al., 2012), was leveraged by Jaques et al. (2017b, 2019) and
Ziegler et al. (2019) to include a KL penalty term in the reward function to penalize large deviations
from the original pretrained model a(x), weighted by a free hyperparameter � to control the trade-off
between the two goals. That is, they maximize the expectation Ex⇠⇡✓R

z
✓(x), where:

Rz
✓(x)

.
= r(x)� � log

⇡✓(x)

a(x)
. (2)

Distributional Policy Gradients (DPG) (Parshakova et al., 2019b) is a recent approach used to fit
an autoregressive policy ⇡✓ to the distribution p(x) = P (x)/Z induced by the EBM P (x), where
Z =

P
x P (x) is the normalization constant (partition function). Given an arbitrary EBM P (x),

DPG optimizes the loss function DKL(p,⇡✓) with respect to the parameters ✓ of an autoregressive
model ⇡✓, a loss which is minimized for ⇡✓ = p. The KL-divergence minimization objective leads to
a gradient estimate of the form:

r✓DKL(p,⇡✓) =�r✓Ex⇠p log ⇡✓(x) (3)

=�
X

x

p(x)r✓ log ⇡✓(x) = � 1

Z

X

x

P (x)r✓ log ⇡✓(x) (4)

=� 1

Z
Ex⇠⇡✓

P (x)

⇡✓(x)
r✓ log ⇡✓(x). (5)
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3 Reward Maximization vs Distribution Matching

In the previous section, we have summarized three approaches that have been suggested for fine-tuning
language models. Two of them can be characterized as “Reward Maximization” (RM): Standard
Policy Gradients (PG) and KL-control. On the other hand, DPG clearly belongs to the realm of
“Distribution Matching” (DM) as it first defines the target distribution and then optimizes a policy to
match it. In the rest of this section, we will explore connections between these two seemingly distinct
concepts and, in the following section, we will exploit them to improve DM-based methods.

3.1 Standard vs. Parametric Rewards

Let us start with distinguishing between a “parametric reward” R✓ which depends on ✓ and a standard
reward R, which does not. If we wished to maximize the expected parametric reward, E⇡✓R✓(x), we
would follow its gradient, leading to the identities:

r✓Ex⇠⇡✓R✓(x) = r✓

X

x

⇡✓(x)R✓(x) =
X

x

⇡✓(x)r✓R✓(x) +
X

x

R✓(x)r✓⇡✓(x) (6)

=
X

x

⇡✓(x)r✓R✓(x) +
X

x

⇡✓(x)R✓(x)r✓ log ⇡✓(x) (7)

= Ex⇠⇡✓r✓R✓(x)| {z }
RG-term

+Ex⇠⇡✓R✓(x)r✓ log ⇡✓(x)| {z }
PG-term

. (8)

Equation (8) is the sum of two terms: the first one, the “RG-term" (Reward Gradient term), involves
the gradient of the reward. The second one, the “PG-term” (Policy Gradient term), was obtained
using the “log derivative trick” and involves the gradient of the policy stricto sensu. In standard RL,
where the reward does not depend on ✓, the RG-term disappears and the gradient of expected reward
consists solely of the PG-term. However, when R✓ depends on ✓, the gradients are distinct (apart
from specific cases where the RG-term evaluates to 0, as we will see below).

3.2 KL-control as Distribution Matching

Adding a KL-penalty term to the reward (as in the case of KL-control) leads to a parametric
reward. However, due to the particular form of its objective, the RG-term actually vanishes,3 leaving
only the PG-term Ex⇠⇡✓R

z
✓(x)r✓ log ⇡✓(x) and simplifying the tuning procedure to a standard

Policy Gradient. While this algorithm falls under the RM paradigm, here we argue that is its
nature is multifaceted, and explore deeper connections with the DM paradigm. More precisely, the
maximization of reward with the KL penalty term is equivalent to a distributional matching with an
underlying emergent sequential EBM, a remark that already reveals some similarities with DPG.4

Theorem 1. Consider the following EBM:

Pz(x) = a(x)er(x)/� (9)

and let pz be the normalized distribution pz(x) =
1
Z Pz(x), with Z =

P
x Pz(x). Then:

(i) argmax⇡✓
Ex⇠⇡✓R

z
✓(x) = argmin⇡✓

DKL(⇡✓, pz);

(ii) argmax⇡2D(X) Ex⇠⇡Rz
⇡(x) = pz , where D(X) is the family of all distributions over X ,

and Rz
⇡(x)

.
= r(x)� � log ⇡(x)

a(x) .

Proof. A simple way to prove this is to notice that the expectation of the reward Rz
✓ has a monotoni-

cally decreasing relationship with the reverse KL divergence between ⇡✓ and pz:

DKL(⇡✓, pz) = Ex⇠⇡✓ log
⇡✓(x)

pz(x)
= Ex⇠⇡✓

h
log ⇡✓(x)� log

1

Z
a(x)er(x)/�

i

3This is because E⇡✓r✓R
z
✓(x) = �� E⇡✓r✓ log ⇡✓(x) = 0, via the identity E⇡✓r✓ log ⇡✓(x) =P

x ⇡✓(x)r✓ log ⇡✓(x) =
P

xr✓⇡✓(x) = r✓
P

x ⇡✓(x) = 0.
4The optimal policy pz is briefly mentioned in (Ziegler et al., 2019) without reference or derivation. The

proof, which reveals a connection to the reverse KL divergence from ⇡✓ , is ours.
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Policy Gradients DPG

Reward R(x) R✓(x) =
P (x)
⇡✓(x)

r✓ Ex⇠⇡✓R(x)r✓ log ⇡✓(x) Ex⇠⇡✓

P (x)
⇡✓(x)

r✓ log ⇡✓(x)

Baseline Ex⇠⇡✓R(x) Z

r✓ with Baseline Ex⇠⇡✓

h
R(x)� Ex⇠⇡✓R(x)

i
r✓ log ⇡✓(x) Ex⇠⇡✓

h
P (x)
⇡✓(x)

� Z
i
r✓ log ⇡✓(x)

Table 1: A comparison between Policy Gradients (Sutton et al., 1999) and Distributional Policy Gradients (Par-
shakova et al., 2019b) forms of Reward, Baseline, and Gradient of the loss function (the PG-term) before (r✓)
and after (r✓ with Baseline) including a baseline for variance reduction .

= logZ � 1

�
Ex⇠⇡✓

h
r(x)� � log

⇡✓(x)

a(x)

i
= logZ � 1

�
Ex⇠⇡✓R

z
✓(x), (10)

so that the argmin⇡✓
DKL(⇡✓, pz) coincides with the argmax⇡✓

Ex⇠⇡✓R
z
✓(x), proving (i). On

the other hand, argmin⇡2D(X) DKL(⇡, pz), which also corresponds to argmax⇡2D(X) Ex⇠⇡Rz
⇡

because of (i) applied to a family ⇡✓0 covering D(X) in full, is just pz , concluding the proof.

Overall, we can conclude that the addition of the distributional term (KL-penalty) to the reward
does indeed provide a DM interpretation, namely in terms of minimizing the reverse KL divergence
with an emergent underlying distribution pz(x). We note that pz(x) does not correspond to a free
and explicit choice of EBM (e.g. one that balances the gender and topic distributions of a language
model). Instead equation (9) appears in a restrictive format, which is implicitly defined by the reward
Rz

✓ , along with a � hyperparameter without a clear meaning. By contrast, the DPG algorithms
are designed to perform DM on any EBM specification, corresponding to an explicit distributional
objective.

3.3 Similarities and Differences between DPG and Policy Gradients

In the previous subsection, we have connected KL-control, a method designed under a RM paradigm,
to DM. Now, we turn to the converse question of whether DPG, a DM method, can be connected to
RM. We begin by noting that after defining R✓ = P (x)

⇡✓(x)
, the DPG gradient Ex⇠⇡✓

P (x)
⇡✓(x)

r✓ log ⇡✓(x)

acquires the format of the PG-term E⇡✓R✓r✓ log ⇡✓(x).

However, the DM objective of DPG cannot be considered as maximizing the average “reward”
R✓(x) =

P (x)
⇡✓(x)

, as this would require adding also the RG-term E⇡✓r✓
P (x)
⇡✓(x)

into the gradient, which
in this case does not vanish.

Nonetheless, the analogy behind this gradient term is more fruitful than it first appears. As a matter
of fact, DPG gradient estimates suffer from the same high-variance problems as with standard PG.
While the objective of DPG (distribution matching) is different from that of Policy Gradients (reward
maximization), DPG also needs to estimate the PG-term E⇡✓R✓(x)r✓ log ⇡✓(x) at a given value of
✓, using a batch of samples x. For such a fixed ✓, we can define provisionally set R(x)

.
= R✓ and the

problem of gradient estimation for this fixed ✓ is identical to the estimation Ex⇠⇡✓R(x)r✓ log ⇡✓(x)
based on a set of samples x in standard RL. Therefore, techniques that have been developed to reduce
the variance of the gradients estimates in RL can be ported to DPG insofar as we are computing
the gradient estimates at a given ✓. In Section 4, we show how one can import one such variance
reduction technique to the DPG: baselines.

4 A Case Study on Variance Reduction

Baselines are a standard variance reduction technique in the context of Policy Gradients (Sutton &
Barto, 2018). The idea is to subtract from the reward R(x) a value B that does not introduce bias to
the gradients but may change variance. After the introduction of baseline, equation (1) then takes the
following form:

r✓E⇡✓R(x) = E⇡✓ [R(x)�B]r✓ log ⇡✓(x). (11)
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Figure 2: Values of reward, advantage and
the baseline for first 1000 epochs of a point-
wise constraint experiment.

In standard RL, the simplest form of baseline B is just the
average of the rewards for the policy:5

BRL = Ex⇠⇡✓R(x). (12)

Following the same methodology of taking the baseline
to be the expectation of the reward term, we can obtain a
remarkably simple form of a baseline for DPG: 6

B = Ex⇠⇡✓

P (x)

⇡✓(x)
=

X

x

⇡✓(x)
P (x)

⇡✓(x)
=

X

x

P (x) = Z.

(13)
Fact 1. Subtracting B from R✓(x) does not introduce bias
into DPG gradient estimates.

Proof. Let us rewrite the DPG gradient in (5) with the
added baseline B = Z:

Ex⇠⇡✓

h
R✓(x)� Z

i
r✓ log ⇡✓(x) = Ex⇠⇡✓R✓(x)r✓ log ⇡✓(x)� Z Ex⇠⇡✓ r✓ log ⇡✓(x)

= Ex⇠⇡✓R✓(x)r✓ log ⇡✓(x)� Z
hX

x

r✓⇡✓(x)
i

(14)
Here, the second term does not introduce bias because Z

hP
x r✓⇡✓(x)

i
= 0, leaving us with the

exact same form of gradient as in the original DPG algorithm.

Algorithm 1 KL-Adaptive DPG with baseline
Require: P , initial generative model a
1: ⇡✓  a, q  a
2: for each iteration do
3: for each episode do
4: sample x from q(·)
5: ✓  ✓ + ↵(✓)

h
P (x)
q(x) � Z ⇡✓(x)

q(x)

i
r✓ log ⇡✓(x)

6: if DKL(p||⇡✓) < DKL(p||q) then
7: q  ⇡✓

Ensure: ⇡✓

Note that since BRL depends on ✓, it has to
be be re-estimated after each gradient update.
On the other hand, B does not depend on
✓, which is an advantage because B could
be now estimated by averaging over samples
from all the different ✓’s without introducing
bias, leading to a more accurate estimation.
See Table 1 for a comparison of these two
forms of baselines.

The off-policy DPG version introduced
in (Parshakova et al., 2019b) and its KL-
adaptive variant (Khalifa et al., 2021) sample
a proposal distribution q instead of the policy
⇡✓. Then, the baseline takes the form

Boff(x) = Z
⇡✓(x)

q(x)
, (15)

where the ⇡✓(x)
q(x) term is an importance weight correcting for the bias introduced by sampling from q.

Similarly to the DPG case, we can prove the following (see Appendix C):
Fact 2. Subtracting Boff(x) from R✓(x) does not bias the off-policy DPG gradient estimates.

In practice, as shown on Figure 2, adding a baseline to KL-adaptive DPG (Algorithm 1) centers the
advantage (defined as A .

= P (x)
q(x) � Z ⇡✓(x)

q(x) ) around 0 leading to better performance on: convergence
(section 4.3), stability on small batch sizes (section 4.4), and variance reduction (section 4.5).

5While this baseline is not optimal (proof Appendix C.1), it is widely used in practice.
6In the scope of this paper, our focus is on importing to DPG simple constant baselines. The advantage

is that this is a technique that is not impacted by the fact that R✓ depends on ✓: it can be applied “✓-locally”
to provide a more accurate estimate of Ex⇠⇡✓R✓(x)r✓ log ⇡✓(x) for a fixed ✓, irrespective of the values of
R✓0 elsewhere, while variance reduction techniques that involve several ✓0s simultaneously raise additional
challenges for parametric rewards.
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4.1 Generation with Distributional Control

We investigate the benefits of adding a baseline to the DPG algorithm, on the Generation with
Distributional Control (GDC) (Khalifa et al., 2021) framework. GDC makes use of DPG to control
the properties of pre-trained language models to satisfy certain constraints. In our experiments, follow
target distribution form of Parshakova et al. (2019a), Khalifa et al. (2021) and Korbak et al. (2022a),
in which the EBM P (x) is defined so that its normalized variant p(x) matches a set of desired
moments constraints on given features �i(x), while having a minimal KL divergence DKL(p, a) from
an original pretrained language model a, to avoid catastrophic forgetting.

These constraints are expressed as conditions µ̄i = Ex⇠p�i(x), for i 2 {1, . . . , n}, by which the
moments (expectations) under the distribution p of each feature �i(x) are required to take certain
desired values µ̄i. For instance, let �1(x) = 1 iff the topic of x is science and �2(x) = 1 iff x
mentions a female person, then imposing moments µ̄1 = 1 and µ̄2 = 0.5 constrains the language
model p to only generate sequences about science, half of which mention females. P (x) is uniquely
determined by the following form:7

P (x) = a(x)e
Pn

i=1 �i�i(x), (16)

where �i terms control the moments µi of the associated features, which can be estimated through
self-normalized importance sampling (Owen, 2013); and then, to make the moments match the
desired values, the �i terms can be optimized through SGD (Parshakova et al., 2019a).

4.2 Experimental setup

We evaluate our method on an array of 10 controlled text generation tasks. For each, given a pre-
trained language model a(x), and a set of constraints, the objective of each fine-tuning method is
to obtain a fine-tuned language model ⇡✓ that satisfies the imposed constraints while deviating as
minimally as possible from the original language model a(x).

Constraints are defined as a set of binary features {�i} and their corresponding desired percentages
(moments) {µ̄i} within the generations of the target language model. Based on the value of the
moment constraints these 10 tasks are divided into 6 tasks of pointwise constraints (for which µ̄i = 1),
2 tasks of distributional constraints (0 < µ̄i < 1) and 2 tasks of mixed type constraints (hybrid):

(a) Single-word constraints, where �(x) = 1 iff the a given word appears in the sequence x.
We experiment with frequent words (task 1: “amazing”, original frequency: 10�4) and (task
2: “WikiLeaks”, original frequency: 10�5) rare words,

(b) Wordlist constraints, where �(x) = 1 iff x contains at least one word from a given list. We
consider lists of word associated with politics (task 3) and science (task 4) published by
Dathathri et al. (2020),

(c) Sentiment classifier constraints, where �(x) = 1 if x is classified as positive (task 5), or
negative (task 6) by a pre-trained classifier published by Dathathri et al. (2020).

(d) A single distributional constraint where �(x) = 1 iff x contains a female figure mention,
and µ̄ = 0.5 (task 8),

(e) A set of four distributional constraints: �i(x) = 1 iff x contains at least one of the words in
the “science", “art", “sports" and “business" wordlists (compiled by Dathathri et al. (2020)),
respectively. For each i, µ̄i = 0.25 (task 8),

(f) Hybrid constraints where �1(x) = 1 iff x contains more female than male pronouns,
µ̄1 = 0.5 and �2(x) = 1 iff x contains at least one of the words from the “sports" wordlist
(task 9) or “politics” wordlist, µ̄2(x) = 1 (task 10).

Methods We modify the GDC framework Khalifa et al. (2021), namely its KL-DPG algorithm,
to include a baseline as shown in Algorithm 1. We refer to this method as GDC++. In addition to
comparing GDC++ with GDC we compare with two reward maximization baselines: Reinforce
(Williams, 1992b) and Ziegler (Ziegler et al., 2019). Reinforce tries to maximize the expected
reward Ex⇠⇡✓R(x), where R(x) = 1 if and only if the pointwise constraints are met. Ziegler
instantiates the KL-control approach: its objective includes a KL penalty term for departures from a.
Following (Khalifa et al., 2021), for hybrid and distributional constraints (tasks 8-10) we compare

7For a more precise formulation of this EBM, see (Khalifa et al., 2021).
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Figure 3: Evaluation metrics: DKL(p,⇡✓) (# better), E⇡✓�(x) (" better), DKL(⇡✓, a) (# better), Self-BLEU-5
(# better), and Distinct-1 (" better) aggregated over 6 pointwise constraints experiments (tasks 1-6) for policies
obtained from GDC++, GDC, Ziegler and Reinforce. See Figure 6 for aggregated distributional constraints
experiments. In the Appendix Figures 7-10 and Table 4 contain individual view and final results of each run.

only GDC and GDC++ because the RM objective of Ziegler and Reinforce is not equipped to handle
them.

Metrics We report the following metrics at each validation step over batches of samples from ⇡✓:
1. Ex⇠⇡✓�i(x), measuring the ability to reach the target moment of the i-th feature.
2. DKL(p,⇡✓), the forward KL divergence from the optimal target distribution p,8

3. DKL(⇡✓, a), the reverse KL divergence from the original pretrained language model a.
4. Distinct-n score, a measure of text diversity in terms of the frequency of repetitions within a

single sample x, proposed by (Li et al., 2016a).
5. Self-BLEU-n, a measure of text diversity on a distributional level across samples proposed

by (Zhu et al., 2018), ensuring that policies don’t converge into limited number of sequences
that satisfy the imposed constraints Caccia et al. (2020).

Training details For tasks 1-6, we use a pre-trained GPT-2 small with 117M parameters (Radford
et al., 2019) as the original language model a. For tasks 7-10, a is the same pre-trained model
additionally fine-tuned on the WikiBio (Lebret et al., 2016) dataset. See Appendix E for more details.
The code for all the experiments presented in the paper will be available at github.com/naver/gdc.

4.3 Results

We present the evolution of our metrics through training epochs in Figure 3 (aggregated over tasks
1-6) and Figure 6 in the Appendix (aggregated over tasks 7-10). Results for each task are presented
separately on Figures 7-10 in the Appendix.

Consistent with prior work (Khalifa et al., 2021; Korbak et al., 2022a), we observe that Reinforce is
able to quickly achieve high levels of constraint satisfaction, but at the cost of large deviations from a,
which translates into significantly decreased diversity of generated samples (in terms of Self-BLEU-5
and Distinct-1). The KL penalty term in Ziegler imposes an upper bound on deviation from a but
the deviation is still significant enough to result in a drop in diversity. Moreover, we have observed
Ziegler’s objective to result in very unstable training.

GDC and GDC++ are the only fine-tuning methods that address constraint satisfaction based on a
clear formal objective, i.e. reducing the divergence from p. The approach translates into significantly
smaller deviations from a and maintaining diversity within and across samples. The addition of
a baseline indeed reduces the variance. We analyze that extensively in Appendix 4.5 while here
focusing on the downstream effects of variance reduction. One is that ⇡✓ is now able to compound
staying closer to p and a at the same time, while achieving slightly better constraint satisfaction. We
have also observed that baseline stabilizes training, leading to smoother curves.9

4.4 The effect of baseline across batch sizes

We expect that reducing gradient estimates variance can allow to train with lower batch sizes,
performing gradient updates on estimates based on smaller batch sizes can increase the sample

8See Appendix D for a detailed description of how DKL(p,⇡✓) is computed.
9The interested reader can compare the large fluctuations of the Ziegler objective to more stable training

curves of GDC , and even more of GDC++ , in the disaggregated curves in Figures 7-10 of the Appendix.
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(a) Task 1: a pointwise constraint (b) Task 8: a set of distributional constraints; µ̄i = 0.25

Figure 4: E⇡✓�(x) or µ̂ per constraint (" better) and DKL(p,⇡✓) (# better) as a function of the number of
samples reported for task 1 (a) and task 8 (b). We report the number of samples (i.e. the number of epochs times
the batch size) for a fair comparison of convergence speed. GDC++ is consistently superior across all batch
sizes in terms of convergence and constraint satisfaction. The effect is more conspicuous with small batch sizes.
Batch sizes 512 and 2014 are greyed out for clarity.

efficiency. To test this, we rerun tasks 1 (a pointwise constraint on the word “amazing") and 8 (
distributional constraints on topics) with four batch sizes (256, 512, 1024, 2048). Figures 4a and 4b
show the benefits of adding a baseline — higher constraint satisfaction, lower divergence from p,
more stable training — and is especially evident with lower batch sizes. For instance, with batch size
256, GDC++ obtains a significantly higher constraint satisfaction rate and lower divergence from p.

Furthermore, stable training with smaller batch sizes translates into better sample efficiency.
For instance, in task 1 (Figure 4a), GDC++ with batch size 256 needs 1M samples to achieve
Ex⇠⇡✓�(x) = 0.5 while GDC++ with batch size 2048 needs 4M. In contrast, GDC with batch size
256 does not achieve Ex⇠⇡✓�(x) = 0.5 at all, confirming the importance of adding the baseline.

4.5 Empirical Evaluation of Variance Reduction

Figure 5: Comparison between GDC and GDC++
using a set of Variance diagnosis metrics on point-
wise and distributional constraints experiments.

Next, we evaluate empirically the effect of the base-
line for variance reduction. We select two tasks:
task 1 (a pointwise constraint) and task 7 (distribu-
tional constraints) described in Section 4.2, each
with 3 different seeds, while monitoring the follow-
ing variance measures:

Gradient Variance The gradient estimate is de-
fined as: G✓(x)

.
= A(x)r✓ log ⇡✓(x), where

G✓(x) 2 R|✓| is an unbiased estimate of the gra-
dient of the forward KL loss r✓DKL(p,⇡✓) with
respect to the parameters ✓. We then have, with
µ(G✓)

.
= Ex⇠qG✓(x):

Var(G✓)
.
= Ex⇠q kG✓(x)� µ(G✓)k22 (17)

= Ex⇠q||G✓(x)||22 � ||µ(G✓)||22. (18)

Variance of the advantage is defined by:

Var (A)
.
= Ex⇠q

��A(x)� µA
��2
2

(19)

where, µA ⌘ Ex⇠q A(x) is the mean of the advan-
tage, which we showed above to be null after the
addition of the baseline.

Expected absolute value of the advantage This
metric is defined as:

µ|A| .
= Ex⇠q |A(x)|. (20)

9



It directly provides a standard measure of distributional discrepancy between p and ⇡✓, in terms of
TVD (Total Variation Distance). We have:

Ex⇠q

����
p(x)

q(x)
� ⇡✓(x)

q(x)

���� = 2TVD(p,⇡✓). (21)

Results Figure 5 shows that GDC++ obtains lower variance in the gradient estimates Var(G✓) and
the variance of the advantage Var (A) in both pointwise and distributional experiments compared to
its non-baseline counterpart GDC. We further observe a decreasing trend in the mean absolute value
of the advantage µ|A| which is correlated with a decreasing trend in the TVD distance between the
trained policy ⇡✓ and the optimal distribution p. Overall, these results shows that adding a baseline
to DPG reduces the variance during training and yields better convergence towards the optimal
distribution p.

5 Related work

The idea of posing control problems as distribution matching has resurfaced numerous times in the RL
literature (Kappen et al., 2012; Friston et al., 2010; Levine, 2018; Hafner et al., 2020; Buckley et al.,
2017). KL-control can be seen as a generalisation of maximum entropy RL (MaxEnt RL) (Haarnoja
et al., 2017, 2018) to informed priors. If in (2) we chose a(x) to be a uniform distribution (assuming
right now finiteness of X) instead of a pretrained LM distribution, then the KL penalty DKL(⇡✓, a)
would reduce to an entropy bonus. Both KL-control and MaxEnt RL can be derived from a general
framework of control-as-inference (Levine, 2018) which poses control as minimising KL from a
certain target distribution. However, most practical algorithms in the MaxEnt RL family minimise KL
from a target policy which changes throughout training; in contrast, DPG’s target distribution p and
KL-control implicit target distribution pz are defined at trajectory level and fixed throughout training.

Perhaps the closest method to KL-control and DPG in the larger family of inference-based RL (Furuta
et al., 2021) is AWR (Peng et al., 2019) which minimises the forward KL from an off-policy target
distribution. Yet another approach with apparent similarity to KL-control and DPG is state marginal
matching (SMM) (Hazan et al., 2018; Lee et al., 2019). SMM poses exploration as learning a policy
that induces a state marginal distribution that matches a target state distribution. While SMM’s target
distribution is fixed, it is defined for individual states, while in the controllable language generation
tasks we consider, the target distribution is defined over a complete trajectory considered as a unit.
See Appendix B for an extended discussion of related work.

6 Conclusion

Fine-tuning large language models has become an active area of research, due to its importance in
adapting large language models to satisfy task-level preferences, or in combating their social risks
such as “distributional” stereotyping (Weidinger et al., 2021; Welbl et al., 2021). 10 In this paper, we
analyzed in depth the nuanced relation between two popular fine-tuning paradigms: RM and DM. We
demonstrated that KL-control can be seen as a form of DM and showed that while DPG and PG have
different goals, some similarities (similar forms of gradient estimates despite different objectives) can
be exploited. We used these insights to inform an extension of DPG, consisting in adding a baseline
to reduce the variance of gradient estimates.

The connections we established suggest that despite fundamental differences between DPG and RL,
some of the theoretical results and algorithmic techniques from RL can be adapted to a DM framework
without losing their formal guarantees. In this paper, we focus on variance reduction using baselines,
but the space of possible enhancements is vast. Promising candidates include further reducing the
variance using a learned value function (Konda & Tsitsiklis, 2000) and preventing detrimentally large
policy updates by maintaining a trust region in the policy space – akin to techniques such as TRPO
(Schulman et al., 2015) and PPO (Schulman et al., 2017b). Another future direction could consist in
analyzing the relation between explicit EBMs in DPG and implicit EBMs arising in KL-control and
characterizing the space of EBMs that could be reached through KL-control.

10See Appendix A for a discussion of broader impacts of large language models and controllable language
generation.
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