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Abstract

Open-vocabulary Scene Graph Generation (OV-SGG) over-
comes the limitations of the closed-set assumption by aligning
visual relationship representations with open-vocabulary tex-
tual representations. This enables the identification of novel
visual relationships, making it applicable to real-world sce-
narios with diverse relationships. However, existing OV-SGG
methods are constrained by fixed text representations, limiting
diversity and accuracy in image-text alignment. To address
these challenges, we propose the Relation-Aware Hierarchi-
cal Prompting (RAHP) framework, which enhances text rep-
resentation by integrating subject-object and region-specific
relation information. Our approach utilizes entity clustering
to address the complexity of relation triplet categories, en-
abling the effective integration of subject-object information.
Additionally, we utilize a large language model (LLM) to gen-
erate detailed region-aware prompts, capturing fine-grained
visual interactions and improving alignment between visual
and textual modalities. RAHP also introduces a dynamic se-
lection mechanism within Vision-Language Models (VLMs),
which adaptively selects relevant text prompts based on the
visual content, reducing noise from irrelevant prompts. Exten-
sive experiments on the Visual Genome and Open Images v6
datasets demonstrate that our framework consistently achieves
state-of-the-art performance, demonstrating its effectiveness
in addressing the challenges of open-vocabulary scene graph
generation.

1 Introduction
Scene Graph Generation (SGG) (Johnson et al. 2015; Zellers
et al. 2018) is a fundamental task in computer vision, involv-
ing the construction of a structured representation of a scene
by identifying the relations between entities depicted in an
image. It has already demonstrated promising performance
in various downstream tasks (Kamath et al. 2021; Lee et al.
2019; Chen et al. 2020; Li et al. 2021). Traditional SGG
methods typically operate within a closed vocabulary, and
due to the diversity of relational concepts that exceed ex-
isting data annotations, they face challenges in effectively
modeling open-set relations. To address this challenge, Open-
Vocabulary Scene Graph Generation (OV-SGG) (He et al.
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Figure 1: An illustration of RAHP for OV-SGG. RAHP gen-
erates entity-aware and region-aware hierarchical prompts
to enrich the text representations of the relation, thereby en-
hancing OV-SGG.

2022; Zhang et al. 2023; Yu et al. 2023) has emerged as an
active research area recently.

Previous studies (Yu et al. 2023; Liao et al. 2022; Chen
et al. 2023) mainly leverage the image-text matching capabil-
ities of pre-trained Vision-Language Models (VLMs) (Rad-
ford et al. 2021) to achieve open-vocabulary relation detec-
tion based on the similarity scores between relation features
and text representations. However, these methods typically
rely on a single, fixed form of text representation, which
limits the diversity and accuracy of image-text matching,
particularly in predicting novel relations. To address this, a
promising strategy (Gao et al. 2023; Li et al. 2024b; Menon
and Vondrick 2022) is to use generative category descriptions
to expand the text representation space, thereby enhancing
the flexibility and precision of image-text matching. Nonethe-
less, generating informative relation descriptions requires
not only encoding triplet information (Li et al. 2024a), i.e.,
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<subject, predicate, object>, but also capturing fine-grained
interactions corresponding to different image regions. Given
the quadratic growth in triplet combinations with increas-
ing subjects and objects, incorporating all triplet information
into representations becomes impractical. Moreover, previ-
ous methods often employ all the generated descriptions for
matching with the entities or relations in the image, which
usually includes many irrelevant descriptions for the input
image. This introduces a significant amount of noise in text
representation, thereby reducing prediction accuracy.

To address the above challenges, we introduce the Relation-
Aware Hierarchical Prompting framework (RAHP), which
integrates subject-object and regional relation information
within a relational representation space. We focus on enhanc-
ing the textual representation in the visual-semantic space of
VLMs. As shown in Fig. 1, we extend the range of relational
text representations in the space, enabling the text represen-
tations to pair more effectively with visual representations.
In open-vocabulary tasks, this approach can significantly
enhance their consistency with visual representations and
improve the model’s generalization.

Specifically, RAHP contains a hierarchical prompt gen-
eration module that reduces triplet category space through
entity clustering, lowering the complexity of encoding triplet
information. This module also uses a large language model
(LLM) to identify key regions for both subjects and objects,
generating fine-grained region descriptions as text prompts
by combining these regions. Those entity-aware and region-
aware text representations more effectively captures contex-
tual information in visual data, enhancing the model’s un-
derstanding and generalization in complex interactive scenes.
Additionally, RAHP implements a VLM-based dynamic se-
lection mechanism that filters out completely irrelevant text
representations based on visual concept, thereby improving
matching accuracy.

We conduct extensive experiments to validate our approach
on two SGG benchmarks: Visual Genome (Krishna et al.
2017) and Open Images-v6 (Kuznetsova et al. 2020) datasets,
and it achieves state-of-the-art performance.

The main contribution of our work has three folds.

• We propose a relation-aware hierarchical prompting
framework (RAHP) for OV-SGG that integrates entity-
aware and region-aware text prompts, enhancing text rep-
resentations and model generalization.

• We introduce a VLM-guided dynamic selection mecha-
nism that adapts text prompts based on visual information,
minimizing irrelevant content and enhancing the robust-
ness of relation predictions.

• Experiments on two benchmark datasets demonstrate that
our method achieves state-of-the-art generalization per-
formance in OV-SGG.

2 Related Work
2.1 Scene Graph Generation
The Scene Graph Generation (SGG) task, initially proposed
by (Johnson et al. 2015), traditionally relies on supervised
methods (Xu et al. 2017; Gu et al. 2019b; Tang et al. 2019;

Zellers et al. 2018) that predict relationships using visual,
spatial, and contextual cues. To reduce reliance on annotated
scene graphs, some approaches (Suhail et al. 2021; Yang
et al. 2019) use language supervision, extracting entity and
relationship labels from image captions (Li et al. 2022; Shi
et al. 2021; Zhong et al.). However, these methods often use
closed-set classifiers, limiting their ability to handle novel
entities or relations. Recent studies have expanded SGG to
open-vocabulary settings (He et al. 2022; Zhang et al. 2023;
Yu et al. 2023). For example, SVPR (He et al. 2022) uses
dense caption pre-training and prompt fine-tuning, while VS3
(Zhang et al. 2023) aligns visual features with a pre-trained
visual-semantic space for predicting new entities. Epic (Yu
et al. 2023) introduces cross-modal entanglement, combining
text and region embeddings to classify new predicates. OvS-
GTR (Chen et al. 2023) extends OV-SGG to open-vocabulary
detection and relations-based scenarios.

Most of these methods rely on visual-text matching to clas-
sify novel relations, using fixed-form text prompts that limit
recognition of novel relations in OV-SGG. To address this,
we propose a hierarchical text representation enhancement
method that enriches the text representation space by intro-
ducing text prompts at both subject-object and region levels,
improving relationship recognition.

2.2 Open-vocabulary Methods

In recent years, researchers in the field of visual scene under-
standing, such as object detection (Gu et al. 2021; Zareian
et al. 2021), have shifted their focus from traditional closed-
set methods to more flexible open-vocabulary methods. A
key driver of this evolution is the development and maturity
of VLMs (Radford et al. 2021; Jia et al. 2021; Li et al. 2023).
These models are typically pre-trained on large-scale image-
text pairs, endowing them with strong cross-modal alignment
capabilities. By leveraging natural language prompts (Wu
et al. 2024), VLMs can compute similarities between im-
ages and language in open-vocabulary settings, facilitating
category expansion (Gu et al. 2021; Ma et al. 2022).

Early research (Wang et al. 2023; Menon and Vondrick
2022) concentrates on simple prompts for open-vocabulary
recognition. Other approaches (Wang et al. 2024, 2022b)
employ learnable prompts to enhance image classification.
As research progresses, single prompts cannot adequately
handle complex visual inputs, leading to the proposal of
hierarchical prompting methods to better structure intricate
query information. Models like (Ge et al. 2023) rely on object
class hierarchies by WordNet (Miller 1995). RECODE (Li
et al. 2024b) utilizes LLMs to generate hierarchical prompts
from the perspectives of subject, object, and spatial levels,
facilitating zero-shot relationship recognition. In contrast to
RECODE, our work approaches the task from a regional
perspective, enabling the generation of more detailed and
specific relationship prompts. Additionally, we introduce a
dynamic VLM-guided mechanism that adjusts prompts based
on visual inputs, increasing the accuracy and flexibility of
text representations.



3 Preliminary
3.1 Problem Setting
The goal of SGG is to create a descriptive graph G = {V,R}
from an image I . This graph consists of Nv entities V =
{vi}N

v

i=1 and visual relationship triples E = {vi, ri,j ,vj}i ̸=j ,
where ri,j represents the predicate category between them.
Each entity vi is represented as (cvi ,bi), where cvi denotes
the label in the entity category space Oe, and bi represents
its location through a bounding box in the image. The pred-
icate category ri,j denotes the label in the category space
Or. In the task of OV-SGG, the category spaces for entities
and predicates are divided into two parts. Specifically, the
predicate category space contains the base category space Or

b
and the novel category space Or

n, and it has Or = Or
b ∪ Or

n.
Similarly, the entity category space also has Oe = Oe

b ∪ Oe
n.

3.2 OV-SGG Pipeline
Most OV-SGG methods (Yu et al. 2023; Chen et al. 2023) can
typically be decoupled into two steps: relationship proposal
generation and predicate classification.

First, the model receives an image as input and feeds it into
a proposal network, from which it extracts relationship pro-
posals P = {vi,vj}i ̸=j and the corresponding relationship
features R ∈ RN×d, where N is the number of relationship
proposals and d is the dimension of the feature representation.

Then, the relationship features are fed into the predi-
cate classifier as visual representations. The predicate clas-
sifier usually handles each predicate class using predefined
text prompts, which generate text embeddings T ∈ RCp×d

through the text encoder TextEnc of a VLM, where Cp is
the number of predicate categories. These text embeddings
as the text representations replace the fixed predicate classi-
fier weights, enabling the model to extend to new relation-
ship categories that appear during the testing phase. The
predicate classifier obtains the predicate classification scores
S ∈ RN×Cp for each relationship proposal by calculating the
similarity score between R and T:

S = ϕ(R,T) =
R ·T

|R| · |T|
, (1)

where · is the dot product, we define this operation of calcu-
lating similarity as ϕ(). During OV-SGG training, OV-SGG
methods use a distillation loss to distill the knowledge of the
VLM to maintain the model’s generalization. The distillation
loss ensures that the distance between the text embeddings
and relationship features remains consistent across all pair-
wise classifications.

4 Method
4.1 Method Overview
We propose RAHP, a method that enhances the generalization
of OV-SGG models on novel relations by using multi-level
text prompts to strengthen visual relation text representations.
Specifically, our framework is composed of three modules:
hierarchical prompt generation (Sec. 4.2), visual relationship
extraction (Sec. 4.3), and hierarchical relationship prediction
(Sec. 4.4). Finally, we introduce the learning and inference
pipeline of our method (Sec. 4.5).

4.2 Hierarchical Prompt Generation
The hierarchical prompt generation module enriches text
representations by creating multi-level text prompts that in-
clude entity-aware and region-aware prompts. As shown in
Fig. 2 (a), for the input vocabularies, we sequentially generate
prompts at two levels.

• Entity-aware text prompts: These prompts include pre-
cise relationship content by combining predicate, subject,
and object details. However, as the number of triplets
grows cubically with subjects and objects, incorporating
all triplet information into the prompts becomes impracti-
cal. To address this, we first cluster entities into super enti-
ties based on similarity. Similar to the approach in (Zhang
et al. 2024), it can effectively reduce the triplet category
space (more details can be found in the appendix). We
then generate entity-aware text prompts by combining
super entities with predicate categories.

• Region-aware text prompts: Building on entity-aware
prompts, we create region-aware text prompts that cap-
ture finer visual details through a region-aware descrip-
tion mining strategy. As shown in Fig. 2 (b), we use an
LLM to decompose key entity parts and naturally gener-
ate region-level visual relation descriptions by combining
these parts’ relationships. For example, in the relationship
triplet <male, sitting on seating, furniture> the “male”
can be associated with specific body parts like the hips,
thighs, and arms, while the “seating furniture” can be
associated with components like the seat and backrest.
The “sitting on” relationship is then represented by com-
bining these elements in the LLM to provide extensive
region-aware relation descriptions. Following (Menon
and Vondrick 2022), we design two cases for the LLM to
learn from.

Hierarchical Prompt Encoding After generating the two
levels of prompts, we encode them into text embeddings
as text representations using the frozen VLM text encoder
TextEnc. As shown in Fig. 2 (a), we generate sentences
for the entity-aware prompts through the template “A photo
of a/an [Subject] [Predicate] a/an [Object]”. The entity-
aware prompts are encoded by TextEnc into an entity-
aware text embedding set T e = {Te

1,T
e
2, ...,T

e
C2

se
}, where

Te ∈ RCp×d, Cp represents the number of predicate cat-
egories, and Cse denotes the number of super entity cate-
gories. Correspondingly, the region-aware prompts are gener-
ated sentences through the template “A region that reflects
[region descriptions]”. The region-aware prompts are en-
coded into an text embedding set T r = {Tr

1,T
r
2, ...,T

r
C2

se
},

where Tr
j ∈ RCp×Nr

j ×d, Nr
j is the number of region-aware

prompts, varying with the region descriptions per triplet.

4.3 Visual Relation Extraction
Following the process described in Sec. 3.2, the visual re-
lationship extraction module is mainly designed to extract
visual relation features. It employs a proposal network to
extract relation proposals P = {vi,vj}i ̸=j from the visual
input I , along with their corresponding relation feature rep-
resentations R. Then we merge the predicted subject and



Figure 2: An overview of hierarchical prompt generation: (a) Predicates combine with super entities to create entity-aware
prompts, which then expand into region-aware prompts. This process builds a rich textual representation space for extended
relational triplets. (b) In region-aware prompt mining, our approach guides an LLM to decompose subjects and objects into
distinct parts, enabling more detailed regional visual relationship descriptions.

object boxes in P into union boxes, and crop the correspond-
ing region Iu from the image I . Iu is encoded into a unified
feature U ∈ RN×d by the VLM’s visual encoder VisEnc,
calculated as follows:

U = VisEnc(Iu). (2)

Both the relation features R and the union features U are
input into the hierarchical relation prediction module.

4.4 Hierarchical Relation Prediction
The hierarchical relation prediction module predicts predi-
cates by calculating the similarity between relation features
R and two levels of text embeddings T: entity-aware and
region-aware. This module includes two key components:
VLM-guided dynamic selection, which filters out irrelevant
prompts, and hierarchical prediction aggregation, ensuring
accurate predicate classification.

Image-guide Dynamic Selection The VLM-guided dy-
namic selection mechanism utilizes the image-text alignment
capabilities of a VLM to match T r with union features U.
The mechanism is aimed at filtering out region-text pairs that
are completely irrelevant to the image, leveraging the robust
object recognition capabilities of the VLM to achieve this
goal. Specifically, for jth in T r, upon receiving the unified
feature U, it computes the matching score Sse

j ∈ RN×Nr
j

between U and the region-aware text embeddings Tr
j as

follows:
Sse
j = ϕ(U,Tr

j) (3)
To capture core visual semantic information, we select the
top k region-aware text embeddings with the highest match-
ing scores and perform predicate classification. After per-
forming VLM-guided selection on all region-aware prompts,
we obtain the final region-aware text prompt embedding set
T r ′ = {Tr

1
′,Tr

2
′, ...,Tr ′

C2
se
}, where Tr ′ ∈ RCp×k×d. This

mechanism dynamically selects text prompts based on union

features, prioritizing region-aware prompts with higher prob-
abilities for subsequent predicate prediction, effectively re-
ducing noise.

Hierarchical Prediction Aggregation After selecting
region-aware text embeddings, we predict the final pred-
icate scores by integrating entity-aware and region-aware
embeddings. First, we calculate the similarity between Te

and R to derive the entity-aware predicate score Se =
{Se

1,S
e
2, ...,S

e
C2

se
} for T e:

Se
j = ϕ(R,Te

j), (4)

where Se
j ∈ RN×Cp . This score encapsulates the relation

details between specific entity pairs. Next, at the region-aware
level, we compute the region-aware predicate scores Sr =
{Sr

1,S
r
2, ...,S

r
C2

se
} by evaluating the similarity between Tr

j
′

and R:

Sr
j =

∑k
m=1 ϕ(R,Tr ′

j,m)

k
, (5)

where Sr
j ∈ RN×Cp . The score emphasizes region relation

features, providing additional text information to assist the
model in understanding visual relationships. We then com-
bine Se

j and Sr
j to Sa

j ∈ RN×Cp using a weighted sum to
produce the aggregated score:

Sa
j = (1− α)× Se

j + α× Sr
j . (6)

Finally, we select the highest scores from the C2
se aggre-

gated scores Sa as the final predicate prediction scores
S ∈ RN×Cp :

S = max(Sa
1 ,S

a
2 , ....,S

a
C2

se
). (7)

The prediction scores allow us to derive the probability for
each predicate, enabling the determination of the predicate
category. This multi-level prediction mechanism enhances
RAHP by learning regional-level text representations, im-
proving open-vocabulary capabilities, and enabling knowl-
edge transfer to new relationship concepts.



Figure 3: An overview of RAHP. (a) Visual Relation Extraction Module: The process begins with extracting relation proposals
and their features from the image, which are then encoded into visual features using a VLM. (b) Hierarchical Relation Prediction
Module: The visual features undergo a guided selection process, where the selected embeddings are combined with entity-aware
embeddings to predict predicates.

4.5 SGG Learning and Inference
SGG Learning During the training stage, the model only
receives information from the base classes. Similar to (Li,
Zhang, and He 2024; Chen et al. 2023), we adopt a multi-task
loss for our model training. Specifically, we use L1 loss and
GIOU loss for entity bounding box regression to reduce the
gap between the predicted bounding box b and the ground
truth bgt:

Lbbox = ∥b− bgt∥1 +GIOU(b,bgt). (8)
We also use a cross-entropy loss Lent = CE(cv, cvgt) to en-
sure the accuracy of the prediction cv for entity classification
against the ground truth category cvgt.

For predicate prediction, we use Lpre = FL(r, rgt) to rep-
resent the Focal loss for predicate categories, where rgt is
the ground truth predicate category, and r is the predicted
predicate category. In addition, we employ an L1 loss (Liao
et al. 2022; Chen et al. 2023) to minimize the gap between
the relation feature R and the visual features V ∈ Rd ex-
tracted by the VLM visual encoder VisEnc. The goal is to
align the relation features extracted by SGG with the VLM
space, thereby enabling the prediction of novel predicates. It
also acts as a form of regularization to prevent overfitting to
the specific training data. For the i-th relation proposal, the
distillation loss is designed as an L1 distance loss, defined as
follows:

Ld
i = ∥Ri −V∥1 . (9)

The total training loss can be written as

L = Lbbox + λ1Lent + λ2Lpre + λ3Ld. (10)
where the weights of each loss term λ1, λ2, λ3 balance the
learning progress and importance across different tasks.

SGG Inference To enhance the interpretability of novel
relation triplets, we employ LLMs to generate informative
visual descriptions before the inference phase. In the post-
processing stage, we systematically eliminate invalid self-
connected edges and exclude triplets where subject and object

entities are identical. Subsequently, the remaining triplets are
ranked based on the combined scores from entity predictions
and predicate predictions. The top M relation triplets are
then selected as the final output, providing comprehensive
information in terms of subject entity probabilities, object
entity probabilities, and predicate probabilities.

5 Experiment
In this section, we comprehensively evaluate our RAHP on
the OV-SGG task. More results, including closed-set SGG,
parameter sensitivity experiments and qualitative analysis,
are provided in the Appendix.

5.1 Datasets and Experimental Settings
Datasets To evaluate the SGG task, we adopt two bench-
marks: the VG150 version of the Visual Genome (VG) dataset
(Krishna et al. 2017) and the Open Image v6 (OIV6) dataset
(Kuznetsova et al. 2020).

Evaluation metrics We evaluate our method under two
settings (Chen et al. 2023): Open Vocabulary Relation-based
Scene Graph Generation (OVR-SGG) uses a closed vocabu-
lary for objects and an open one for relationships, whereas
Open Vocabulary Detection + Relation-based Scene Graph
Generation (OVD+R-SGG) uses open vocabularies for both.
We adopt the PredCLS and SGDet protocols (Xu et al. 2017)
and report the performance on Recall @K (K=50/100) and
mean Recall @mK (mK=50/100) for each setting.

Implementation Details We employ the GPT-3.5-turbo,
as our LLM. We adopt CLIP (Radford et al. 2021) (ViT-
B/32) as our VLM backbone. We categorize 150 entities
into 30 super-class entities for VG and categorized 602 en-
tities into 53 super-class entities for OIV6 (details can be
found in the appendix). RAHP is applicable to both one-
stage and two-stage models, therefore we select the one-stage
methods SGTR† (Li, Zhang, and He 2024) and OvSGTR



Total (Relation) Base (Relation) Novel (Relation)S T B D M R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

ViT DETR* PGSG 26.90/33.90 10.80/13.90 - - - 5.20/7.70
SGTR† 36.32/41.51 13.30/17.60 40.50/46.67 19.57/24.96 0.00/0.00 0.00/0.00
SGTR†+p 39.48/45.27 15.93/21.09 40.78/46.82 19.88/24.32 10.81/18.41 9.00/13.15o R-101 DETR
SGTR†+RAHP 39.92/46.03 16.88/22.18 41.29/47.65 20.51/25.18 15.46/20.37 11.82/15.46

R-50 SVPR 33.50/35.90 8.30/10.80 - - - -
Epic - 16.50/21.80 28.30/31.10 - 13.90/18.30 -
PE-NET 58.79/61.23 19.18/20.97 63.62/67.09 23.18/25.79 0.00/0.00 0.00/0.00
PE-NET+p 62.21/67.25 21.94/27.91 62.73/67.76 22.23/28.02 17.62/25.67 12.93/19.32

PredCLS

t R-101
Faster

R-CNN
PE-NET+RAHP 64.70/69.11 24.50/28.25 65.15/70.54 24.99/30.19 20.79/29.00 15.70/23.73
OvSGTR 20.46/23.86 3.91/4.62 26.14/30.16 4.81/5.60 13.45/16.19 1.82/2.32SGDet o Swin-T DETR OvSGTR+RAHP 21.50/25.74 4.51/5.37 26.29/30.16 5.15/5.94 15.59/19.92 3.01/4.04

Table 1: Experimental results of OVR-SGG on VG test set. - to signify methods that did not produce the result, p indicates the
use of fixed-format text prompts, while DETR* denotes models with structural modifications. S is the SGG setting; T denotes
the SGG model type, o means one-stage model, t is two-stage model; B is the backbone model; D is the object detector; M
represents the model.

S T B D M Total (Relation) Base (Relation) Novel (Relation)
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

SGDet o
ViT DETR* PGSG 41.30/43.30 20.80/23.00 - - - 3.80/8.90

R-101 DETR
SGTR† 36.10/38.40 11.00/16.70 - - - 0.00/0.00
SGTR†+p 60.48/62.63 29.09/31.44 74.11/77.17 36.32/37.43 46.31/53.76 27.82/32.66
SGTR†+RAHP 62.42/64.86 30.79/34.46 78.21/80.27 37.72/38.66 49.61/56.28 29.43/34.16

Table 2: Experimental results of OVR-SGG on OIV6 test set. - to signify methods that did not produce the result, p indicates the
use of fixed-format text prompts, while DETR* denotes models with structural modifications. S is the SGG setting; T denotes the
SGG model type, o means one-stage model; B is the backbone model; D is the object detector; M represents the model.

(Swin-T) (Chen et al. 2023), as well as the two-stage meth-
ods PR-NET (Zheng et al. 2023) and VS3 (Swin-T) (Zhang
et al. 2023) to validate the generality and high adaptability
of RAHP. In each method, we retain the visual module and
proposal network, replace the predicate classification part
with RAHP’s OV predicate prediction approach. To align
relation and VLM features, we equip CLIP with a three-layer
MLP of size 512. We set k = 3 to dynamically select and set
α = 0.25 to balance the weights of the two text prompts. For
training losses, the weight of the entity detector is λ1 = 2, the
weight for predicate prediction is λ2 = 1, and the weight for
distillation loss is λ3 = 20. All experiments are implemented
in PyTorch and trained on 4 NVIDIA A40 GPUs.

5.2 Comparisons with OVR-SGG Methods
Setup We evaluate our design on the VG and OIv6 datasets,
comparing it with OVR-SGG methods, including SVRP, Epic,
PSGS, and OvSGTR (see Table 1). We adapt SGG methods
(SGTR† and PE-NET) for OVR-SGG, as they perform well in
closed-vocabulary settings. In each method, we retain the vi-
sual module and replace the predicate classifier with RAHP’s
OV predicate prediction module. Additionally, we use a fixed
text prompt baseline for comparison, where the prompt only
provides information about predicate categories. In the VG
dataset’s PredCLS setting, we follow Epic’s predicate split,
selecting 70% of the categories as base predicates and the
remaining 30% as novel predicates. In the SGDet setting, we
follow the OvSGTR predicate split. For the OIV6 dataset,

we use the predicate split from PGSG. During training, only
base relation annotations are available, with images lacking
base relation annotations masked.

Visual Genome Compared to previous methods in Ta-
ble 1, our approach demonstrates significant performance
advantages. For instance, in the PredCLS task, our method
improves the novel mR@100 by 7.76 over the one-stage
method PGSG. In two-stage methods, compared to Epic, our
method increases the novel R@100 by 1.75 in the PredCLS
task. Whether in one-stage or two-stage methods, RAHP
shows flexible generalizability, is capable of achieving open-
vocabulary capabilities under different frameworks. Taking
PE-NET as an example, our method outperforms baseline
models with fixed text prompts, improving both base and
novel predicate performance. This highlights RAHP’s ability
to enhance text representations and improve visual relation
understanding.

Open Image v6 We compare our method with PGSG on the
OIV6 dataset. As shown in Table 2, our approach achieves an
improvement of 21.56 points in total R@100 and 25.26 points
in novel mR@100. This demonstrates that the introduction
of hierarchical text prompts can enhance text representation,
leading to better visual-text matching.

5.3 Comparisons with OVD+R-SGG Methods
Setup We evaluate the performance of RAHP in a fully
open vocabulary setting OVD+R-SGG on VG, where novel



S T B D M Total Novel (Object) Novel (Relation)
R@50 R@100 R@50 R@100 R@50 R@100

SGDet
t Swin-T - VS3 5.88 7.20 6.00 7.51 0.00 0.00

VS3+RAHP 12.66 15.39 13.01 14.82 3.75 5.12

o Swin-T DETR OvSGTR 13.53 16.36 14.37 17.44 9.20 11.19
OvSGTR+RAHP 13.83 16.52 12.45 15.38 13.31 16.46

Table 3: Experimental results of OVD+R SGG on VG test set. S is the SGG setting; T denotes the SGG model type, o means
one-stage model, t is the two-stage model; B is the backbone model; D is the object detector; M represents the model.

# EP RP DS Total (Relation) Base (Relation) Novel (Realtion)
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

1 21.66/25.89 8.49/10.84 21.85/26.06 9.11/12.42 6.15/9.88 4.73/8.13
2

√
23.78/28.88 9.62/13.65 23.97/29.06 10.71/14.65 8.62/13.05 7.09/11.10

3
√

23.81/28.04 9.01/11.99 23.49/28.91 10.10/13.08 2.38/5.44 1.33/3.77
4

√ √
23.71/27.98 9.43/12.51 23.95/28.24 10.55/14.38 6.20/9.10 6.94/9.59

5
√ √

22.20/26.07 9.33/13.11 24.13/28.85 10.80/15.08 4.25/6.44 3.88/5.25
6

√ √ √
24.25/29.17 10.09/13.85 24.43/29.35 11.46/15.39 9.25/13.44 8.88/11.35

Table 4: Ablation study on model components of VG val set. EP: Entity-aware Prompt; RP: Region-aware Prompt; DS: Dynamic
Selection. The first row represents the baseline with a fixed predicate text prompt.

object and relationship categories are excluded during the
training phase. Additionally, we achieve fully open vocab-
ulary capability on VS3 by replacing the original closed-
set predicate classifier with RAHP. We the performance of
OvD+R SGG, covering results in three aspects: “Total” (i.e.,
all object and relationship categories), “Novel (Object)” (i.e.,
considering only novel object categories), and “Novel (Predi-
cate)” (i.e., considering only novel predicate categories).”

Results Table 3 shows that the inclusion of RAHP signifi-
cantly improved the performance of novel relation, whether
in VS3 or OvSGTR. RAHP expands the text representation
space by dynamically selecting region-aware text prompts.
This enhances the model’s generalization ability, making it
more effective in handling new relationship concepts. Com-
pared the OvSGTR in line 3, RAHP increases R@100 by
5.27. We observe a performance drop on novel objects, likely
due to the differing distillation methods of the two models:
OvSGTR uses relation feature distillation from a pre-trained
model, while RAHP employs visual feature distillation from
VLM. These differences may lead to conflicts between the
approaches.

5.4 Ablation Study
We conduct an ablation study to assess the impact of each
part on the method’s effectiveness and the validity of SGG
training. We divide RAHP into three main components: the
entity-aware prompt, the region-aware prompt, and the dy-
namic selection mechanism. We analyze their roles individu-
ally based on PE-NET under the OVR-SGG SGDet setting.
The results are summarized in Table 4.

Replacing the fixed predicate text prompt with the entity-
aware prompt results in a 3% performance improvement for
both base and novel predicates, highlighting the effectiveness
of incorporating entity information in enhancing text repre-
sentation of relations. This underscores the importance of

relation triplet information in relationship detection. Intro-
ducing the region-aware prompt further enhances text repre-
sentation, improving alignment between visual and textual
features. However, without a dynamic selection mechanism to
filter region-aware prompts, performance on novel predicates
declines due to noise interference from irrelevant prompts.
Base predicates, with inherently higher prediction scores,
are more robust against this noise. Implementing an image-
guided filtering strategy effectively removes noise, improving
prediction accuracy for novel predicates.

6 Conclusion

In this paper, we introduce the Relation-Aware Hierarchi-
cal Prompting framework (RAHP), designed to address the
challenges of OV-SGG by enhancing text representations.
By integrating entity-aware and region-aware relation text
prompts, RAHP enhances text representation and enables
more accurate and flexible image-text matching. Our dynamic
selection mechanism further refines this process by adapt-
ing prompts based on visual information, reducing noise and
improving the robustness of relation predictions. Through
extensive experiments on the Visual Genome and Open Im-
ages v6 datasets, our method demonstrates state-of-the-art
performance, and the demonstrated performance improve-
ments—highlight the potential of RAHP to significantly ad-
vance the field of OV-SGG.

Discussion of Limitations: (1) Effectiveness of Entity
Clustering. Clustering algorithms will struggle to maintain
fine distinctions between diverse data categories, which can
degrade the quality of text representations. (2) Diversity of
Generated Text Prompts. Limited diversity in LLM-generated
region descriptions can hinder model generalization for novel
relationships.
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A Overview of Material
In this supplementary document, we provide additional de-
tails and experimental results to enhance understanding and
insights into our proposed RAHP. This supplementary docu-
ment is organized as follows:

• A detailed description of the entity clustering method in
Sec. B is provided.

• Examples generated by the region-aware prompt mining
in Sec. C are presented.

• Detailed descriptions of the Visual Genome and Open Im-
age V6 datasets used in our study are provided in Sec. D.

• Additional experimental results are presented in Sec. E.

B Entity Clustering
B.1 Entity Clustering Method
In RAHP, we employ entity clustering to reduce the number
of relationship triplets, thereby preventing the inefficiency in
text prompt usage caused by the proliferation of triplets. To
define superclasses, we leverage the lexical structure and part-
of-speech tagging provided by WordNet. Specifically, we first
cluster entities using WordNet’s part-of-speech tags, group-
ing semantically related terms together. Next, we encode each
cluster using the text encoder of a Vision-Language Model
(VLM) and apply the K-means algorithm to the encoded em-
beddings, setting the number of clusters to M, resulting in M
distinct categories.

To generate names for each super entity and minimize
ambiguity, we utilize the extensive knowledge of a Large
Language Model (LLM) to select the most frequent or se-
mantically relevant superclasses. This approach enhances
the stability and representativeness of the superclasses. We
input all entity categories within each cluster into the LLM
sequentially, prompting it to generate appropriate super en-
tity names. To preserve the key characteristics of the entities,
we instruct the LLM to analyze essential attributes before
generating the super entity name. The prompt for generating
the superclasses is shown is as follows:

Task Description: You will be provided with a set of predi-
cates related to specific actions, states, or relationships. Your
task is to generate an appropriate superclass category name
that effectively encapsulates the common characteristics of
these predicates.

Input: You will receive the following set of predicates.

Output: Please provide a concise and specific superclass cat-
egory name that encompasses all the given predicates. The
superclass name should be between one to three words and
should use general and easily understandable vocabulary.

B.2 Super Entity Categories
The VG super entities generated by this method are as fol-
lows:

VG super entities = [''male'', ''female'', ''children
'', ''pets'', ''wild animal'', ''ground transport'',
''water transport'', ''air transport'', ''sports

equipment'', ''seating furniture'', ''decorative item
'', ''table'', ''upper body clothing'', ''lower body
clothing'', ''footwear'', ''accessory'', ''fruit'',
''vegetable'', ''prepared food'', ''beverage'', ''
utensils'', ''container'', ''textile'', ''landscape
'', ''urban feature'', ''plant'', ''structure'', ''
household item'', ''head part'', ''limb and appendage
'']

The resulting OIV6 super entities are as follows:
OIV6 super entities = [''male'', ''female'', ''

children'', ''head feature'', ''limb feature'',
''torso feature'', ''accessorie'', ''mammal'', ''
bird'', ''reptile'', ''insect'', ''marine animal'',
''bike'', ''ground vehicle'', ''watercraft'', ''
aircraft'', ''vehicle part item'', ''ball-related
sport item'', ''water sport item'', ''winter sport
item'', ''seating furniture'', ''table furniture'',
''storage furniture'', ''bedding'', ''upper body
clothing'', ''lower body clothing'', ''footwear'', ''
fruit'', ''vegetable'', ''prepared food'', ''beverage
'', ''appliance'', ''utensil'', ''decorative item'',
''textile'', ''hand tool'', ''power tool'', ''kitchen
tool'', ''personal electronic'', ''home electronic
'', ''office electronic'', ''land vehicle'', ''water
vehicle'', ''air vehicle'', ''string instrument'',
''wind instrument'', ''percussion instrument'', ''

firearm'', ''container'', ''toy'', ''stationery'', ''
landscape'', ''urban feature'']

C Region-aware Prompts Generation
C.1 Region-aware Prompts Statistics
This section gives an example of generating a region descrip-
tion. We use LLM extract key parts from both the subject
and object, combining these parts to create detailed region
descriptions. This approach allows the LLM to pinpoint the
exact regions where subject-object interactions occur, leading
to more precise visual relation descriptions for each relation-
ship triplet. Using this prompt, we generate region descrip-
tions for relationship triplets, achieving an average of 6.76
prompts per triplet with 20.32 unique objects and 7.58 unique
relations, significantly outperforming baselines with only 2
objects and 1 relation. Empirically, our approach improves
performance across 97 object classes in VG, highlighting
its generalizability beyond specific categories. Here is a re-
gion description for the relationship triplet <vegetable, in,
container>.

C.2 Region-aware Prompts Generation Examples
The complete region descriptions prompt is as follows:

Describe [subject] [predicate] [object] which parts of subject
and object function in this relationship. Please list these parts,
and then analyze and describe the visual relationship between
these parts. The generated description should be concise and
clear. Here are two examples for you to learn:

Example A: “[human] [holding] [wild animal]”:



Subject Part : [hand, arm, legs, ...]
Object Part : [animal limbs, animal body, ...]
Region Rescriptions :
[“human hand(s) securely gripping the animal”, “human

arm(s) embracing or supporting the animal”, “animal posi-
tioned close to or physically touching the human’s torso”,
“animal appears stable and not struggling”, “direct gaze or
interaction between the human and the animal suggesting con-
trol or care”, “human fingers intertwined or wrapped around
the animal’s body or limbs”, “animal’s posture conveys be-
ing held, often with limbs tucked or supported”, “proximity
of the human face to the animal, especially when holding
smaller animals”, “human holding the animal with hands”,
“human’s hands or arms in contact with the animal”, “animal
is held in the human’s arms”]

Example B: “[human] [sitting on] [seating furniture]”:
Subject Part : [buttocks, thighs, legs, back, arms]
Object Part : [seat, backrest, armrests]
Region Rescriptions :
[“Human’s buttocks are making contact with the seat of the

furniture.”, “Human’s thighs rest on the seat, with legs posi-
tioned either bent or extended.”, “Human’s back is supported
by the backrest of the furniture.”, “Human’s arms may be rest-
ing on or near the armrests of the furniture, if present.”, “The
furniture’s seat aligns with the human’s buttocks and thighs,
indicating proper seating support.”, “The human’s posture
is influenced by the backrest, which can be either upright or
reclining.”, “The armrests, if present, support the human’s
arms, enhancing comfort and stability.”, “The arrangement
of the human’s legs and feet suggests their interaction with
the seat and alignment with the furniture.”]

“[vegetable] [in] [container]”:
Subject Part : [vegetable, leaves, stems, roots]
Object Part : [container, soil, water]
Region Rescriptions :
[”The vegetable is contained within the boundaries of the

container, with its roots potentially reaching into the soil or
water for nutrients.” ”The leaves and stems of the vegetable
are positioned within the confines of the container, adapting
to the available space for growth.” ”The container provides a
stable environment for the vegetable, supporting its growth
and development,” ”The vegetable’s roots may be intertwined
or spread out within the container, seeking out moisture and
nutrients.” ”The visual relationship between the vegetable
and the container showcases a symbiotic connection, where
the container nurtures and protects the vegetable.”] this re-
lationship, the subject part (vegetable) is dependent on the
object part (container) for its growth and sustenance. The
visual relationship between these parts highlights the interac-
tion and support provided by the container to the vegetable,
creating a harmonious and nurturing environment for the
vegetable to thrive. The container acts as a protective barrier,
while also serving as a source of nutrients and stability for
the vegetable. The roots of the vegetable reaching into the
soil or water within the container further emphasize the inter-
connectedness and reliance of the vegetable on its container
for survival.”]

D Datasets and Relation Split
We evaluate our method on the Visual Genome (VG) and
Open Image v6 (OIV6) datasets. This section details each
dataset and our approach to dividing base and novel relations
during experiments.

Visual Genome: VG includes 150 entity categories and
50 predicate categories, manually annotated across 108,777
images. We use 70% of the images for training, 5,000 for
validation, and the remainder for testing.

PredCLS Setting: Following Epic’s method, we cate-
gorize 70% of the predicates as base predicates and the
remaining 30% as novel predicates. The base predicates are:
[''above'', ''against'', ''at'', ''attached to'', ''
behind'', ''belonging to'', ''between'', ''carrying
'', ''covered in'', ''covering'', ''for'', ''from'',
''hanging from'', ''has'', ''holding'', ''in'', ''in
front of'', ''looking at'', ''made of'', ''near'', ''
of'', ''on'', ''over'', ''parked on'', ''playing'',
''riding'', ''sitting on'', ''standing on'', ''to'',
''under'', ''walking on'', ''watching'', ''wearing'',
''wears'', ''with'']

The novel predicates are: [''across'', ''along'', ''
and'', ''eating'', ''flying in'', ''growing on'', ''
laying on'', ''lying on'', ''mounted on'', ''on back
of'', ''painted on'', ''part of'', ''says'', ''using
'', ''walking in'']

SGDet Setting: We adopt OvSGTR’s division of
predicates, the divided base predicates are: ["between",
"to", "made of", "looking at", "along", "laying on
", "using", "carrying", "against", "mounted on", "
sitting on", "flying in", "covering", "from", "over
", "near", "hanging from", "across", "at", "above
", "watching", "covered in", "wearing", "holding",
"and", "standing on", "lying on", "growing on", "
under", "on back of", "with", "has", "in front of",
"behind", "parked on"] and the novel predicates are:
["belonging to", "part of", "riding", "walking in", "
in", "of", "painted on", "playing", "for", "walking
on", "says", "attached to", "eating", "on", "wears"]

Open Image v6: OIV6 contains 301 entity categories and
31 predicate categories. We use 126,368 images for training,
1,813 for validation, and 5,322 for testing. Following PGSG’s
method, we split all predicates to base and novel predicates
two parts.

Base predicates: ['at', 'holds', 'wears', 'holding
hands', 'on', 'highfive', 'contain', 'handshake', '
talk on phone']

Novel predicates: ['surf', 'hang', 'drink', 'ride',
'dance', 'skateboard', 'catch', 'inside of', 'eat',
'cut', 'kiss', 'interacts with', 'under', 'hug', '
throw', 'hits', 'snowboard', 'kick', 'ski', 'plays',
'read']

E More Experimental Results
E.1 Close-vocabulary SGG on VG
In Tab. 5, we present the close-vocabulary SGDet perfor-
mance on VG. We compare the performance of five models
mentioned in the experimental section: PGSG, PE-NET, VS3,



T B D M R@50/100 mR@50/100

t
R-101 Faster

R-CNN
PE-NET 30.70/35.20 12.40/14.50
PE-NET+RAHP 31.52/36.46 12.75/15.21

Swin-T - VS3 35.80/41.30 -
VS3+RAHP 34.25/40.40 7.21/10.45

o
ViT DETR* PGSG 16.70/21.20 8.90/11.50

R-101 DETR SGTR† 25.80/29.60 12.60/17.00
SGTR†+RAHP 25.95/29.60 12.49/17.04

Table 5: The close-vocabulary SGDet performance on VG,
DETR* denotes models with structural modifications. t
means the two-stage model, o means the one-stage model.

Figure 4: Impact of Hyper-Parameter α on RAHP Perfor-
mance in the VG validation set.

SGTR†. The results indicate that substituting the fixed classi-
fier with RAHP’s open-vocabulary classifier enhances both re-
call and mean recall in PE-NET and SGTR†. For VS3, the per-
formance remains comparable. This demonstrates RAHP’s
robustness in the both close-vocabulary and open-vocabulary
SGG task. Moreover, as an open-vocabulary relation classi-
fier, RAHP can be seamlessly extended to open-vocabulary
scenarios by expanding its vocabulary, even after training on
closed-vocabulary tasks.

E.2 More Experimental Results of SGCLS
In addition to the PredCLS and SGDet protocols, we con-
duct OVR-SGG experiments using SGTR+ as the backbone
model under the SGCLS protocol. The results are summa-
rized in the Table 6. Compared to SGTR+, RAHP enhances
the model’s open-vocabulary capabilities, effectively recog-
nizing novel predicates. Additionally, RAHP offers a rich
set of prompts, enabling better differentiation among various
predicates and improving the model’s prediction accuracy for
novel predicates.

E.3 Impact of Hyper-parameter α

We conduct experiments on the VG validation set to evalu-
ate the impact of different parameters α, which controls the

Figure 5: Impact of Hyper-Parameter k on RAHP Perfor-
mance in the VG validation set.

weight of the region-aware prompt in predicate score aggre-
gation. The SGG model used in this experiment is PE-NET.

As shown in Fig. 4, the results indicate that the model
performs best when α = 0.25. In contrast, both α = 0 (no
region-aware prompt) and α = 1 (no entity-aware prompt)
lead to a decline in performance for both base and novel
predicates.

E.4 Impact of Hyper-parameter k

Table. 5 illustrates the impact of varying the hyperparameter
k on model performance, where k represents the number
of region-aware prompts selected in the dynamic selection
mechanism. Similar to sec. E.3 setting, we show the R@100
results on the VG validation set. The model achieves optimal
performance at k = 3. Consistent with our ablation study, se-
lecting all region-aware prompts introduces noise, degrading
performance for novel predicates. Conversely, limiting the
selection to only the highest-scoring (Top 1) prompts reduces
the diversity of text representations, thereby impairing SGG
performance.

E.5 Impact of Distillation loss weight λ3

We discuss the impact of the distillation loss weight λ3, on the
model’s performance, particularly its effect on the alignment
between the SGG model’s relation representations and the
VLM’s visual representations. We test four different values
of λ3 = (1, 5, 20, 50) to determine the optimal setting.

Table 6 presents the results for different λ3 values. The
findings indicate that the model performs best with λ3 =
20, where the distillation method successfully balances the
knowledge learned from SGG data and the knowledge trans-
ferred from VLM. This balance allows the model to main-
tain high performance across both base and novel predicates.
Without distillation, the model struggles, particularly with
novel categories, highlighting the importance of this strat-
egy in retaining essential knowledge while generalizing to
novel relationships. The results at λ3 = 50 demonstrate that
while the model can be tuned to improve the recognition of



Table 6: Experimental results of OVR-SGG in the VG test set and SGCls protocol, p indicates the use of fixed-format text
prompts.

S M Total (Relation) Base (Relation) Novel (Relation)
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

SGCLS
SGTR† 21.42/26.60 9.13/11.58 32.18/36.11 13.12/16.88 0.00/0.00 0.00/0.00

SGTR†+p 25.98/29.31 11.28/15.39 32.51/36.55 13.24/17.01 11.03/18.52 6.70/11.61
SGTR†+RAHP 26.65/30.83 12.98/16.81 32.63/36.83 13.86/17.14 14.37/21.72 9.91/15.04

Figure 6: Impact of Distillation Loss Weight λ3 on RAHP
Performance in the VG validation set.

novel relationships, there is a threshold beyond which further
increases in λ3 may begin to degrade the model’s overall
effectiveness by disproportionately affecting base predicate
performance.

E.6 Impact of the Number of Super Entities
We explore the impact of varying the number of super entities.
Specifically, in the VG dataset, we group entities into super
entities of 10, 20, and 30 categories, reflecting different levels
of granularity. Fewer super entities indicate more aggrega-
tion, leading to less retention of the original entities’ features.
For example, classifying ”bike” under ”vehicle” may result
in the loss of information specific to ”bike” in region de-
scriptions. Thus, the choice of the number of super entities
balances between information completeness and computa-
tional complexity. Additionally, we conduct experiments on
triplets formed by all entities (resulting in a total of 1,125,000
relation triplets, shown as ”all” in the Fig. 7) to compare the
performance when complete entity information is provided.

The Fig. 7 shows that the number of super entities has a sig-
nificant impact on model performance. When the number of
super entities is limited to 10, the categories become overly
broad, leading to a substantial loss of unique information
when entities are converted into super entities. This makes
it difficult to align the text representations with the visual
representations. Increasing the number to 30 enhances the
granularity of the text representations, improving the match-
ing performance. Interestingly, at this level, the model’s per-

Figure 7: Impact of the super entity’s number on RAHP
performance in the VG validation set.

formance nearly matches that achieved using full triplets.
This finding suggests that representative feature descriptions,
even without highly detailed visual features, can substantially
boost text-visual matching accuracy.

E.7 Impact of the Large Language Models
In RAHP, the region-aware prompts are generated using a
Large Language Model (LLM). To ensure that variations in
different LLMs do not significantly impact RAHP’s perfor-
mance, we conducted a comparative experiment using GPT-
4o-mini. We chose GPT-4o-mini due to its rapid deployment
capabilities through the OpenAI API, which offers advan-
tages for method migration and implementation. The total
cost of generating region-aware prompts for 45,000 relation
triplets using both GPT-3.5-turbo and GPT-4o-mini is [insert
cost here]. As shown in the Table 7, experiments conducted
on the VG dataset in an OVR-SGG setting revealed that both
GPT-3.5-turbo and GPT-4o-mini achieved comparable per-
formance. This comparative study demonstrates that RAHP
exhibits robustness across different LLMs, yielding stable
performance despite variations in the underlying model.

E.8 Comparison with Zero-shot Relation
Detection Method

To clarify the differences between RAHP and RECODE, we
conducted tests on the zero-shot visual relationship detec-
tion task. Consistent with RECODE, we utilized CLIP with
the Vision Transformer (ViT-B/32) as the default backbone



Table 7: Impact of the LLM on RAHP performance in the VG validation set.

S LLM M Total (Relation) Base (Relation) Novel (Relation)
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

PredCLS
- PE-NET 58.79/61.23 19.18/20.97 63.62/67.09 23.18/25.79 0.00/0.00 0.00/0.00

GPT-3.5-turbo PE-NET+RAHP 64.70/69.11 24.50/28.25 65.15/70.54 24.99/30.19 20.79/29.00 15.70/23.73
CPT-4o-mini PE-NET+RAHP 64.73/69.15 24.52/28.25 65.14/70.55 25.01/30.17 20.88/29.06 15.73/23.77

Table 8: Performance comparison of RAHP and RECODE on
Predicate Classification metrics within the zero-shot visual
relationship detection task.

Backbond Method Predicate Classification
R@20/50/100 mR@20/50/100

CLIP RECODE 10.60 / 18.3 / 25.0 10.70 / 18.70 / 27.8
RAHP 11.06 / 18.67 / 25.93 12.48 / 19.65 / 28.79

and employed GPT-3.5-turbo as the LLM. The results on the
VG dataset as shown in the Table 8, RAHP achieves signifi-
cant improvements of 0.6 points in R@20 and 1.7 points in
mR@20. The increase in mR indicates that our regional-level
descriptions provide richer representations, leading to better
performance.

E.9 Qualitative Results
To provide further insights into the effectiveness of our
method, we visualize some scene graphs generated by our
method and the baseline OvSGTR method in Fig 8. The solid
lines in the figure represent base predicates, while the dashed
lines denote novel predicates. Compared to the baseline, our
method effectively identifies novel relationships and gener-
ates richer scene graphs. RAHP enhances the depth of scene
understanding, demonstrating the superiority of our approach
in generating scene graphs for complex visual scenarios.
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Figure 8: Qualitative Results of OvSGTR and RAHP on the SGDet task and VG dataset.


