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Abstract

In this paper, we revisit cross-lingual topic001
identification (ID) in zero-shot settings by tak-002
ing a deeper dive into current datasets, base-003
line systems and the languages covered. We004
identify shortcomings in the existing MLDoc005
evaluation protocol and propose a robust al-006
ternative scheme, while also extending the007
cross-lingual experimental setup to 17 lan-008
guages. We benchmark several systems that009
are based on existing multilingual models such010
as LASER, XLM-R, mUSE, and LaBSE on011
the new evaluation protocol covering 17 lan-012
guages. Further, we present a novel Bayesian013
multilingual document model (MBay) for014
learning language-independent document em-015
beddings. The model learns to represent the016
document embeddings in the form of Gaussian017
distributions, thereby encoding the uncertainty018
in its covariance. We propagate the learned un-019
certainties through linear classifiers that bene-020
fit in zero-shot cross-lingual topic ID. Our ex-021
periments on 17 languages show that the pro-022
posed multilingual Bayesian document model023
performs competitively as compared to other024
systems based on LASER, XLM-R and mUSE025
on 8 high resource languages, and outperforms026
these systems on 9 mid-resource languages. Fi-027
nally, we consolidate the observations from all028
our experiments, and discuss points that can029
potentially benefit the future research works in030
the area of cross-lingual topic ID.031

1 Introduction032

The zero-shot cross-lingual topic identification (ID)033

or document classification aims to classify doc-034

uments from target languages using a classifier035

trained on examples from one or more source lan-036

guage(s). This is mainly useful in scenarios where037

the data from target language(s) have little or no038

labels to train an in-language classifier. The cross-039

lingual transfer experiments can also help to anal-040

yse and test the capabilities of an underlying multi-041

lingual language model.042

The common approach is to first train a multi- 043

lingual language model that aims to capture the 044

semantic relations of words in context, indepen- 045

dent of the language (Ammar et al., 2016; Artetxe 046

and Schwenk, 2019; Huang et al., 2019; Conneau 047

et al., 2020; Feng et al., 2020). Such a multilin- 048

gual model can then later be either (i) fine-tuned 049

for classification (Siddhant et al., 2020) task using 050

labelled examples from source language(s), or (ii) 051

used to extract low-dimensional embeddings (rep- 052

resentations) for documents from both source and 053

target languages (Reimers and Gurevych, 2020); 054

the embeddings from source language(s) together 055

with annotated labels are then used for training 056

a light-weight independent classifier for cross- 057

lingual topic ID, which is then used to classify 058

embeddings from target languages. 059

The former approach relying on fine-tuning is 060

not efficient as it would require to keep a copy of 061

the entire multilingual model for every source lan- 062

guage, and every down-stream task. The latter ap- 063

proach of extracting language-agnostic document 064

(sentence) embeddings is more practical as it would 065

require only one model, and several light-weight 066

downstream classifiers. This paper entirely focuses 067

on models, experiments and analysis related to the 068

latter scheme relying on language agnostic docu- 069

ment embeddings, followed by a light-weight clas- 070

sifier. 071

1.1 Training multilingual models 072

Majority, if not all, of the recent works in multilin- 073

gual representations for cross-lingual transfers have 074

relied on training LSTMs (Schwenk and Douze, 075

2017; Artetxe and Schwenk, 2019) or transform- 076

ers (Wu and Dredze, 2019; Conneau et al., 2020) 077

with huge amounts of data (e.g. 227M - 25B sen- 078

tences) (Wu and Dredze, 2019; Siddhant et al., 079

2020). The pre-training objectives vary depend- 080

ing on the kind of resources used for training such 081

models. In brief, some require parallel translations 082

1



of sentences across multiple languages, while oth-083

ers rely on bilingual dictionaries (Ammar et al.,084

2016) or just monolingual texts covering several085

languages. Training these large multilingual lan-086

guage models requires enormous computational087

resources (Strubell et al., 2019), there is a need for088

alternatives that are computationally efficient. A089

majority of the large multilingual models share a090

vocabulary of sub-word units across several (100)091

seed languages. One needs to take care so that all092

the languages are equally represented in the shared093

(sub-)word vocabulary to avoid any language bias094

from the high resource languages. Additionally,095

such a design choice makes it challenging to ex-096

tend these models to newer languages having a097

different orthography. A fair comparison among098

these language models is nearly impossible as no099

two models are trained on exactly the same data.100

The comparisons are only on the downstream tasks101

while ignoring the affect of the quality and quan-102

tity of pre-training data. When training on large103

amounts of web-data it is possible that some of104

the down-stream data could have been seen during105

pre-training. Extensive survey on the aforemen-106

tioned models/approaches can be found in (Ruder107

et al., 2019; Doddapaneni et al., 2021). In contrast

x
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Figure 1: Graphical representation of the proposed
multilingual Bayesian model, where L represents num-
ber of languages and D denotes number of L-way
parallel documents (translations). {m(`),T(`)} ∀`
are document-independent, language-specific model
parameters, whereas wd is document-specific but
language-independent random variable (embedding),
and x

(`)
d is the observed vector of word counts repre-

senting document d from language `.108
to the neural models, there is also work on classi-109

cal multilingual topic models (Mimno et al., 2009;110

Yang et al., 2019), which are suitable for topic ID111

and document clustering. While these models are112

budget-friendly in terms of computation, the down-113

stream evaluation datasets and tasks (Schwenk and114

Li, 2018; Kakwani et al., 2020; Hu et al., 2020) do115

not overlap between neural and classical models,116

hence it is difficult to ascertain the advantages of 117

the latter over former. 118

1.2 Contributions of the paper 119

• We propose a simple, yet efficient multilin- 120

gual Bayesian (MBay) model for learning 121

language-agnostic document (sentence) em- 122

beddings, that enables to train robust down- 123

stream linear classifiers for zero-shot cross- 124

lingual topic ID. 125

• The proposed model can be easily extended 126

to newer languages without requiring to re- 127

train from scratch (continual learning), while 128

constraining only on a subset of existing pa- 129

rameters, thus making it computation-budget- 130

friendly. 131

• We re-visit the zero-shot cross-lingual docu- 132

ment classification task, and make the follow- 133

ing contributions: (i) we identify the short- 134

comings in evaluation, and propose a robust 135

alternative, (ii) we setup and evaluate zero- 136

shot transfer systems on a new set of 9 lan- 137

guages from IndicNLP suite (Kakwani et al., 138

2020), in addition to the existing 8 from ML- 139

Doc (Schwenk and Li, 2018), (iii) we bench- 140

mark several pre-trained models, and also the 141

proposed model on the revised datasets cov- 142

ering 17 languages (128 transfer directions1, 143

and (iv) we provide an in depth analysis of the 144

downstream classification systems, that can 145

best make use of the language-agnostic doc- 146

ument (sentence) embeddings from various 147

models. 148

2 MBay: Multilingual Bayesian Model 149

Like majority of the probabilistic topic and docu- 150

ment models (Blei, 2012; Miao et al., 2016), the 151

presented model also relies on bag-of-words rep- 152

resentation of documents. Let V (`) represent 153

the vocabulary size in language ` ∈ M, where 154

L = |M| denotes the number of languages. Let 155

{m(`),T(`)} ∀ ` represent the language-specific 156

model parameters, where T(`) is a low-rank ma- 157

trix of size V (`) ×K (K � V (`)) that defines the 158

subspace of document specific unigram distribu- 159

tions, and m(`) ∈ RV (`)
represents bias or offset. 160

The multilingual model assumes that the L-way 161

19 languages from IndicNLP news articles dataset resulting
in 9 × 8 = 72, and 8 languages from MLDoc resulting in
8× 7 = 56 transfer directions (72 + 56 = 128).
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parallel data (translations of bag-of-words) are gen-162

erated according to the following process:163

First, a K-dimensional language-independent,164

document-specific embedding is sampled from an165

isotropic Gaussian distribution with precision λ166

wd ∼ N (w | 0, (λI)−1
). (1)167

wd can be interpreted as vector representing higher-168

level semantic concepts (such as topic) of a docu-169

ment, independent of any language. For each lan-170

guage ` ∈M, a vector of word counts x(`)d is gen-171

erated by the following two steps: The document-172

specific unigram distribution φ(`)
d is computed us-173

ing the language-specific parameters174

φ
(`)
d = softmax(m(`) + T(`)wd), (2)175

and the vector of word counts x
(`)
d is sampled176

x
(`)
d ∼ Multinomial(φ

(`)
d , N

(`)
d ), where N

(`)
d177

are the number of word tokens in document178

d. x(1) . . .x(L) represent L-way parallel bag-of-179

words statistics.180

The above steps describe the generative pro-181

cess of the proposed multilingual document model.182

However, in reality, we do not generate any data,183

instead we invert the generative process: given184

the training (observed) data x
(`)
d ∀ ` ∈ M, ∀ d =185

1 . . . D, we estimate the language-specific model186

parameters {m(`),T(`)} and also the posterior dis-187

tributions of language-independent document em-188

beddings p(wd|x
(1)
d . . .x

(L)
d ) ∀ d. Moreover, given189

an unseen document x(`)u from any of the L lan-190

guages, we infer the corresponding posterior dis-191

tribution of the document embedding p(wu | x(`)u ).192

Note that such a posterior distribution also carries193

the uncertainty about the estimate.194

Although we describe the model assuming L-195

way parallel data, in practice the model can be196

trained with parallel text (translations) between lan-197

guage pairs (bi-texts) covering all the L languages.198

2.1 Variational Bayes training199

The proposed model is trained using the varia-200

tional Bayes framework, i.e., we approximate the201

intractable true posterior with the variational dis-202

tribution q(wd) = N (wd | νd, diag(γd)
−1) and203

optimize the evidence lower-bound (Bishop, 2006).204

Further, we use Monte Carlo samples via the re-205

parametrization trick (Kingma and Welling, 2014;206

Rezende et al., 2014) to approximate the expec-207

tation over log-sum-exp (log normalizer) term208

which appears in the lower-bound (Kesiraju et al., 209

2020). The resulting lower-bound for a single set 210

of L-way parallel documents is 211

212

L(qd) ≈
∑
∀`∈M

V (`)∑
i=1

x
(`)
di

[
(m

(`)
i + t

(`)
i νd) 213

− 1

R

R∑
r=1

log
( V∑
j=1

exp{m(`)
j + t

(`)
j g(εdr)}

)]
214

−DKL(qd || p), (3) 215

where DKL(qd || p) is the Kullback-Leibler di- 216

vergence from variational distribution q(w) to 217

the prior (1) and, g(εdr) = ν + γ � ε̃dr, with 218

ε̃dr ∼ N (ε | 0, I). R are the number of Monte 219

Carlo samples used for empirically approximating 220

the expectation over log-sum-exp. 221

The complete lower-bound is just the summation 222

over all the documents. Additionally, we use `2 223

regularization term with weight ω for language- 224

specific model parameters {T(`)} ∀ `. Thus, the 225

final objective is 226

L =
D∑
d=1

L(qd) − ω
∑
∀`∈M

V (`)∑
i=1

|| t(`)i ||2 . (4) 227

In practice, we follow batch-wise stochastic op- 228

timization of (4) using ADAM (Kingma and Ba, 229

2015). For a batch of documents d ∈ B covering 230

a subset of languagesMB ⊆ M, we update the 231

all model parameters {m(`),T(`)} ∀ ` ∈ MB and 232

the variational posterior distribution of document 233

embeddings q(wd) ∀ d ∈ B. 234

2.2 Extending to newer languages 235

Since the model uses language-specific parameters 236

and vocabulary, it is possible to extend the model 237

to a new set languages (denoted by M̄) without re- 238

training from scratch. The necessary conditions are 239

that every new language (¯̀) should have parallel 240

text with at least one other language fromM∪M̄ 241

subject to the constraint that there exists at least one 242

parallel pair betweenM and M̄. This can be seen 243

as continual learning, and requires only to learn the 244

parameters corresponding to the newer languages 245

{m ¯(`),T ¯(`)} ∀ ¯̀∈ M̄. It also means that the per- 246

formance on existing seed languages is unaffected 247

with the addition of newer languages. In this pa- 248

per, we show the results from experiments where 249

we start with a seed model covering 6 languages, 250
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which is then extended to 11 newer languages. Sim-251

ilar approaches are also explored for multilingual252

neural machine translation (Bérard, 2021).253

2.3 Inferring embeddings254

Given a bag-of-word statistics from an unseen doc-255

ument from any of the ` ∈ M ∪ M̄ languages,256

we can infer (extract) the corresponding document257

embedding along with its uncertainty. This is done258

by keeping the language-specific model parameters259

{m(`),T(`)} constant, and iteratively optimizing260

the objective in (3) with respect to the parameters261

of the variational distribution. In the resulting vari-262

ational posterior q(w) = N (w | ν, diag(γ)−1),263

the mean ν represents the (most likely) document264

embedding, and variance diag(γ)−1 encodes the265

uncertainty around the mean ν. Since all the docu-266

ments and language-specific model parameters are267

independent (Fig. 1), inferring the embeddings can268

be parallelized and is computationally cheaper.269

3 Classification exploiting uncertainties270

In a typical setting where we have only point esti-271

mates of embeddings, all the embeddings are con-272

sidered equally important by a classifier. This may273

not be true all the time. For example, shorter and274

documents with many rare words can result in poor275

estimates of the embeddings; which can affect pa-276

rameters of the classifier during training, and also277

the performance during prediction. Additionally,278

there might be noise while projecting embeddings279

from multiple languages into the same semantically280

aligned latent space. The proposed model yields281

document embeddings represented by Gaussian282

distributions, with the uncertainty about the embed-283

ding encoded in the covariance. These uncertainties284

are specific to each example and can be seen as het-285

eroscedastic aleatoric uncertainties (Kendall and286

Gal, 2017). We present two linear classifiers that287

can exploit this uncertainty. The first one is the gen-288

erative Gaussian linear classifier with uncertainty289

(GLCU) (Kesiraju et al., 2020). The second one290

is the discriminative multi-class logistic regression291

with uncertainty (MCLRU).292

3.1 Generative classifier293

In generative classifiers, the posterior probability of294

class label (Ck) given a feature vector (embedding)295

w is computed from the joint distribution296

p(Ck | w) =
pθ(w | Ck) p(Ck)∑
j pθ(w | Cj) p(Cj)

(5)297

where, pθ(w | Ck) is the likelihood function 298

parametrized by θ, and p(Ck) is the class prior. In 299

generative classifiers, the likelihood function is as- 300

sumed to have a known parametric form (e.g. Gaus- 301

sian, Multinomial). For Gaussian linear classifier 302

(GLC), the likelihood function is pθ(w | Ck) = 303

N (w | µk,S−1), where w is the input feature 304

(point estimate of the embedding), µk is the mean 305

of class Ck, and S is the precision matrix shared 306

across all the classes. 307

Given that the input features come in the form 308

of Gaussian distributions, i.e., q(w) = N (w | 309

ν, diag(γ)−1), we can integrate out (exploit) the 310

uncertainty in the input while evaluating the like- 311

lihood function. In the case of GLC, where the 312

likelihood function is also Gaussian, the expected 313

likelihood has an analytical form: 314

Eq[pθ(w | Ck)] = N (ν | µk,S−1 + diag(γ)−1).
(6) 315

GLC with likelihood function replaced by (6) is 316

called GLCU. Both are essentially the same clas- 317

sifiers, i.e., they have the same assumptions about 318

the underlying data and hence the same model pa- 319

rameters. The only difference lies in the evaluation 320

of likelihood function. 321

3.2 Discriminative classifier 322

For discriminative classifier such as multi-class 323

logistic regression (LR), the posterior probability 324

of a class (Ck) given an input feature vector w is 325

p(Ck | w) =
exp{hT

kw + bk}∑
j exp{hT

jw + bj}
, (7) 326

where {bk, hk} ∀ k are the parameters of the clas- 327

sifier. Unlike in GLC, we cannot analytically com- 328

pute the expectation over (7) with-respect-to the 329

input embeddings (Gaussian distributions). Instead 330

we approximate the expectation using Monte Carlo 331

samples (Xiao and Wang, 2019): 332

p(Ck | w) ≈ 1

M

M∑
m=1

exp{hT
kεm + bk}∑

j exp{hT
j εm + bj}

, (8) 333

εm ∼ q(w) ∀m. Eq. (8) represents the posterior 334

probability computation for logistic regression with 335

uncertainty (LRU). 336

Theoretically, given the true uncertainties in the 337

training examples, GLCU and LRU can better esti- 338

mate the model parameters of the classifier. Simi- 339

larly, it can also exploit the uncertainties in the test 340
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examples during prediction. However, in our case,341

the uncertainties are estimated using the Bayesian342

multilingual document model as described in Sec-343

tion 2.3. The underlying assumption here is that344

uncertainties extracted using the model are close345

enough to the true uncertainties as expected by the346

classifiers, which is empirically supported through347

our experimental results presented in Section 5.348

4 Experimental setup349

This section presents the details on data for multi-350

lingual training of MBay model and dataset prepa-351

ration for downstream classification (topic ID) task.352

We also discuss the details of various pre-trained353

multilingual models and downstream classifiers354

that are used in our experiments.355

4.1 Data for multilingual training356

The following datasets were used for train-357

ing the proposed MBay model. Europarl(v7)358

(Koehn, 2005), UNPC(v1) (Ziemski et al., 2016),359

MultiUN(v1) (Eisele and Chen, 2010), Global-360

Voices(v2018q4) (Tiedemann, 2012), News-361

Commentary(v16) (Akhbardeh et al., 2021),362

CVIT(PIBv1.3, MKB) (Siripragada et al., 2020),363

Samanantar(indic2indic) (Ramesh et al., 2022),364

Japanese-English Wikipedia, and CCAligned(EN-365

JA) (El-Kishky et al., 2020). The total number of366

sentences used are 17.89M covering 17 languages.367

All the words were lower-cased and punctuation368

was stripped. Further, words that do not occur in at369

least two sentences were removed. We used scikit-370

learn (Pedregosa et al., 2011) for pre-processing.371

More details are given in Appendix A.372

4.2 Dataset preparation for topic ID373

The original MLDoc corpus was pre-374

pared (Schwenk and Li, 2018) in order to375

have a standard training, development (dev) and376

test sets across 8 languages2. The usual setup377

contains 1000 samples each or training and dev,378

and 4000 for test, across 4 classes (topics). The379

aim was to create a class balanced sets (uniform380

class prior), which gives us 250 samples per topic381

in both training and dev, and 1000 samples per382

topic in the test. However, not every language in383

the original Reuters Multilingual Corpus (RCV)384

has enough examples, hence the class prior is not385

uniform (Schwenk and Li, 2018). Moreover, it386

only covers a small subset (6000 samples in total)387

2DE, EN, ES FR, IT, JA, RU, ZH

of the actual RCV corpus, and results from such 388

as smaller subset tend be less certain. To address 389

this, we use the MLDoc data preparation scripts, 390

and create 5 different splits of the data, where each 391

split contains the same aforementioned number of 392

training, dev and test samples. This is analogous to 393

a 5-fold cross-validation scheme. The mean and 394

standard deviations across 5 splits are reported 395

during evaluation. The experimental results show 396

that such a robust evaluation is needed as the 397

standard deviation across 5 splits is noticeable (see 398

Section 5 and Appendix E). 399

IndicNLP-suite (Kakwani et al., 2020) contains 400

several resources for NLP in Indian languages. 401

From this suite, we take the IndicNLP news ar- 402

ticles (INA for short) classification dataset, and 403

prepare a cross-lingual setup similar to that of ML- 404

Doc. The INA comprises of 9 languages3 covering 405

7 classes (topics). However, not all the 7 topics 406

are present in the news articles across all the 9 lan- 407

guages. In order to make cross-lingual experiments 408

across multiple languages, we consider two setups: 409

A two-class setup covering all 9 languages, and a 410

three-class setup covering 5 languages. We keep at 411

most of 250 samples per topic in both training and 412

dev, and 1000 samples per topic in the test. Finally, 413

we create 5 such splits, which allows us to report 414

mean and standard deviations. 415

As we re-processed both MLDoc and INA 416

datasets, we call the newer versions as MLDoc5x 417

and INA5x respectively, where 5 represents the five 418

different splits. Details in Appendix B.

ω EN DE FR IT ES RU Avg. (s.d.)

5e-02 85.34 88.82 89.28 78.74 88.32 77.38 84.65 (4.84)
5e-03 85.88 90.72 89.70 80.78 89.36 79.78 86.04 (4.34)
5e-04 86.50 90.88 89.68 79.88 88.62 79.34 85.82 (4.58)

Table 1: In language classification accuracy (in %) on
the dev sets of MLDoc5x for various hyper-parameters
of MBay-6L seed model. The embedding dimension is
fixed to 256 and the classifier is GLCU. 419

4.3 MBay configurations 420

The proposed Bayesian multilingual document 421

model has two important hyper-parameters, i.e., 422

latent (embedding) dimension K and `2 regular- 423

ization weight ω corresponding to the model pa- 424

rameters {T(`)} ∀ `. We fixed the embedding di- 425

mension to 256 and explored ω ∈ {5e− 02, 5e− 426

03, 5e − 04}. The prior distribution (1) was set 427

3BN, GU, KN, ML, MR, OR, PA, TE, TA
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to N (w | 0, (0.1)I) and the variational distribu-428

tion q(w) was initialized to be the same as prior.429

This enabled us to use same learning rate for both430

mean and variance parameters. The number of431

Monte Carlo samples R for approximating the ob-432

jective function (4) was set to 8, which we found433

to be a reasonable trade-off between computation434

complexity and convergence speed. A maximum435

batch size of 4096 was used during training. A con-436

stant learning rate of 5e− 02 was used both during437

training and inference. The model is trained for438

a maximum of 100 epochs and inference is done439

fora maximum of 50 iterations. Our models are440

implemented using PyTorch (Paszke et al., 2017)441

and will be made public.442

4.4 Topic ID systems for MBay443

In total we trained 4 different linear classifiers444

on the embeddings extracted from MBay model.445

The first two linear classifiers, GLC and LR are446

trained using only the point estimates of the embed-447

dings, i.e., using only the mean parameter (ν). The448

next two classifiers, GLCU and LRU are trained449

with the full posterior distributions of embeddings,450

q(w) = N (w | ν,diag(γ)−1), as described in451

Section 3. To better illustrate the importance of452

uncertainties during the test (prediction) time, we453

used the trained GLC and LR models, but during454

the prediction, we evaluate likelihood using the full455

posterior distributions (along with uncertainties) of456

the test document embeddings. This is valid be-457

cause both GLC and GLCU have exactly the same458

model parameters (Section 3.1). Similarly LR and459

LRU have exactly the same model parameters (Sec-460

tion 3.2). We represent these two classifiers as461

GLCU-P and LRU-P, where -P denotes uncertainty462

exploited only during prediction.463

The generative classifiers (GLC, GLCU) have464

no hyper-parameters to tune. We added `2 regular-465

ization term with weight α ∈ {1e− 4, . . . 5e+ 1}466

for the parameters of LR, LRU. This classifier was467

trained for a maximum 100 epochs using ADAM468

with a constant learning rate of 5e−2. For LRU, we469

used M = 32 for the empirical approximation (8).470

M > 32 did not affect the classification perfor-471

mance significantly but, lower values degraded the472

performance about 5%.473

Initially three MBay models were trained on 6474

languages (DE, EN, ES, FR, IT, RU) with differ-475

ent hyper-parameters. We performed in-language476

classification on MLDoc5x using GLCU on these477

6 languages and picked the MBay model config- 478

uration that gave the best performance on dev set. 479

These results are presented in Table 1. We denote 480

this seed model as MBay-6L. This model with the 481

same hyper-parameter (ω = 5e − 03) is then ex- 482

tended independently to {JA, ZH}, and to 9 Indian 483

languages using EN as pivot (bridge). More details 484

are in Appendix C. 485

4.5 Pre-trained multilingual models 486

There are numerous pre-trained multilingual mod- 487

els from which we picked the following4 based on 488

their diversity in architecture, training criterion and 489

overall performance. 490

LASER (Artetxe and Schwenk, 2019) is based on 491

seq2seq BiLSTM trained in 223M parallel sentence 492

covering 93 languages, sharing a common sub- 493

word vocabulary. The language-agnostic embed- 494

dings are obtained by forward propagating through 495

the encoder followed by a pooling layer. 496

XLM-R-stsb (Reimers and Gurevych, 2020) is 497

based on sentence transformers (Reimers and 498

Gurevych, 2019) and XLM-R (Conneau et al., 499

2020), where knowledge distillation is used to 500

adapt the the multilingual student model XLM-R 501

to align the representations from BERT. 502

LaBSE (Feng et al., 2020) is based on dual- 503

encoder architecture and is trained on 17B mono- 504

lingual sentences for MLM, and on 6B translation 505

pairs for translation ranking task, covering 109 lan- 506

guages. The pre-trained model is available for pub- 507

lic, whereas the exact training data is not. 508

Distill-mUSE is multilingual knowledge distilled 509

version of mUSE (Yang et al., 2020). While the 510

original was trained on 15 languages, this version 511

supports 50 languages (Reimers and Gurevych, 512

2020). 513

We trained two different classifiers on the embed- 514

dings extracted pre-trained multilingual language 515

models. The first one is a two layer perceptron 516

(MLP) widely used in prior works (Artetxe and 517

Schwenk, 2019). The second one is the LR. 518

5 Results and discussion 519

Here we present only the main zero-shot transfer 520

results, while the detailed results are given in the 521

Appendix E (Tables 9, 10, 11). The mean and std. 522

deviation across 5 splits for MLDoc and INA are 523

only presented in the Appendix. For LASER + 524

MLP system, we observed around 14 points of std. 525

4More details are given in Table 8 from Appendix.
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Zero-shot transfer (source language to the rest) ZS∗ IL∗

Model Classifier EN DE FR IT ES RU JA ZH Avg. Avg.

LASERag MLP 73.28 73.47 71.98 70.84 68.13 69.08 66.29 72.53 70.70 88.46

LASERa MLP 71.43 72.57 74.73 70.02 71.25 68.27 54.82 68.35 68.93 88.91
LASERa LR 70.52 73.12 75.80 70.56 74.99 66.27 48.37 68.46 65.81 88.65
LASERp MLP 74.76 75.02 75.93 69.55 69.41 69.32 60.95 68.00 70.37 87.81
LASERp LR 73.97 75.19 75.75 70.22 73.93 68.68 61.70 69.34 71.10 87.87

XLM-R-stsbt MLP 74.29 72.48 74.02 70.84 70.24 69.08 72.06 70.28 71.66 87.09
XLM-R-stsbt LR 72.87 70.87 72.61 68.49 68.31 65.76 70.75 69.47 69.89 85.78
XLM-R-stsbm MLP 68.11 68.10 69.80 66.22 65.92 66.98 64.03 63.94 66.64 85.80
XLM-R-stsbm LR 67.18 67.79 68.10 64.47 64.17 64.35 63.17 62.17 65.17 84.63

Distil-mUSEt MLP 75.92 74.86 75.90 72.51 74.01 69.84 69.77 71.40 73.03 88.14
Distil-mUSEt LR 77.02 76.41 76.98 76.04 74.80 71.28 72.02 74.08 74.83 88.33
Distil-mUSEm MLP 73.34 73.33 73.81 71.72 74.66 69.85 68.05 71.29 72.01 87.92
Distil-mUSEm LR 74.55 75.30 75.57 74.17 74.57 71.07 68.51 73.75 73.44 88.14

LaBSEt MLP 80.02 79.29 79.11 78.70 79.93 77.16 78.42 76.90 78.69 89.93
LaBSEt LR 80.48 79.91 80.00 79.08 80.02 76.71 78.60 78.04 79.13 89.85
LaBSEm MLP 79.29 80.07 80.36 78.76 79.07 76.05 78.49 76.17 78.53 89.84
LaBSEm LR 80.27 80.22 79.81 78.72 79.66 75.92 78.95 77.47 78.88 89.77

MBay GLC 65.04 64.71 65.39 61.65 62.28 57.05 54.02 59.99 61.27 83.70
MBay GLCU 74.14 70.07 72.40 73.20 72.64 67.57 64.48 66.03 70.06 85.30
MBay GLCU-P 74.08 70.46 72.59 73.07 72.62 67.66 64.35 66.49 70.16 86.05
MBay LR 70.33 70.43 71.18 67.30 68.45 62.35 59.81 65.69 66.94 86.35
MBay LRU 72.59 71.02 71.87 72.04 71.31 65.11 63.21 65.17 69.04 86.08
MBay LRU-P 72.92 70.83 71.67 71.89 69.57 64.30 63.42 65.59 68.77 86.02

Table 2: Results on MLDoc5x. a: Averaging sentence embeddings. g: Results taken from official GitHub repos-
itory. p: Max-pooling over encoder outputs. t: Input trimmed to 128 tokens. m : Input trimmed to maximum
sequence length. ZS∗: Zero-shot. IL∗: In-language.

deviation across 5 splits in MLDoc5x when trans-526

ferring from IT→DE (Table 9). Higher (> 5) std.527

deviations are also observed for other pre-trained528

models in different transfer directions. This sug-529

gests that one needs to have a robust evaluation530

scheme in order to study and compare the perfor-531

mance of multilingual models across various lan-532

guages and tasks. Further, when reporting average533

results, care should be taken to separate them into534

in-language vs (zero-shot) transfer directions. A535

simple way to summarize the results is to compute536

average only across transfer directions for every537

language (excluding the source language). This538

gives us an idea of how well the model can transfer539

to other languages on an average. The in-language540

classification accuracy across various languages541

should be reported separately.542

The first row from Table 2 show the results with543

LASER on the original single MLDoc split. We544

tried to replicate the results, but observed signif-545

icant variance for JA and ZH (see Table 7 in Ap-546

pendix D). All the subsequent rows are the average547

results on MLDoc5x for systems based on various548

pre-trained models and the proposed MBay model.549

For most of the pre-trained models we can see that550

LR performs slightly better than MLP in zero-shot551

transfer setting. The results from MBay are com-552

parable to LASER and XLM-R-stsb, while LaBSE 553

outperforms all the other systems. Moreover, in 554

case of MBay, we can see that generative classifier 555

exploiting uncertainty outperforms the discrimina- 556

tive classifiers. This suggests that in the common 557

embedding space, our classifiers are able to exploit 558

the estimated uncertainty from the MBay model. 559

The Tables 3 and 4 show average results in 560

INA5x under 2-class and 3-class settings respec- 561

tively. Here we can see that MBay outperforms 562

other pre-trained models except LaBSE; and XLM- 563

R-stsb in 3-class setting. The poor performance 564

of LASER and XLM-R could be attributed to 565

less and low-quality training data for these (mid- 566

resource) Indian languages. The objective func- 567

tion of mUSE and LaBSE are similar where as the 568

quality and quantity of the training data is much 569

different. LaBSE was trained on large amounts of 570

high-quality (manually verified, and filtered) data, 571

which could explain its superior performance. Un- 572

fortunately, the exact training data used for LaBSE 573

is not available for public. 574

6 Conclusions 575

In this paper, we revisited zero-shot cross-lingual 576

topic identification. We identified shortcomings 577

in the evaluation protocol of MLDoc corpus. We 578
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ZERO-SHOT TRANSFER (FROM LANGUAGE) ZS∗ IL∗

Model CLF. BN GU KN ML MR OR PA TA TE Avg. Avg.

LASERp MLP 76.41 - - 77.26 77.19 - - 74.52 77.46 76.57 92.77
LASERp LR 76.70 - - 77.86 74.85 - - 74.22 77.15 76.16 90.90

XLM-R-stsbt MLP 90.77 89.38 94.13 91.92 91.78 92.29 89.88 91.95 92.72 91.65 95.52
XLM-R-stsbt LR 90.84 88.82 93.32 92.40 90.78 91.43 89.00 91.88 91.03 91.08 96.09
XLM-R-stsbm MLP 85.60 88.57 91.95 89.42 87.58 91.39 88.62 86.75 90.37 88.92 95.66
XLM-R-stsbm LR 87.69 87.68 92.74 90.98 87.61 91.83 88.61 85.41 90.99 89.28 95.48

Distil-mUSEt MLP - 84.80 - - 82.14 - - - - 83.47 93.65
Distil-mUSEt LR - 83.24 - - 86.39 - - - - 84.81 93.50
Distil-mUSEm MLP - 77.65 - - 72.53 - - - - 75.09 92.98
Distil-mUSEm LR - 83.79 - - 76.51 - - - - 80.15 92.55

LaBSEt MLP 96.41 96.91 97.18 97.31 97.43 96.83 96.41 97.43 97.13 97.00 98.03
LaBSEt LR 96.62 96.71 97.78 97.21 97.31 97.37 96.40 97.34 97.63 97.15 98.06
LaBSEm MLP 95.92 96.98 97.48 97.37 97.54 96.46 96.90 96.93 97.19 96.97 97.95
LaBSEm LR 96.60 96.69 97.56 97.23 97.56 97.47 96.87 97.38 97.75 97.23 97.98

MBay GLC 67.22 50.86 82.83 50.47 50.71 82.20 49.54 83.64 85.38 66.98 73.48
MBay GLCU 91.89 93.54 94.69 93.72 94.01 94.67 93.93 93.47 94.43 93.82 96.67
MBay GLCU-P 92.67 93.24 94.96 94.38 95.48 94.70 93.65 93.86 94.66 94.18 97.03
MBay LR 91.59 90.76 93.41 93.14 93.34 92.91 91.54 90.96 92.91 92.28 96.44
MBay LRU 92.50 91.95 94.49 93.56 94.67 94.17 92.27 92.16 94.24 93.34 96.80
MBay LRU-P 92.36 91.97 94.45 93.37 94.58 93.26 91.34 92.28 94.09 93.08 96.67

Table 3: Results on INA5x 2-class setup.

ZERO-SHOT TRANSFER (FROM LANGUAGE) ZS∗ IL∗

Model CLF. GU ML OR PA TE Avg. Avg.

LASERp MLP - 72.83 - - 83.90 78.37 93.51
LASERp LR - 73.97 - - 83.39 78.68 93.38

XLM-R-stsbt MLP 90.57 91.91 91.79 89.43 93.05 91.35 95.22
XLM-R-stsbt LR 88.94 90.99 90.68 86.41 91.38 89.68 93.79
XLM-R-stsbm MLP 86.99 87.86 90.16 87.23 90.09 88.47 95.39
XLM-R-stsbm LR 82.62 87.95 88.77 83.78 90.12 86.65 93.78

LaBSEt MLP 97.43 97.41 97.11 96.52 97.14 97.12 98.21
LaBSEt LR 95.91 96.86 96.69 95.28 97.01 96.35 97.64
LaBSEm MLP 97.45 97.47 96.65 96.92 97.18 97.13 98.09
LaBSEm LR 95.62 96.79 96.59 95.25 97.00 96.25 97.47

MBay GLC 32.40 33.87 82.01 32.68 84.89 53.17 57.82
MBay GLCU 89.21 89.92 91.12 88.63 90.58 89.89 95.29
MBay GLCU-P 89.42 90.89 91.19 88.97 90.97 90.29 95.78
MBay LR 87.16 87.18 89.18 85.84 88.84 87.64 94.95
MBay LRU 87.87 89.91 89.84 86.64 90.22 88.90 95.26
MBay LRU-P 87.00 90.09 89.92 86.76 90.22 88.80 95.16

Table 4: Results on INA5x 3-class setup.

proposed a simple robust alternative by creating 5579

different splits and reporting the mean and std.dev.580

of the results. The same protocol was extended to581

Indic news articles dataset covering 9 languages.582

We benchmarked some of the diverse and popular583

pre-trained models on the new evaluation proto-584

col covering 17 languages (128 transfer directions).585

We also presented a Bayesian multilingual docu-586

ment model, which learns language-independent587

document embeddings along with their uncertain-588

ties. We propagated the uncertainties into a gener-589

ative and discriminative linear classifier for zero-590

shot cross-lingual topic ID. Our proposed system591

in budget friendly in terms of computation, while592

at the same time performs competitively to other593

large scale pre-trained models such as LASER, and 594

XLM-R. We belive our MBay model can act as 595

a strong baseline for future research works in the 596

direction of cross-lingual topic ID. We observe that 597

there is a need for creating a larger and diverse 598

dataset covering several topics and languages. 599

7 Limitations 600

While we aimed to cover 17 languages, the number 601

of topics in classification experiments are at most 602

4. There is a need to benchmark these systems 603

on a diverse and large multi-label cross-lingual 604

dataset. The proposed MBay model is build on bag- 605

of-words simplification and may not be a suitable 606

choice for fine-grained semantic similarity tasks. 607
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A Data for multilingual training854

• We considered only top 450k sentence from855

EN-JA pair from CCAligned corpus, which856

was further filtered based on heuristics, result-857

ing in 185k parallel sentences.858

• From UNPC(v1), we considered only top 2859

million sentences.860

• The initial seed model (MBay-6L) was trained861

on 6 languages (DE, EN, ES, FR, IT, RU) us-862

ing the data from Europarl, UNPC, MultiUN,863

Global-Voices, and News-Commentary. From864

these datasets, we considered only those sen-865

tences that are at least 30 words long.866

• The seed model (MBay-6L) is extended to JA867

and ZH languages with the help of parallel868

data from UNPC, MultiUN, Wikipedia (EN-869

JA)5, filtered CCAligned (EN-JA), Global-870

Voices and News-Commentary.871

• The seed model (MBay-6L) is extended to 9872

Indian languages (BN, GU, ML, MR, KN,873

OR, PA, TA, TE) with the help of paral-874

lel data from CVIT (PIB, MKB), Samanan-875

tar (indic2indic), Global-Voices and News-876

Commentary datasets. From these datasets,877

we considered only those sentences that are at878

least 10 words long.879

5https://alaginrc.nict.go.jp/
WikiCorpus/index_E.html

• The Table 5 shows the detailed statistics of 880

the number of sentences and their parallel lan- 881

guages across all the 17 languages. 882

B Data for Topic ID 883

This section presents the statistics of MLDoc5x 884

and INA5x topic ID datasets created for the experi- 885

ments reported in this paper. We attempted to keep 886

about 250 examples per topic in each training and 887

development sets, and 1000 examples per topic in 888

the test set. We created 5 such splits and the av- 889

erage number of examples per language-set-topic 890

are illustrated in Tables 6. The original data for 891

languages GU, ML, PA, were smaller, hence they 892

have smaller number of examples per set. 893

C MBay models 894

• The initial (seed) MBay models were trained 895

on 6 languages (DE, EN, ES, FR, IT, RU) 896

using the parallel data (7.48M sentences) de- 897

scribed in Appendix A. The training took 898

about 25 hrs on a single NVIDIA RTX A6000 899

with 48 GB of memory. The trained model 900

has 154M parameters. This model trained on 901

6 languages is referred as MBay-6L. 902

• The MBay-6L seed model was extended to JA, 903

ZH using EN as pivot. It was trained on 3.3M 904

parallel sentences, and took about 11 hrs on 905

a similar GPU. This extended training added 906

51.4M additional parameters for JA and ZH. 907

During training, the parameters of EN were 908

frozen and the parameters of other languages 909

(DE, ES, FR, IT, RU) were not loaded as they 910

are not required. 911

• The MBay-6L seed model was extended to 9 912

Indian languages using EN as pivot. It was 913

trained on 7.29M parallel sentences, and took 914

about 21hrs to train on a similar GPU. This 915

added 96.2M additional parameters to repre- 916

sent 9 Indian languages. As the vocabulary 917

sizes for these languages is not as big as other 918

high-resources languages (Table 5, the num- 919

ber of additional parameters were also rela- 920

tively less. 921
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Group Language ISO code Parallel pairs Sentences (M) Tokens (M) Vocabulary size

E English EN E ∪ U ∪ I \ {KN} 3.89 154.46 100k
E French FR E 1.62 73.38 100k
E German DE E 0.85 33.02 100k
E Italian IT E 0.67 25.18 100k
E Russian RU E 1.11 37.01 100k
E Spanish ES E 1.64 74.03 100k
U Chinese ZH {EN, JA} 1.19 54.84 100k
U Japanese JA {EN, ZH} 0.37 21.15 100k
I Kannada KN I 0.36 7.92 25521
I Bengali BN I ∪ {EN} 0.95 20.05 36925
I Gujarati GU I ∪ {EN} 0.75 15.92 28268
I Malayalam ML I ∪ {EN} 0.57 13.89 36877
I Marathi MR I ∪ {EN} 0.86 18.43 30557
I Odia OR I ∪ {EN} 0.50 11.36 25450
I Punjabi PA I ∪ {EN} 0.95 15.34 24209
I Tamil TA I ∪ {EN} 0.93 21.21 33960
I Telugu TE I ∪ {EN} 0.68 11.96 32548

Total 17.89 609.16

Table 5: Statistics of the data used in training and extending the MBay model. Sentences and tokens are in millions
(M).

Lang. MLDoc5x Topics

CCAT ECAT GCAT MCAT

DE 257 270 1019 245 259 936 251 259 1022 247 237 1023
EN 257 270 1019 245 259 936 251 259 1022 247 237 1023
ES 305 310 1186 198 197 782 205 214 816 292 279 1216
FR 257 270 1019 245 259 936 251 259 1022 247 237 1023
IT 257 270 1019 245 259 936 251 259 1022 247 237 1023
JA 257 270 1019 245 259 936 251 259 1022 247 237 1023
RU 274 283 1081 255 265 1023 204 256 819 267 256 1077
ZH 306 313 1193 282 312 1187 118 93 401 294 282 1219

INA5x Topics

Entertainment Sports Business

BN 250 250 1001 250 249 999 - - -
GU 34 37 149 37 36 147 40 38 160
KN 233 237 931 235 231 938 - - -
ML 78 81 319 83 80 328 75 76 302
MR 121 122 494 120 123 494 - - -
OR 237 232 928 236 233 948 237 237 959
PA 40 41 163 40 39 165 43 44 170
TA 236 232 928 231 235 935 - - -
TE 248 249 988 252 253 997 250 247 1015

Table 6: Number of examples in each topic for every language in RCV (MLDoc5x) and IndicNLP news articles
(INA5x) datasets. Under each topic, the three columns represent training, development and test sets respectively.
Each number represents the average number (rounded to nearest integer) of examples across 5 splits for the respec-
tive language-set-topic.

D MLDoc results with LASER922

We tried to replicate the MLDoc results us-923

ing LASER, however we found significant924

differences is few language directions. The925

Table 7 shows the absolute differences in the926

results we obtained as compared the ones re-927

ported in the official github repository: https:928

//github.com/facebookresearch/929

LASER/tree/main/tasks/mldoc. 930

In Table 7, a positive value indicates that we 931

obtained a better result, while a negative value in- 932

dicates the opposite. 933
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TEST LANGUAGE
EN DE FR IT ES RU JA ZH

EN -0.42 -1.70 -4.72 -0.23 3.05 0.13 -1.67 -3.30
DE 0.93 -0.68 0.65 -2.18 -1.83 0.30 -7.17 -0.78
FR -1.60 -2.40 -0.58 -2.22 -1.98 -0.17 -6.87 -13.31
IT -2.38 -2.59 -2.25 2.78 3.20 5.86 -6.47 -10.72
ES -0.24 -2.70 -2.85 -1.58 -4.93 7.80 -4.05 8.95
RU 0.53 -2.76 0.35 2.55 2.25 -1.00 -2.05 2.17
JA 10.70 14.37 10.28 6.23 11.87 9.53 -0.07 15.32
ZH 2.02 0.20 1.01 0.38 5.85 0.17 4.15 0.51

Table 7: Discrepancy in replicating the results of LASER + MLP system.

Model URL

LASER https://github.com/facebookresearch/LASER
XLM-R-stsb https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
LaBSE https://huggingface.co/sentence-transformers/LaBSE
Distil-mUSE https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2

Table 8: Pre-trained models and their download URL.

E Detailed results934

Here we present the detailed results i.e., mean and935

std.dev. across 5-splits in all the transfer direc-936

tions. For each pre-trained multilingual model, we937

only show the results of the system that yielded938

best downstream performance. Notice in Tables 9,939

10 and 11 that the high std.dev. indicates that the940

choosing a different training / dev / test split could941

result in different performance of the system. The942

original MLDoc is sampled from RCV multilin-943

gual corpus and had only one such split and hence944

couldn’t capture the variance in the results.945

The first two parts in Table 9 show LASERp +946

MLP and LASERp + LR. Notice that for LR the947

variance across 5 splits is much lower as compared948

to MLP.949
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TEST LANGUAGE
EN DE FR IT ES RU JA ZH

LASERp + MLP

EN 87.0 (0.7) 85.5 (1.4) 83.0 (3.8) 68.4 (4.6) 77.8 (2.2) 67.4 (2.7) 67.1 (3.8) 74.1 (0.7)
DE 73.7 (4.9) 92.1 (0.1) 83.9 (0.7) 73.4 (1.4) 81.0 (1.9) 66.9 (5.7) 71.6 (4.9) 74.6 (9.5)
FR 76.2 (0.5) 88.0 (0.4) 90.5 (0.5) 72.3 (1.2) 79.9 (2.0) 68.0 (0.9) 69.8 (0.5) 77.2 (1.0)
IT 61.3 (12.5) 78.8 (14.1) 77.1 (8.3) 84.2 (0.7) 76.0 (2.6) 63.4 (4.6) 61.2 (7.6) 69.1 (6.5)
ES 64.4 (0.3) 81.9 (1.9) 78.8 (3.1) 74.4 (2.5) 92.5 (0.1) 57.7 (3.3) 64.1 (7.6) 64.5 (12.2)
RU 64.9 (2.3) 78.1 (5.5) 70.2 (7.3) 66.7 (3.1) 70.2 (5.4) 83.4 (0.3) 67.5 (6.3) 67.5 (11.3)
JA 58.6 (1.1) 70.7 (3.5) 62.8 (2.7) 57.3 (1.3) 59.8 (1.9) 51.7 (2.9) 85.9 (0.1) 65.8 (8.1)
ZH 63.7 (7.9) 76.3 (5.2) 70.5 (7.9) 64.8 (6.7) 68.5 (3.9) 61.0 (1.9) 71.2 (2.5) 86.9 (0.7)

LASERp + LR

EN 87.3 (0.5) 86.2 (1.1) 81.9 (1.2) 67.2 (2.1) 76.8 (2.0) 66.0 (2.0) 66.3 (2.3) 73.5 (2.1)
DE 73.0 (1.4) 92.4 (0.3) 83.0 (0.8) 73.5 (1.1) 81.1 (1.2) 68.0 (0.8) 71.3 (0.9) 76.4 (2.0)
FR 75.1 (0.3) 88.2 (1.0) 90.3 (0.5) 72.8 (1.1) 79.3 (1.0) 67.9 (2.0) 69.3 (1.9) 77.6 (2.4)
IT 61.1 (1.8) 80.4 (2.6) 77.1 (2.0) 84.5 (0.7) 76.6 (1.7) 64.4 (1.0) 61.9 (3.6) 70.1 (3.5)
ES 68.5 (0.5) 84.1 (0.8) 81.6 (1.3) 76.0 (1.3) 92.7 (0.4) 64.9 (1.2) 69.5 (1.5) 72.9 (2.3)
RU 64.8 (0.8) 76.9 (1.4) 69.3 (2.4) 66.6 (1.3) 69.1 (1.8) 83.1 (0.4) 67.0 (1.2) 66.9 (3.6)
JA 60.3 (1.4) 72.9 (1.1) 64.1 (1.9) 56.4 (1.5) 60.4 (1.6) 50.1 (1.2) 85.7 (0.4) 67.6 (1.7)
ZH 64.2 (2.4) 77.5 (1.2) 71.6 (2.2) 66.8 (0.9) 68.4 (1.5) 64.0 (1.7) 73.1 (0.4) 87.0 (0.7)

XLM-R-stsbt + MLP

EN 88.0 (0.7) 85.1 (1.2) 79.4 (1.7) 69.4 (1.0) 78.8 (0.8) 66.3 (3.7) 68.8 (1.6) 72.2 (2.7)
DE 75.1 (0.7) 92.5 (0.4) 83.0 (0.5) 71.5 (2.4) 77.9 (0.9) 61.7 (0.5) 69.5 (2.6) 68.7 (4.1)
FR 77.3 (1.2) 87.8 (1.4) 89.7 (0.8) 72.9 (2.0) 78.6 (2.2) 63.7 (2.7) 69.0 (2.9) 68.9 (3.3)
IT 69.0 (1.2) 82.6 (1.2) 79.1 (1.6) 83.0 (0.6) 77.9 (1.7) 56.5 (3.1) 67.6 (1.8) 63.2 (1.7)
ES 71.3 (1.5) 78.7 (2.6) 78.4 (1.8) 72.4 (2.6) 92.3 (0.3) 57.8 (6.1) 68.4 (1.5) 64.7 (2.1)
RU 69.3 (0.7) 76.9 (2.8) 75.3 (1.2) 65.0 (2.8) 70.9 (2.1) 82.9 (0.2) 63.6 (1.6) 62.4 (3.8)
JA 71.6 (1.4) 83.0 (0.7) 77.1 (1.2) 66.4 (1.6) 73.7 (1.0) 61.7 (4.1) 83.7 (0.7) 70.9 (1.2)
ZH 70.1 (2.8) 79.4 (2.7) 75.1 (2.5) 64.3 (2.5) 69.3 (3.1) 62.6 (2.2) 71.2 (1.3) 84.7 (0.4)

Distil-mUSEt + LR

EN 89.3 (0.3) 85.9 (1.4) 82.4 (1.3) 69.1 (1.9) 77.7 (1.5) 62.3 (2.4) 65.2 (3.3) 79.3 (1.3)
DE 77.7 (1.0) 93.1 (0.4) 84.9 (0.3) 73.0 (0.6) 79.6 (1.5) 66.4 (1.0) 65.5 (4.2) 80.1 (1.0)
FR 78.7 (0.6) 89.4 (0.4) 90.7 (0.4) 73.1 (1.0) 80.0 (1.7) 64.4 (1.7) 63.3 (1.1) 80.1 (1.3)
IT 72.1 (2.2) 83.4 (1.2) 81.4 (0.9) 83.7 (0.6) 79.8 (1.9) 64.5 (1.8) 60.7 (3.7) 77.2 (1.1)
ES 77.7 (1.1) 85.7 (1.3) 82.5 (1.1) 75.4 (0.7) 92.7 (0.4) 63.9 (3.1) 60.8 (1.8) 76.1 (1.8)
RU 70.8 (2.6) 82.0 (1.9) 74.3 (2.3) 66.5 (1.0) 68.8 (2.4) 83.2 (0.4) 64.1 (0.8) 71.1 (2.1)
JA 70.4 (2.1) 76.6 (1.9) 71.9 (1.9) 62.7 (1.3) 66.3 (2.7) 56.0 (2.4) 85.0 (0.6) 75.6 (1.3)
ZH 76.1 (2.2) 83.6 (2.1) 77.9 (2.1) 71.2 (2.0) 75.5 (1.6) 67.0 (2.2) 65.0 (2.2) 87.4 (0.4)

LaBSEt + LR

EN 90.6 (0.4) 89.0 (0.9) 87.8 (0.6) 76.2 (1.3) 82.7 (1.0) 69.6 (3.4) 75.8 (1.1) 82.2 (0.6)
DE 77.8 (1.5) 93.8 (0.3) 88.2 (0.7) 76.2 (0.8) 84.9 (2.2) 72.0 (2.9) 76.5 (1.5) 83.7 (0.7)
FR 81.4 (0.4) 91.1 (0.6) 92.1 (0.4) 76.3 (1.2) 83.6 (1.4) 71.0 (3.2) 73.7 (1.1) 82.9 (1.3)
IT 73.3 (1.2) 87.0 (0.6) 84.2 (1.1) 86.6 (0.2) 85.2 (0.7) 71.6 (1.1) 71.7 (1.2) 80.6 (1.3)
ES 77.9 (1.5) 89.9 (0.6) 86.9 (1.3) 81.0 (0.9) 93.9 (0.3) 68.9 (3.0) 75.4 (1.5) 81.6 (1.0)
RU 73.3 (1.1) 86.1 (1.8) 80.7 (2.2) 74.1 (1.3) 72.8 (3.4) 86.0 (0.5) 71.2 (1.8) 78.8 (1.5)
JA 76.8 (0.5) 87.1 (1.3) 83.7 (1.4) 72.8 (0.5) 79.5 (1.1) 67.6 (2.7) 86.2 (0.5) 82.8 (1.8)
ZH 76.8 (0.6) 86.6 (2.4) 83.4 (2.7) 74.2 (2.5) 79.2 (1.5) 69.4 (3.8) 76.7 (1.9) 89.6 (0.6)

MBay + GLCU-P

EN 86.8 (0.3) 85.6 (0.3) 82.4 (1.0) 70.3 (1.1) 78.5 (0.6) 65.0 (1.7) 66.8 (1.6) 70.1 (1.5)
DE 75.2 (0.9) 91.1 (0.5) 85.6 (0.5) 70.6 (1.0) 79.8 (1.1) 54.9 (1.7) 57.9 (2.7) 69.3 (1.3)
FR 75.3 (0.6) 87.0 (0.7) 89.8 (0.4) 74.1 (0.4) 80.9 (0.6) 65.7 (1.3) 51.9 (1.1) 73.2 (1.3)
IT 73.8 (1.0) 84.6 (0.9) 83.9 (0.5) 82.1 (0.7) 82.9 (0.9) 58.3 (2.4) 59.5 (1.8) 68.4 (0.9)
ES 74.1 (0.6) 84.6 (1.1) 82.5 (0.7) 75.3 (0.7) 89.1 (0.2) 58.5 (1.8) 64.7 (1.6) 68.6 (1.2)
RU 66.8 (1.7) 74.9 (1.6) 75.3 (1.7) 67.6 (1.3) 73.6 (1.2) 81.2 (0.5) 55.3 (1.5) 60.1 (2.8)
JA 67.5 (0.9) 76.6 (1.2) 68.1 (1.5) 59.9 (0.8) 67.4 (0.8) 51.6 (1.5) 84.7 (0.7) 59.4 (1.2)
ZH 69.1 (0.9) 77.9 (1.8) 73.5 (1.9) 63.5 (1.2) 66.9 (1.5) 50.8 (1.9) 63.7 (1.1) 83.7 (0.6)

Table 9: Detailed classification results on the MLDoc5x test sets using various models with best downstream
classification performance. Values in the parenthesis indicate the std.dev. across 5 splits. Bold values indicate
the numbers with std.dev > 3. p: Max-pooling over encoder outputs. t: Input trimmed to 128 tokens. m : Input
trimmed to maximum sequence length.
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TEST LANGUAGE
BN GU KN ML MR OR PA TA TE

LASERt + MLP

BN 95.4 (0.5) - - 90.8 (0.5) 85.4 (2.5) - - 57.4 (8.1) 72.0 (5.5)
ML 86.2 (1.6) - - 93.4 (1.8) 86.3 (2.8) - - 63.7 (5.2) 72.8 (2.2)
MR 89.2 (3.0) - - 88.8 (2.4) 93.4 (1.0) - - 59.8 (7.0) 70.9 (2.3)
TA 80.6 (2.3) - - 77.8 (2.2) 76.9 (5.1) - - 88.1 (0.7) 62.8 (5.1)
TE 83.6 (3.9) - - 83.9 (3.3) 86.0 (1.9) - - 56.3 (2.9) 93.7 (0.5)

XLM-R-stsbt + LR

BN 95.0 (0.3) 92.4 (0.9) 87.4 (2.2) 93.6 (1.1) 93.6 (1.2) 91.3 (1.7) 91.5 (3.0) 93.7 (1.4) 83.2 (3.1)
GU 84.7 (1.9) 93.4 (2.0) 84.0 (1.7) 91.5 (1.0) 92.7 (1.2) 90.6 (3.5) 89.3 (4.0) 91.9 (1.4) 85.8 (1.9)
KN 88.5 (3.3) 94.3 (0.7) 93.7 (0.7) 95.6 (0.6) 95.0 (0.5) 93.0 (1.0) 94.1 (1.6) 96.6 (0.3) 89.5 (1.1)
ML 88.3 (2.4) 93.6 (1.2) 89.6 (2.1) 95.3 (0.9) 95.6 (0.8) 94.5 (0.5) 94.8 (0.7) 95.6 (1.0) 87.2 (0.5)
MR 86.7 (2.1) 94.8 (0.7) 83.9 (2.3) 94.4 (0.7) 96.4 (0.3) 94.5 (0.7) 93.8 (2.0) 94.1 (0.4) 84.1 (1.3)
OR 90.1 (3.4) 93.4 (1.8) 86.6 (1.4) 93.0 (2.9) 95.3 (1.0) 96.3 (0.4) 92.8 (2.8) 94.1 (1.5) 86.0 (2.5)
PA 87.3 (1.9) 91.9 (1.3) 84.8 (1.3) 90.7 (2.0) 91.7 (1.9) 91.7 (1.4) 94.5 (2.0) 92.7 (1.8) 81.3 (2.3)
TA 90.6 (2.0) 92.9 (2.0) 89.7 (1.4) 95.0 (1.0) 95.6 (0.6) 90.0 (3.4) 91.5 (2.4) 97.9 (0.4) 89.7 (0.3)
TE 87.2 (2.6) 91.9 (1.5) 89.0 (1.8) 92.0 (2.6) 93.5 (2.0) 89.8 (4.4) 90.1 (3.7) 94.8 (1.9) 94.7 (0.7)

LaBSEm + LR

BN 97.0 (0.4) 95.5 (2.1) 95.0 (0.7) 97.3 (0.8) 96.1 (1.7) 97.6 (0.4) 97.6 (1.2) 97.5 (2.2) 96.2 (1.1)
GU 95.4 (0.7) 96.9 (1.2) 95.6 (0.5) 97.3 (0.3) 96.5 (0.6) 97.3 (0.5) 97.4 (1.0) 97.2 (1.0) 96.7 (0.4)
KN 95.7 (1.1) 96.7 (0.8) 96.9 (0.2) 98.8 (0.6) 97.9 (0.3) 97.3 (0.4) 98.1 (0.4) 98.6 (0.3) 97.5 (0.6)
ML 95.2 (1.1) 97.0 (1.1) 96.2 (0.3) 98.4 (0.3) 98.0 (0.3) 97.6 (0.6) 97.8 (0.7) 98.6 (0.4) 97.4 (0.4)
MR 96.5 (0.3) 97.2 (1.0) 96.5 (0.2) 98.4 (0.6) 98.1 (0.2) 98.1 (0.2) 98.4 (0.5) 98.6 (0.2) 97.0 (0.3)
OR 96.5 (0.6) 96.6 (0.7) 96.2 (0.2) 98.0 (0.6) 98.0 (0.2) 98.4 (0.2) 98.5 (0.8) 98.6 (0.4) 97.4 (0.3)
PA 96.4 (0.3) 95.6 (0.9) 95.5 (0.2) 97.7 (0.4) 97.5 (0.3) 97.9 (0.2) 98.5 (0.5) 98.1 (0.4) 96.3 (0.3)
TA 96.6 (0.4) 96.5 (1.2) 96.5 (0.3) 98.1 (0.2) 97.6 (0.6) 98.0 (0.2) 98.0 (0.9) 99.2 (0.1) 97.7 (0.2)
TE 96.7 (0.4) 97.4 (0.9) 96.9 (0.3) 98.3 (0.5) 97.9 (0.2) 97.4 (0.5) 98.3 (0.9) 99.1 (0.2) 98.5 (0.2)

MBay + GLCU-P

BN 96.2 (0.6) 91.8 (2.4) 91.5 (0.7) 90.0 (0.8) 94.5 (0.4) 93.6 (0.4) 91.8 (1.1) 96.4 (0.5) 92.0 (0.9)
GU 94.4 (0.9) 97.0 (0.9) 91.6 (0.7) 92.0 (0.3) 94.3 (1.0) 94.8 (0.5) 91.2 (0.9) 96.7 (0.6) 90.8 (1.6)
KN 91.4 (1.4) 94.4 (1.9) 95.6 (0.5) 94.6 (1.1) 95.9 (0.4) 95.8 (0.6) 95.1 (1.3) 98.0 (0.3) 94.5 (0.5)
ML 93.1 (1.9) 94.0 (2.3) 93.5 (0.5) 97.2 (0.6) 94.9 (1.2) 94.6 (1.6) 93.8 (2.3) 98.0 (0.4) 93.2 (0.3)
MR 94.4 (1.2) 95.0 (1.4) 94.3 (0.5) 96.0 (0.3) 96.7 (0.3) 96.5 (0.5) 96.1 (1.1) 98.2 (0.4) 93.4 (0.7)
OR 93.9 (0.7) 95.0 (0.9) 93.1 (0.6) 95.8 (0.7) 96.5 (0.6) 97.9 (0.2) 94.5 (1.4) 96.9 (0.3) 91.8 (0.5)
PA 92.2 (3.6) 93.4 (1.9) 92.2 (0.8) 93.9 (0.8) 95.1 (0.6) 94.0 (0.9) 97.2 (0.8) 97.1 (0.6) 91.2 (0.6)
TA 93.4 (0.4) 94.3 (1.4) 93.0 (0.8) 94.4 (1.4) 94.8 (0.9) 93.5 (0.4) 93.4 (0.7) 98.7 (0.1) 94.1 (0.5)
TE 91.9 (1.2) 95.3 (0.7) 94.2 (0.6) 94.2 (1.1) 95.4 (0.6) 94.7 (0.3) 93.4 (1.6) 98.1 (0.2) 96.7 (0.4)

Table 10: Detailed classification results on the 2-class setup from INA5x test sets using various models with best
downstream classification performance. Values in the parenthesis indicate the std.dev. across 5 splits. Bold values
indicate the numbers with std.dev > 3. p: Max-pooling over encoder outputs. t: Input trimmed to 128 tokens. m :
Input trimmed to maximum sequence length.
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TEST LANGUAGE
GU ML OR PA TE

XLM-R-stsbt + MLP

GU 94.2 (1.5) 92.6 (1.1) 92.6 (1.0) 91.3 (1.8) 85.8 (2.9)
ML 93.2 (1.5) 95.2 (0.7) 93.8 (0.5) 94.0 (1.6) 86.7 (1.8)
OR 94.0 (1.1) 94.3 (0.9) 96.4 (0.4) 93.1 (2.6) 85.8 (2.0)
PA 91.6 (1.6) 91.5 (1.4) 92.3 (2.4) 95.3 (1.2) 82.3 (2.9)
TE 93.5 (0.9) 93.4 (1.0) 92.9 (1.8) 92.3 (1.0) 94.9 (0.7)

LaBSEm + MLP

GU 97.0 (1.0) 97.7 (0.4) 97.6 (0.3) 97.6 (1.1) 97.0 (0.3)
ML 97.1 (0.8) 98.3 (0.4) 97.5 (0.8) 97.8 (0.6) 97.4 (0.4)
OR 95.4 (1.7) 97.5 (0.3) 98.3 (0.3) 97.4 (0.6) 96.3 (1.1)
PA 95.9 (0.9) 97.4 (0.3) 97.9 (0.3) 98.5 (0.5) 96.4 (0.2)
TE 97.0 (1.0) 97.8 (0.5) 96.8 (0.9) 97.1 (1.2) 98.4 (0.3)

MBay + GLCU-P

GU 96.0 (0.3) 90.6 (0.9) 88.4 (0.9) 89.2 (1.6) 89.5 (1.3)
ML 92.6 (1.6) 94.9 (0.7) 88.9 (1.3) 91.3 (1.4) 90.8 (0.6)
OR 91.6 (0.5) 92.3 (0.6) 96.5 (0.3) 91.0 (1.2) 89.8 (0.7)
PA 91.1 (1.3) 90.2 (1.1) 85.0 (2.0) 95.3 (1.1) 89.5 (0.7)
TE 93.2 (1.3) 90.9 (0.6) 87.5 (0.7) 92.3 (1.4) 96.1 (0.3)

Table 11: Detailed classification results on the 2-class setup from INA5x test sets using various models with best
downstream classification performance. Values in the parenthesis indicate the std.dev. across 5 splits. Bold values
indicate the numbers with std.dev > 3. p: Max-pooling over encoder outputs. t: Input trimmed to 128 tokens. m :
Input trimmed to maximum sequence length.
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