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Figure 1: DexWild enables dexterous policies to generalize to new objects, scenes, and embodiments. This is
achieved by leveraging large-scale, real-world human embodiment data collected in many scenes and co-trained
with a smaller robot embodiment dataset for grounding.

Abstract: Large-scale, diverse robot datasets have emerged as a promising path
toward enabling dexterous manipulation policies to generalize to novel environ-
ments, but acquiring such datasets presents many challenges. While teleoperation
provides high-fidelity datasets, its high cost limits its scalability. Instead, what
if people could use their own hands, just as they do in everyday life, to collect
data? In DexWild, a diverse team of data collectors uses their hands to collect
hours of interactions across a multitude of environments and objects. To record this
data, we create DexWild-System, a low-cost, mobile, and easy-to-use device. The
DexWild learning framework co-trains on both human and robot demonstrations,
leading to improved performance compared to training on each dataset individually.
This combination results in robust robot policies capable of generalizing to novel
environments, tasks, and embodiments with minimal additional robot-specific
data. Experimental results demonstrate that DexWild significantly improves per-
formance, achieving a 68.5% success rate in unseen environments—nearly four
times higher than policies trained with robot data only—and offering 5.8× better
cross-embodiment generalization. Video results, codebases, and instructions at
https://dexwild.github.io
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1 Introduction

Roboticists have long dreamed of creating robots that can perform tasks with the same dexterity
and adaptability as humans. While there have been many breakthroughs in large language models
(LLMs) [53, 51, 3] and vision language models (VLMs) [24, 48], the key to their success lies in
harnessing vast datasets. Robotics faces a critical hurdle: large-scale, diverse robot datasets needed to
train foundation models do not yet exist.
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Figure 2: Left: DexWild efficiently capture high-fidelity data using an individual’s own hands across various
environments. Right: Robot hands are equipped with cameras aligned with the human cameras. We test
DexWild on two distinct robot hands and robot arms.

In recent years, a key approach to collecting robot datasets has been through teleoperation, which
provides high-precision, high-quality action data that a policy can directly train on. [8, 21, 54].
However, gathering data in diverse environments presents challenges such as physically relocating
the robot to each new location and requiring multiple trained operators.

Another approach is to leverage internet-scale video data, which provide vast and diverse visual
grounding in real-world environments [15, 10]. However, publicly available videos often lack the
fine-grained accuracy needed to capture detailed hand states because vision-based body detection
modules are noisy and unreliable. Additionally, these videos are not inherently structured with
categorized episodes for task-specific learning, further complicating their application in robotics.
[18, 1, 40]. While some data collection efforts exist with more accurate and structured data, [60, 2],
they do not have enough environment diversity.

To overcome these barriers, some have explored collecting accurate in-the-wild human demonstrations
by equipping users with a wearable gripper that directly maps their hand movements to robot
actions [7]. However, this approach is cumbersome, ill-suited for natural, everyday interactions, and
constrains the collected data to a specific embodiment. Other works [55] propose using dexterous
hands and gloves, but they do not scale to in-the-wild environments.

In this paper, we present DexWild, a system that enables effective learning of robust dexterous
manipulation policies through co-training on human and robot demonstrations. Our key contributions
include:

1. Scalable Data Collection System: A novel human-embodiment DexWild-System that
enables untrained operators to quickly collect 9,290 demonstrations across 93 diverse
environments, achieving 4.6× speedup over conventional robot-based methods

2. Efficient Co-training Framework: An approach that optimally combines human and robot
demonstrations, significantly improving policy generalization to achieve 68.5% success rate
in novel environments, nearly four times higher than robot-only policies.

3. Strong Cross Embodiment and Cross Task Performance: Our data collection system com-
bined with our co-training framework achieves of 5.8× improvement in cross-embodiment
transfer over baselines and effective skill transfer across tasks.

2 DexWild

We introduce DexWild-System, a user-friendly, high-fidelity platform for efficiently gathering natural
human hand demonstrations across diverse real-world settings. Compared to traditional teleoperation-
based approaches, DexWild-System enables 4.6× faster data acquisition at scale.
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Building on this system, we propose DexWild, an imitation learning framework that co-trains on large-
scale DexWild-System human demonstrations alongside a small number of robot demonstrations.
This approach combines the diversity and richness of human interactions with the grounding of the
robot embodiment, enabling policies to robustly generalize across new objects, environments, and
embodiments. Figure 1 displays our high level approach.

A scalable data collection system for dexterous robot learning must enable natural, efficient, and high-
fidelity collection across diverse environments. To this end, we design DexWild-System: a portable,
user-friendly system that captures human dexterous behavior with minimal setup and training. We
aim to create an intuitive hardware interface that mirrors how humans naturally interact with the
world.

DexWild-System is designed around three core objectives:

• Portability: Allow rapid, large-scale data collection across diverse environments without
requiring complex calibration procedures.

• High Fidelity: Accurately capture fine-grained hand and environment interactions essential
for training precise dexterous policies.

• Embodiment-Agnostic: Enable seamless retargeting from human demonstrations to a wide
variety of robot hands.

Portability:

DexWild-System is lightweight, compact, and can be set up in minutes, making it suitable for
untrained users in diverse real-world settings. As shown in Figure 2, it consists of three components:
a tracking camera for wrist pose, a battery-powered mini-PC, and a custom pod with a motion-capture
glove and palm-mounted cameras.

Unlike traditional motion capture setups [60, 13, 4, 52] that require calibrated, fixed infrastructure,
DexWild-System is calibration-free and works in any environment. This is made possible by using a
relative state-action representation, allowing free placement of the tracking camera (e.g., egocentric
or exocentric).

High Fidelity:

Despite its portability, DexWild-System captures rich, accurate data. We combine motion-capture
gloves for precise hand tracking with ArUco-based wrist tracking to avoid failures common in
SLAM-based approaches under occlusion or sparse features.

Stereo palm cameras provide high-quality, wide-FOV visual input with minimal motion blur. Their
placement enables policies to rely solely on onboard views, removing dependence on static external
cameras.

Embodiment-Agnostic:

To ensure compatibility with future robots, we align both observation and action spaces between
humans and robots. The palm cameras are positioned to minimize hand visibility and focus on
the environment, with mirrored placements between human and robot hands (Figure 3), enabling
consistent visual representations across embodiments.

For actions, we follow prior work [17, 44] and retarget human fingertip motions to robot hand
kinematics, enabling generalization across hardware platforms.

2.1 Training Data Modalities and Preprocessing

Generalization in dexterous manipulation requires both scale and embodiment grounding. With this
goal, DexWild collects two complementary datasets: a large-scale human demonstration dataset DH

using DexWild-System and a smaller teleoperated robot dataset DR. Human data is easy to collect in
the wild and offers task diversity but lacks embodiment alignment. Robot data provides grounding
in the robot’s observation and action spaces but is limited in scale. We co-train policies using a
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Figure 3: DexWild aligns the visual observations between humans and robots to bridge the embodiment gap.
This incentivizes the model to learn a task-centric rather than embodiment-centric representation.
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Figure 4: Using DexWild-System, humans can effortlessly collect accurate data with their own hands across a
wide range of environments. This data is directly used to train any robot hand to perform dexterous manipulation
in a human-like way in any environment. We validate this approach on five representative tasks.

fixed human-to-robot data ratio (wh, wr) to balance diversity and embodiment grounding for robust
deployment.

At each iteration, we sample transitions xh and xr from DH and DR based on the co-training weights.
Each transition xi includes:

• Observation oi: Two synchronized palm images (Ipinky , Ithumb) and a sequence of relative
end-effector displacements ∆pi,∆pi−step, ...,∆pi−H over horizon H .

• Action ai:i+n−1: A chunk of n actions, where each ai is a 26D vector—9D for relative
end-effector pose (3D position + 6D orientation) and 17D for robot finger joints.

For bimanual tasks, observations and actions are duplicated, and the inter-hand pose is appended to
facilitate coordination.

While our retargeting procedure brings human and robot trajectories into a shared action space, a few
additional steps are necessary to make the human and robot datasets compatible for joint training:

• Action Normalization: Human and robot actions are normalized separately to correct
distribution mismatches.

• Demo Filtering: A heuristic-based pipeline removes low-quality human demos, improving
dataset quality without manual labeling.

For action space alignment, we build on insights from prior work [17, 44], optimizing robot hand
kinematics to match the fingertip positions observed in human demonstrations. This method is general
and can work for any robot hand embodiment.

2.2 Policy Training

Through the careful design of our hardware, observation, and action interfaces, we are able to train
dexterous robot policies using a simple behavior cloning (BC) objective [31, 37, 36]. To effectively
learn from our multimodal, diverse data, our training pipeline leverages large-scale pre-trained visual
encoders and shows strong performance across different policy architectures.

Visual Encoder: Training on DexWild data exposes our policy to significant visual diversity—across
scenes, objects, and lighting—requiring an encoder that generalizes well to such variability. To
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address this, we adopt a pre-trained Vision Transformer (ViT) backbone, which has shown superior
performance over ResNet-based encoders on in-the-wild manipulation tasks [16, 23].

Policy Class: While several imitation learning architectures have been proposed recently [59, 6], we
adopt a diffusion-based policy. Diffusion models are particularly well-suited for dexterous manipula-
tion, as they can capture multi-modal action distributions more effectively than alternatives such as
transformers. This capability becomes increasingly important in DexWild, where demonstrations are
collected from multiple humans with diverse strategies, resulting in inherently multi-modal behaviors.

Concretely, the training procedure is outlined in Algorithm 1.
Algorithm 1 DexWild Imitation Learning Procedure

Require: Human dataset DH , Robot dataset DR, Co-training weights {ωh, ωr}
1: Initialize policy πθ with ViT encoder ϕvit
2: while not converged do
3: Sample a batch of transitions {xh}, {xr} from DH ,DR using weights {ωh, ωr}
4: for each transition xi in the batch do
5: Extract observation oi
6: Encode images: Zi = ϕvit(oi)
7: Extract ground truth action chunk ai:i+n−1 = {ai, . . . , ai+n−1}
8: Sample noise scale t ∼ U(1, T )
9: Add noise ϵt ∼ N (0, σt) to ai:i+n−1

10: Predict noise ϵ̂θ = πθ(Zi, ai:i+n−1 + ϵt, t)
11: Compute diffusion loss Lθ = ∥ϵt − ϵ̂θ∥22
12: end for
13: Update policy parameters θ
14: end while

An important finding in our training framework is that tuning the human-to-robot data weighting
significantly affects real-world performance. We discuss these effects in Section 4.1.

3 Experiments

Our experimental evaluation encompasses extensive real-world deployment across diverse environ-
ments and robots, utilizing both human demonstrations and robot teleoperation data. Below, we
outline our data collection process, experimental setup, and evaluation tasks.

3.1 Scaling up Data Collection

Our hardware system was deployed to 10 untrained users to collect data across a wide range of
real-world environments. The collectors themselves varied in hand sizes and demonstration styles,
enabling us to learn from a wide distribution of environments and interactions.

We constructed two datasets through our collection efforts: DH (human-collected data) and DR

(robot-collected data). The human dataset DH comprises 9,290 demonstrations across five tasks. The
robot dataset DR includes 1,395 demonstrations. Robot data was collected using an xArm and LEAP
hand V2 Advanced. Our training and test objects are detailed in Figure 8 and a detailed breakdown
of task dataset sizes in Appendix 6.3

3.2 Evaluation Tasks

We evaluate our approach on five diverse manipulation tasks, each designed to assess specific aspects
of dexterous manipulation: functional grasping, long-horizon planning, cross-task transfer, bimanual
coordination, and deformable object manipulation. A task visualization is provided in Figure 4.

Full task specifications and scoring criteria for all tasks are provided in Appendix 6.2.

These tasks systematically evaluate DexWilds functional grasping capabilities, generalization across
object types, transferal of skills across tasks, coordination between arms, and adaptability to de-
formable objects. Success requires the policy to adapt to varying object properties, environmental
conditions, and task constraints.
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3.3 Evaluation Environments

For robot experiments, we employed an xArm robot and Franka system, both equipped with either
LEAP hand or LEAP hand V2 Advanced [38, 41]. Unless explicitly mentioned, xArm and LEAP
hand V2 Advanced was used. We evaluate our approach across three scenarios:

1. In-Domain: Environments where robot training data was collected, testing with novel objects

2. In-the-Wild: Environments present in DexWild but absent from robot training data

3. In-the-Wild Extreme: Unseen environments absent from both datasets.

4 Analysis and Results

In our evaluations, we seek to investigate the following key questions:

1. How effectively does DexWild use human data to achieve strong in-the-wild performance?

2. Does DexWild enable policy transfer across tasks and robot embodiments?

3. Does policy performance scale with increasing amounts of DexWild-System data?

4.1 Zero Shot In the Wild Policies w/ DexWild

DexWild enables strong policy generalization in novel scenes. We evaluate policies in envi-
ronments with increasing novelty to assess their generalization. As shown in Figure 5, policies
trained exclusively on robot data perform well in in-domain settings (64.7% success rate) but degrade
significantly in more challenging scenarios—in-the-wild (28.5%) and in-the-wild extreme (22.0%).
This 36-point performance drop suggests that robot-only policies overfit to environment-specific
features and fail to develop robust, transferable representations. In contrast, policies trained only on
human data learn high-level object affordances and approach objects reliably, even in complex scenes.
However, without robot-specific action grounding, they struggle to execute precise manipulation,
resulting in poor performance across all scenarios (3.6% in-domain, 7.3% in-the-wild).

To combine the strengths of both modalities, we adopt a co-training strategy—jointly training on both
robot and human data—a method validated in prior works [8, 49, 21, 20, 32]. This encourages the
policy to learn task-relevant features rather than overfitting to specific embodiments or environments.
We experiment with different robot-to-human data ratios (1:1 to 1:5) per training batch. Our
empirical analysis reveals that a 1:2 ratio yields optimal performance across all scenarios:

1. In Domain: 79.8% vs. 64.7% (robot-only)

2. In-the-wild: 75.1% vs. 28.5% (robot-only)

3. In-the-wild Extreme: 62.7% vs. 22.0% (robot-only)

DexWild extends to complex bimanual coordination tasks. To evaluate whether DexWild general-
izes beyond single-arm tasks, we test it on bimanual tasks that demand precise coordination between
two hands. We compare co-trained policies (1:2 ratio) against robot-only policies in in-the-wild
extreme settings. DexWild policies achieve a strong 68.1% average success rate, compared to just
13% for the robot-only baseline.

4.2 Robust Cross-Task and Cross-Embodiment Generalization

DexWild enables transfer of low-level skills across tasks. Many manipulation tasks share founda-
tional motor skills—such as lifting, orienting, and rotating objects—which opens the door to skill
reuse across related tasks. We evaluate this form of cross-task transfer using the pouring task, which
shares many motion primitives with the spray task. Crucially, we use no robot data for pouring and
instead combine human (DexWild-System) demonstrations of pouring with robot demonstrations
from spraying. This setup enables zero-shot generalization to pouring in in-the-wild extreme
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Figure 5: How does co-training help with scaling up in the wild performance? We evaluate our policy
across three scenarios: (a) In-Domain scenes where robot training data was collected but with novel objects, (b)
In-the-Wild scenes present in DexWild but not in robot data, and (c) In-the-Wild Extreme scenes absent from
both datasets. Displayed ratio is Robot:Human.
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Figure 6: Left: Cross-Task Performance – Evaluating DexWild on the pour task using robot data exclusively
from the spray task. Middle: Cross-Embodiment Performance – Testing DexWild policy on the Original LEAP
hand and a Franka robot arm. Right: Scaling Performance – Demonstrating improved DexWild performance as
dataset size increases. Displayed ratio is Robot:Human.

environments. Using a 1:2 robot-to-human co-training ratio, our policy achieves a 94% success rate,
far exceeding policies trained with only robot (0%) or only human data (11%).

DexWild enables transfer across robot embodiments. Since DexWild data is not tied to any
specific embodiment, it naturally supports cross-platform transfer. This prolongs the value of our
data, as collecting platform-specific data for every new robot is resource-intensive and impractical.
We test two transfer scenarios in in-the-wild extreme scenes:

• Cross-arm: Transferring from an xArm to a Franka Panda arm. We achieve a 37.5% success
rate, compared to 4.5% for the robot-only baseline—an 8.3× improvement.

• Cross-hand: Transferring from the LEAP Hand V2 Advanced to the original LEAP Hand.
We achieve 65.3% success versus 13.3% for the baseline, showing that DexWild generalizes
not only across arms, but across dexterous hands as well.

These results, shown in Figure 6, demonstrate that DexWild is an efficient and general framework for
dexterous policy learning on many robots.

4.3 Scalability of DexWild

Policy performance scales with dataset size. To understand how data scale impacts policy per-
formance in the wild, we randomly sample subsets of the full human dataset at varying sizes and
evaluate the resulting policies. We fix the size of the robot dataset. As shown in Figure 6, there is a
clear positive correlation between dataset size and average task performance—rising from 28.7% at
20% dataset size to 67.8% with the full dataset, marking a 2.36× improvement. Interestingly, the
learning curve is nonlinear, with especially steep gains in the 25–50% range, suggesting a critical
threshold where the policy begins to reliably learn generalizable behaviors.
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Importantly, performance continues to improve all the way to 100% data usage, indicating that the
system has not yet plateaued. This suggests that even more capable policies could be learned with
continued data collection.

DexWild-System enables fast and scalable data collection. Given the observed benefits of scaling,
we evaluate the data collection efficiency of DexWild-System via a comparative user study measuring
demonstrations per hour. As shown in Figure 9, DexWild-System achieves an average collection
rate of 201 demos/hour across five representative tasks—nearly matching the rate of demonstrations
collected using bare hands and 4.6× faster than a traditional robot teleoperation system based on
Gello [41, 56], which achieves just 43 demos/hour.

We identify three key limitations of Gello-based collection that our system overcomes:

1. Lack of haptic feedback: Operators cannot feel objects, making fine manipulation difficult
for certain tasks.

2. Scene reset: Resetting the environment is cumbersome and often requires a second operator
or pauses in data collection.

3. Hardware setup overhead: Robots are heavy and require time-consuming setup at each
new location, whereas DexWild-System is portable and can be set up in minutes.

5 Conclusion and Limitations

We introduce DexWild, a scalable framework for learning dexterous manipulation policies that
generalize to new tasks, environments, and robot embodiments. We present DexWild-System, a
portable, human-centric data collection device that accelerates dataset creation (4.6× faster than
conventional robot teleoperation). We propose a cotraining method that leverages large-scale human
demonstrations with minimal robot data to achieve robust generalization—reaching a 68.5% success
rate in completely unseen environments, nearly four times higher than methods using robot data alone.
DexWild ’s embodiment-agnostic design further enables strong cross-embodiment and cross-task
transfer, reducing the need for robot-specific data.

Despite these strengths, several limitations motivate future research. Our approach still depends on a
small amount of teleoperated robot data to bridge the gap between human and robot actions. Future
work could explore improved retargeting or online adaptation to remove this need. Additionally, since
human demonstrations rarely include errors, trained policies can struggle to recover from failures.
Adding recovery examples or adaptive strategies could improve real-world robustness. Finally, our
method uses only visual and kinematic data, limiting performance in contact-rich tasks. Incorporating
tactile or haptic sensing could improve handling of delicate interactions.

In summary, DexWild is a step toward scalable, generalizable manipulation policies. Our results
highlight the potential of large-scale human interaction data to enable dexterous, versatile robots in
diverse real-world settings.

8



References

[1] Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from
human videos as a versatile representation for robotics. 2023.

[2] Prithviraj Banerjee, Sindi Shkodrani, Pierre Moulon, Shreyas Hampali, Shangchen Han, Fan
Zhang, Linguang Zhang, Jade Fountain, Edward Miller, Selen Basol, et al. Hot3d: Hand and
object tracking in 3d from egocentric multi-view videos. arXiv preprint arXiv:2411.19167,
2024.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay,
Yashraj S Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A benchmark for
capturing hand grasping of objects. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9044–9053, 2021.

[5] Xuxin Cheng, Jialong Li, Shiqi Yang, Ge Yang, and Xiaolong Wang. Open-television: Teleop-
eration with immersive active visual feedback. arXiv preprint arXiv:2407.01512, 2024.

[6] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[7] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without
in-the-wild robots. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2024.

[8] Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhi-
ram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim
Gupta, Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan,
Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait
Singh, Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin,
Archit Sharma, Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-
Limerick, Beomjoon Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles
Xu, Charlotte Le, Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang,
Christine Chan, Christopher Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel
Morton, Danny Driess, Daphne Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh
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6 Appendix

6.1 Related Works

Generalization for Imitation Learning
Learning generalizable policies for robot manipulation has seen rapid progress, driven largely by ad-
vances in visual representation learning and imitation learning from large-scale datasets. On the visual
side, embodied representation learning has benefited from egocentric datasets such as Ego4D [15]
and EPIC-KITCHENS [10], with recent methods [27, 11, 47, 39] leveraging these datasets to train
scalable visual encoders. However, these approaches still require substantial downstream robot
demonstrations to train control policies.

In parallel, robot-only demonstration datasets have grown significantly in scale and diversity [21,
8, 54], fueling research in behavior cloning and enabling generalist policy architectures [49, 8, 22].
While these policies show impressive performance across many tasks, they often struggle to generalize
to unseen object categories, scene layouts, or environmental conditions [25]. This lack of robustness
remains a key limitation of current systems.

Data Generation for Robot Manipulation
Overcoming the robot data bottleneck has become a central challenge in robot learning.

One approach leverages internet videos to extract action information. Several works, such as
VideoDex [40] and HOP [42], utilize large scale human videos to learn an action prior through
retargeting, which they use to bootstrap policy training. Others, such as LAPA [57], use unlabelled
videos to generate latent action representations that can be used for downstream tasks. While these
video-based schemes enjoy vast visual diversity, they typically fall short at capturing the precise,
low-level motor commands needed for real-world manipulation.

Simulation enables rapid generation of action data at scale. However, creating diverse, realistic
environments for many tasks and addressing the sim-to-real gap is challenging. Recent successes in
transferring manipulation policies from simulation [43] have been confined to tabletop settings and
lack the generalization needed for deployment in diverse environments.

Direct teleoperation on physical robots yields the highest fidelity, but scales poorly. Recent works have
shown impressive dexterity and efficient learning in fixed scenarios [59, 56, 41, 19], yet collecting
enough demonstrations to generalize across diverse scenes quickly becomes prohibitively expensive.

Recently, there has been a growing body of work that utilizes purpose-collected high quality human
embodiment data without the tedious teleoperation. We discuss these approaches in the next section.

Human Action Tracking Systems
In order to acquire high-quality data from human motions, accurate hand and wrist tracking is of
paramount importance. To bypass the complexities of hand pose estimation, several works equip users
with handheld robot grippers [7, 12, 46]. While this approach simplifies retargeting, it constrains
users to the specific morphology of the robot gripper, limiting the diversity of captured behavior.
Moreover, many of these systems rely on SLAM-based wrist tracking, which can fail in feature-sparse
environments or when occlusions occur [7, 23]—such as during drawer opening or tool use.

Other approaches aim to estimate both hand and wrist poses directly from visual input [29, 35, 5, 45,
28, 20, 32]. These methods are easy to deploy and require no instrumentation, but their performance
degrades significantly under occlusion—an unavoidable situation in manipulation. Alternative
strategies for wrist tracking, such as IMU-based [9, 50] and outside-in optical systems [30], come
with their own limitations: IMUs are lightweight and portable but prone to drift, while optical systems
are accurate yet require laborious calibration and controlled environments. DexWild leverages
calibration-free Aruco tracking—significantly improving reliability and minimizing setup time as it
requires a single monocular camera.

While vision-based methods often attempt to track both the wrist and fingers simultaneously, many
recent systems decouple the two to improve accuracy. Kinematic exoskeleton gloves can provide

14



high-fidelity joint measurements and even haptic feedback [58], but are bulky and uncomfortable for
long-term use. Instead, DexWild, along with prior works [41, 55], adopts a lightweight glove-based
solution that uses electromagnetic field (EMF) sensing to estimate fingertip positions. This allows for
accurate, real-time hand tracking that is robust to occlusions and readily retargetable to a wide range
of robot hands.

6.2 Detailed Task Description and Scoring Criteria:

We evaluate five dexterous manipulation tasks, each designed to assess different capabilities such as
functional grasping, long-horizon planning, precision, bimanual coordination, and deformable object
manipulation. Each task is scored according to a structured rubric based on discrete completion
milestones.

The task scoring criteria are designed to quantify the performance of different robot tasks based
on specific completion milestones. Each task has a set of defined actions with corresponding point
values. Higher scores are assigned to more complex or functionally successful actions, while partial
completions and failed attempts receive lower scores. This structured scoring system allows for
consistent evaluation and comparison of task performance.

Spray Bottle
This task evaluates functional grasping and affordance understanding. The robot must grasp a spray
bottle and orient it to spray over a target cloth.

– 0.00: Nothing

– 0.15: Tries functional grasp but fails

– 0.25: Grasp bottle

– 0.75: Grasp bottle, orient over cloth

– 0.75: Grasp bottle, use functional grasp

– 1.00: Grasp bottle, use functional grasp, orient over cloth

Toy Cleanup
This task tests long-horizon planning and generalization. The robot must collect scattered toys and
deposit them in a designated bin.

– 0.00: Nothing

– 0.25: Tries for grasp but fails

– 0.50: Grasp object

– 1.00: Grasp object, drop into bin

Pouring
This task assesses precise motion control and transfer learning from the spray bottle task. The robot
must pour liquid from a bottle into a container.

– 0.00: Nothing

– 0.15: Tries functional grasp but fails

– 0.25: Grasp bottle

– 0.75: Grasp bottle, pour into container

– 0.75: Grasp bottle, use functional grasp

– 1.00: Grasp bottle, use functional grasp, pour into container

Bimanual Florist
This task evaluates coordinated control of both hands. The robot must pick up a flower, hand it to the
other arm, and insert it into a vase.

15



Figure 7: DexWild-System features a simple and easy-to-use interface for deployment by untrained data
collectors.

– 0.00: Nothing

– 0.15: Tries grasp but fails

– 0.25: Grasp the bouquet

– 0.75: Grasp the bouquet, handover

– 1.00: Grasp the bouquet, handover, insert into vase

Clothes Folding
This task tests manipulation of deformable objects using both hands. The robot must fold a clothing
item placed on a surface.

– 0.00: Nothing

– 0.25: Tries grasp but fails

– 0.50: Grasp with one hand

– 0.75: Grasp with both hands

– 1.00: Grasp and fold

6.3 Dataset Sizes

Human Demonstrations: 3,000 demonstrations from 30 different environments for each of the Spray
Bottle and Toy Cleanup tasks, 621 trajectories from 6 environments for the Pour task, 1,545 demon-
strations from 15 environments for the Florist task, and 1,124 demonstrations from 12 environments
for the Clothes Folding task.

Robot Demonstrations: The robot dataset DR includes 1,395 demonstrations: 388 for Spray Bottle,
370 for Toy Cleanup, 111 for Pour, 236 for Florist, and 290 for Clothes Folding tasks.
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Test

Figure 8: We collect data using a diverse set of objects across categories. Spray Bottle Task – 25 Train, 11 Test;
Toy Cleanup Task – 64 Train, 9 Test; Pour Task – 35 Train, 5 Test; Florist Task - 6 Train, 2 Test; Clothes Folding
Task - 17 Train, 6 Test.
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Figure 9: DexWild-System offers 4.6× improvement over robot data collection speed and nearly matches the
human bare hands data collection speed.

6.4 Training and Test Objects

Please see Figure 8 for breakdown of train and test objects

6.5 Data Collection Procedure

To deploy DexWild-System with untrained data collectors, we provide a one-page instruction sheet
outlining the task, object setup, and system startup/shutdown. DexWild-System includes three core
components: a wrist-tracking camera, a battery-powered mini-PC for onboard data capture, and a
custom sensor pod with a motion-capture glove and palm-mounted cameras. At a new site, users
simply wear the mocap glove and power on the mini-PC with a provided power bank. For egocentric
tracking, a headstrap holds the tracking camera; for exocentric tracking, we provide a collapsible
tripod. Once booted, users launch our custom desktop app and control recording via a Bluetooth
clicker or foot pedal. The UI (Fig. 7) shows sensor status, SLAM recording, and data capture
indicators, along with buttons to view the tracking camera feed and delete the last episode. Collectors
gather 100 episodes per location. After the day is finished, we upload the data to our remote machine
for processing.

6.6 Data Collection Speed

Please see Figure 9 for comparison of data collection speed of different methods

6.7 Downstream Data Processing

Each episode is stored in its own folder, with subfolders organizing individual actions and observations.
SVO recordings from the Zed Mini camera—used for SLAM and wrist pose tracking—are saved
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separately, with each file covering five episodes. To begin data processing, we use the Zed SDK to
decode these SVO files, reconstruct the camera’s motion, and perform ArUco cube tracking and wrist
pose estimation using both the left image and stereo depth data. We then apply a filtering pipeline to
assess tracking quality; episodes are discarded if the wrist pose cannot be reliably tracked for more
than 75% of the duration. Next, we compute the action distribution and clip outliers outside the 2nd
and 97th percentiles. We smooth the trajectories using interpolation and Gaussian filtering to ensure
fluid motion. Hand motions are then retargeted using inverse kinematics in PyBullet, following the
method in [41]. The entire pipeline is parallelized using Ray for efficiency.

6.8 Behavior Cloning Policy Architecture and Training Hyper-Parameters

Our behavior cloning policy takes as input RGB images and relative state history. We obtain tokens
for the image observation via a ViT and tokens for relative states via linear layers. The weights of
ViT is initialized from the Soup 1M model from [11]. We decide to include relative states as we
found it greatly increases the robustness of the policy, and enables smoother motions. In particular,
for bimanual tasks, we find that including the interhand pose (pose of left hand relative to right hand)
greatly increases success rate in tasks like Florist We implement both Action Chunking Transformer
[59] and Diffusion U-Net [6] as policy classes, which output a sequence of actions. The network
outputs actions which consists of relative end effector actions and absolute hand joint angles.

We list the hyper-paramaters that we used for policy training using behavior-cloning in this Table 5

6.9 Low Level Motion Control

For optimal smoothness of our policies and safety, we employ a Riemannian Motion Policy (RMP)
[34] implemented in Isaac Lab [26], where the RMP dynamically generates joint-space targets given
end effector targets. RMP also has the added benefit of incorporating real-time collision avoidance,
preventing self-collision between the arms and a set table height. Although our policies does not rely
on RMP to prevent collisions, the peace of mind is appreciated.

6.10 Comparing Policy Classes

Does DexWild work with different behavior cloning policy classes? Table 1 compares the
performance of ACT and Diffusion—across both the In-the-Wild and In-the-Wild Extreme settings.
Each policy is evaluated in a robot-only setting and a co-trained (1:2) setting using the DexWild dataset.
Notably, Diffusion policies benefit more from DexWild co-training, achieving the highest scores in all
tasks, including substantial improvements on the Pour task where the policy must generalize across
tasks. These results suggest that DexWild co-training enables stronger generalization, especially
when paired with expressive policy architectures like Diffusion.

6.11 Cross Hand Extended Results

Does DexWild generalize across different robot hands? Table 2 reports LEAP Hand performance
under both In the Wild and In the Wild Extreme conditions. In every case, DexWild co-training
substantially outperforms the robot-only baseline. These results highlight the effectiveness of
DexWild in cross embodiment generalization even when using a completely different robot hand.

6.12 Scaling Extended Results

Does DexWild improve as more DexWild data is added? Table 3 shows steady gains as we
scale from 0% to 100% of the DexWild dataset. Performance increases steadily with more human
demonstrations, with a notable jump between 25% and 50% of the dataset. These results demonstrate
that DexWild enables scalable learning, where even comparably smaller data scales yields substantial
gains, and additional data continues to enhance generalization
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6.13 Cotraining Extended Results

How does DexWild react to different cotraining ratios? Table 4 groups all three raw metrics: (a)
In-Domain, (b) In-the-Wild, and (c) In-the-Wild Extreme. All evaluations were run on xArm + LEAP
Hand V2 Advanced.

Task Policy Class In the Wild In the Wild Extreme
Robot Only 1:2 Robot Only 1:2

Spray ACT 0.000 0.680 0.115 0.395
Diffusion 0.050 0.628 0.120 0.520

Toy Cleanup ACT 0.458 0.583 0.125 0.458
Diffusion 0.521 0.875 0.500 0.625

Pour (Cross Task) ACT 0.025 0.508 0.000 0.350
Diffusion 0.000 0.958 0.000 0.917

Table 1: DexWild Performance on Different Policy Classes

In the Wild In the Wild Extreme
Task Robot Only 1:2 Robot Only 1:2
Spray 0.305 0.805 0.150 0.600
Toy Cleanup 0.500 0.656 0.250 0.542
Pour (Cross Task) 0.050 0.917 0.000 0.817

Table 2: LEAP Hand Performance on In-the-Wild and In-the-Wild Extreme Tasks. Ratio is
Robot:Human

Scale 0% 25% 50% 100%
Spray 0.060 0.260 0.605 0.565
Toy Cleanup 0.514 0.442 0.440 0.792

Average 0.287 0.351 0.523 0.678
Std 0.321 0.129 0.116 0.160

Table 3: Performance Scaling with DexWild Dataset Size
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Task Robot 1:1 1:2 1:5 Human
Spray 0.690 0.630 0.763 0.381 0.030
Toy Cleanup 0.604 0.792 0.833 0.708 0.042

Average 0.647 0.711 0.798 0.545 0.036
Std 0.061 0.114 0.050 0.232 0.008

(a) In Distribution Task Performance

Task Robot 1:1 1:2 1:5 Human
Spray 0.050 0.625 0.628 0.393 0.063
Toy Cleanup 0.521 0.646 0.875 0.625 0.083

Average 0.285 0.635 0.751 0.509 0.073
Std 0.333 0.015 0.175 0.164 0.015

(b) In-the-Wild Task Performance

Task Robot 1:2
Spray 0.120 0.520
Toy Cleanup 0.500 0.625
Bimanual Florist 0.063 0.623
Bimanual Clothes Folding 0.198 0.740

Average 0.220 0.627
Std 0.195 0.090

(c) In-the-Wild Extreme Task Performance

Table 4: Performance Across Cotrain Ratios for Varying Deployment Conditions. Ratio is
Robot:Human
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Hyperparameter Value
Training Configuration

Optimizer AdamW
Base Learning Rate 3e-4
Optimizer Momentum β1, β2 = 0.95, 0.999
Learning Rate Schedule Cosine (diffusers)
Warmup Steps 2000
Total Steps 70000
Batch Size 256
Environment Frequency 30 Hz

Observation Settings

Proprioception Horizon 1 (Spray, Toy, Pour)
3 (Florist, Clothes)

Image Horizon 1 (all tasks)
Observation Resolution 224×224

Observation Dim 9 (Spray, Toy, Pour)
27 (Florist, Clothes)

Action Dimension 26 (Spray, Toy, Pour)
52 (Florist, Clothes)

Action Chunk Size 48

Action Chunking Transformer
# Encoder Layers 4
# Decoder Layers 6
# MHSA Heads 8
Feed-Forward Dim 3200
Hidden Dim (Token Dim) 768
Dropout 0.1
Feature Norm LayerNorm

Diffusion U-Net Policy
Train Diffusion Steps 100
Eval Diffusion Steps 16
Down Channels [256, 512, 1024]
Kernel Size 3
Groups (GN) 8
Dropout 0.1
Feature Norm None

Table 5: Full training and architecture settings used across our experiments.
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