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Abstract

In this paper, we revisit cross-lingual topic
identification (ID) in zero-shot settings by tak-
ing a deeper dive into current datasets, base-
line systems and the languages covered. We
identify shortcomings in the existing MLDoc
evaluation protocol and propose a robust al-
ternative scheme, while also extending the
cross-lingual experimental setup to 17 lan-
guages. We benchmark several systems that
are based on existing multilingual models such
as LASER, XLLM-R, mUSE, and LaBSE on
the new evaluation protocol covering 17 lan-
guages. Further, we present a novel Bayesian
multilingual document model (MBay) for
learning language-independent document em-
beddings. The model learns to represent the
document embeddings in the form of Gaussian
distributions, thereby encoding the uncertainty
in its covariance. We propagate the learned un-
certainties through linear classifiers that bene-
fit in zero-shot cross-lingual topic ID. Our ex-
periments on 17 languages show that the pro-
posed multilingual Bayesian document model
performs competitively as compared to other
systems based on LASER, XLLM-R and mUSE
on 8 high resource languages, and outperforms
these systems on 9 mid-resource languages. Fi-
nally, we consolidate the observations from all
our experiments, and discuss points that can
potentially benefit the future research works in
the area of cross-lingual topic ID.

1 Introduction

The zero-shot cross-lingual topic identification (ID)
or document classification aims to classify doc-
uments from target languages using a classifier
trained on examples from one or more source lan-
guage(s). This is mainly useful in scenarios where
the data from target language(s) have little or no
labels to train an in-language classifier. The cross-
lingual transfer experiments can also help to anal-
yse and test the capabilities of an underlying multi-
lingual language model.

The common approach is to first train a multi-
lingual language model that aims to capture the
semantic relations of words in context, indepen-
dent of the language (Ammar et al., 2016; Artetxe
and Schwenk, 2019; Huang et al., 2019; Conneau
et al., 2020; Feng et al., 2020). Such a multilin-
gual model can then later be either (i) fine-tuned
for classification (Siddhant et al., 2020) task using
labelled examples from source language(s), or (ii)
used to extract low-dimensional embeddings (rep-
resentations) for documents from both source and
target languages (Reimers and Gurevych, 2020);
the embeddings from source language(s) together
with annotated labels are then used for training
a light-weight independent classifier for cross-
lingual topic ID, which is then used to classify
embeddings from target languages.

The former approach relying on fine-tuning is
not efficient as it would require to keep a copy of
the entire multilingual model for every source lan-
guage, and every down-stream task. The latter ap-
proach of extracting language-agnostic document
(sentence) embeddings is more practical as it would
require only one model, and several light-weight
downstream classifiers. This paper entirely focuses
on models, experiments and analysis related to the
latter scheme relying on language agnostic docu-
ment embeddings, followed by a light-weight clas-
sifier.

1.1 Training multilingual models

Majority, if not all, of the recent works in multilin-
gual representations for cross-lingual transfers have
relied on training LSTMs (Schwenk and Douze,
2017; Artetxe and Schwenk, 2019) or transform-
ers (Wu and Dredze, 2019; Conneau et al., 2020)
with huge amounts of data (e.g. 227M - 25B sen-
tences) (Wu and Dredze, 2019; Siddhant et al.,
2020). The pre-training objectives vary depend-
ing on the kind of resources used for training such
models. In brief, some require parallel translations



of sentences across multiple languages, while oth-
ers rely on bilingual dictionaries (Ammar et al.,
2016) or just monolingual texts covering several
languages. Training these large multilingual lan-
guage models requires enormous computational
resources (Strubell et al., 2019), there is a need for
alternatives that are computationally efficient. A
majority of the large multilingual models share a
vocabulary of sub-word units across several (100)
seed languages. One needs to take care so that all
the languages are equally represented in the shared
(sub-)word vocabulary to avoid any language bias
from the high resource languages. Additionally,
such a design choice makes it challenging to ex-
tend these models to newer languages having a
different orthography. A fair comparison among
these language models is nearly impossible as no
two models are trained on exactly the same data.
The comparisons are only on the downstream tasks
while ignoring the affect of the quality and quan-
tity of pre-training data. When training on large
amounts of web-data it is possible that some of
the down-stream data could have been seen during
pre-training. Extensive survey on the aforemen-
tioned models/approaches can be found in (Ruder
et al., 2019; Doddapaneni et al., 2021). In contrast
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Figure 1: Graphical representation of the proposed
multilingual Bayesian model, where L represents num-
ber of languages and D denotes number of L-way
parallel documents (translations).  {m() T} v/
are document-independent, language-specific model
parameters, whereas wy is document-specific but
language-independent random variable (embedding),
and xff) is the observed vector of word counts repre-
senting document d from language .

to the neural models, there is also work on classi-
cal multilingual topic models (Mimno et al., 2009;
Yang et al., 2019), which are suitable for topic ID
and document clustering. While these models are
budget-friendly in terms of computation, the down-
stream evaluation datasets and tasks (Schwenk and
Li, 2018; Kakwani et al., 2020; Hu et al., 2020) do

not overlap between neural and classical models,

hence it is difficult to ascertain the advantages of
the latter over former.

1.2 Contributions of the paper

* We propose a simple, yet efficient multilin-
gual Bayesian (MBay) model for learning
language-agnostic document (sentence) em-
beddings, that enables to train robust down-
stream linear classifiers for zero-shot cross-
lingual topic ID.

* The proposed model can be easily extended
to newer languages without requiring to re-
train from scratch (continual learning), while
constraining only on a subset of existing pa-
rameters, thus making it computation-budget-
friendly.

* We re-visit the zero-shot cross-lingual docu-
ment classification task, and make the follow-
ing contributions: (i) we identify the short-
comings in evaluation, and propose a robust
alternative, (ii) we setup and evaluate zero-
shot transfer systems on a new set of 9 lan-
guages from IndicNLP suite (Kakwani et al.,
2020), in addition to the existing 8 from ML-
Doc (Schwenk and Li, 2018), (iii) we bench-
mark several pre-trained models, and also the
proposed model on the revised datasets cov-
ering 17 languages (128 transfer directions’,
and (iv) we provide an in depth analysis of the
downstream classification systems, that can
best make use of the language-agnostic doc-
ument (sentence) embeddings from various
models.

2 MBay: Multilingual Bayesian Model

Like majority of the probabilistic topic and docu-
ment models (Blei, 2012; Miao et al., 2016), the
presented model also relies on bag-of-words rep-
resentation of documents. Let V() represent
the vocabulary size in language ¢ € M, where
L = |M]| denotes the number of languages. Let
{m® T®YV ¢ represent the language-specific
model parameters, where T is a low-rank ma-
trix of size V1) x K (K < V) that defines the
subspace of document specific unigram distribu-
tions, and m¥ ¢ RV represents bias or offset.
The multilingual model assumes that the L-way

19 languages from IndicNLP news articles dataset resulting

in 9 X 8 = 72, and 8 languages from MLDoc resulting in
8 X 7 = 56 transfer directions (72 + 56 = 128).



parallel data (translations of bag-of-words) are gen-
erated according to the following process:

First, a K-dimensional language-independent,
document-specific embedding is sampled from an
isotropic Gaussian distribution with precision A

wg~N(w |0, (AI) ). (1)

w4 can be interpreted as vector representing higher-
level semantic concepts (such as topic) of a docu-
ment, independent of any language. For each lan-
guage { € M, a vector of word counts xg) is gen-
erated by the following two steps: The document-
specific unigram distribution qu? is computed us-
ing the language-specific parameters

¢} = softmax(m® + TOwy), ()
)

and the vector of word counts x,” is sampled
xff) ~ Multinomial((j)(g), Ny)), where Nl(f)
are the number of word tokens in document
d. xV .. x() represent L-way parallel bag-of-
words statistics.

The above steps describe the generative pro-
cess of the proposed multilingual document model.
However, in reality, we do not generate any data,
instead we invert the generative process: given
the training (observed) data xg) Vie M, Vd =

.D, we estimate the language-specific model
parameters {m(®, T} and also the posterior dis-
tributions of language independent document em-
beddings p(wd|xg) e XElL)) V d. Moreover, given
an unseen document ng) from any of the L lan-
guages, we infer the corresponding posterior dis-
tribution of the document embedding p(w,, | xg)).
Note that such a posterior distribution also carries
the uncertainty about the estimate.

Although we describe the model assuming L-
way parallel data, in practice the model can be
trained with parallel text (translations) between lan-

guage pairs (bi-texts) covering all the L languages.

2.1 Variational Bayes training

The proposed model is trained using the varia-
tional Bayes framework, i.e., we approximate the
intractable true posterior with the variational dis-
tribution g(wq) = N(wq | vg, diag(y4)™!) and
optimize the evidence lower-bound (Bishop, 2006).
Further, we use Monte Carlo samples via the re-
parametrization trick (Kingma and Welling, 2014;
Rezende et al., 2014) to approximate the expec-
tation over log-sum-exp (log normalizer) term

which appears in the lower-bound (Kesiraju et al.,
2020). The resulting lower-bound for a single set
of L-way parallel documents is
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where Dkr,(gq || p) is the Kullback-Leibler di-
vergence from variational distribution ¢(w) to
the prior (1) and, g(€q.) = v + v © €g, with

» ~ N(e | 0,I). R are the number of Monte
Carlo samples used for empirically approximating
the expectation over log-sum-exp.

The complete lower-bound is just the summation
over all the documents. Additionally, we use /o
regularization term with weight w for language-
specific model parameters {T()} V¢. Thus, the
final objective is

v

L= iﬁqd I

YleM i=1

e @

In practice, we follow batch-wise stochastic op-
timization of (4) using ADAM (Kingma and Ba,
2015). For a batch of documents d € B covering
a subset of languages Mp C M, we update the
all model parameters {m), T}V /¢ € Mp and
the variational posterior distribution of document
embeddings q(wy)Vd € B.

2.2 Extending to newer languages

Since the model uses language-specific parameters
and vocabulary, it is possible to extend the model
to a new set languages (denoted by M) without re-
training from scratch. The necessary conditions are
that every new language () should have parallel
text with at least one other language from M U M
subject to the constraint that there exists at least one
parallel pair between M and M. This can be seen
as continual learning, and requires only to learn the
parameters corresponding to the newer languages
{m® T®} V¢ € M. It also means that the per-
formance on existing seed languages is unaffected
with the addition of newer languages. In this pa-
per, we show the results from experiments where
we start with a seed model covering 6 languages,



which is then extended to 11 newer languages. Sim-
ilar approaches are also explored for multilingual
neural machine translation (Bérard, 2021).

2.3 Inferring embeddings

Given a bag-of-word statistics from an unseen doc-
ument from any of the £ € M U M languages,
we can infer (extract) the corresponding document
embedding along with its uncertainty. This is done
by keeping the language-specific model parameters
{m® T} constant, and iteratively optimizing
the objective in (3) with respect to the parameters
of the variational distribution. In the resulting vari-
ational posterior ¢(w) = N (w | v, diag(y)™?),
the mean v represents the (most likely) document
embedding, and variance diag(~)~! encodes the
uncertainty around the mean v. Since all the docu-
ments and language-specific model parameters are
independent (Fig. 1), inferring the embeddings can
be parallelized and is computationally cheaper.

3 Classification exploiting uncertainties

In a typical setting where we have only point esti-
mates of embeddings, all the embeddings are con-
sidered equally important by a classifier. This may
not be true all the time. For example, shorter and
documents with many rare words can result in poor
estimates of the embeddings; which can affect pa-
rameters of the classifier during training, and also
the performance during prediction. Additionally,
there might be noise while projecting embeddings
from multiple languages into the same semantically
aligned latent space. The proposed model yields
document embeddings represented by Gaussian
distributions, with the uncertainty about the embed-
ding encoded in the covariance. These uncertainties
are specific to each example and can be seen as het-
eroscedastic aleatoric uncertainties (Kendall and
Gal, 2017). We present two linear classifiers that
can exploit this uncertainty. The first one is the gen-
erative Gaussian linear classifier with uncertainty
(GLCU) (Kesiraju et al., 2020). The second one
is the discriminative multi-class logistic regression
with uncertainty (MCLRU).

3.1 Generative classifier

In generative classifiers, the posterior probability of
class label (Cy) given a feature vector (embedding)
w is computed from the joint distribution

B po(w | C) p(Cy)
p(Cr | W) = > pe(w [ Cj)p(C))

(&)

where, pp(w | C) is the likelihood function
parametrized by 6, and p(Cy,) is the class prior. In
generative classifiers, the likelihood function is as-
sumed to have a known parametric form (e.g. Gaus-
sian, Multinomial). For Gaussian linear classifier
(GLC), the likelihood function is pg(w | Cx) =
N(w | pg,S71), where w is the input feature
(point estimate of the embedding), p is the mean
of class Ci, and S is the precision matrix shared
across all the classes.

Given that the input features come in the form
of Gaussian distributions, i.e., ¢(w) = N(w |
v, diag(v)~!), we can integrate out (exploit) the
uncertainty in the input while evaluating the like-
lihood function. In the case of GLC, where the
likelihood function is also Gaussian, the expected
likelihood has an analytical form:

Eqlpe(w | C)] = N'(v | py, SF + diag(y) ).

(6)
GLC with likelihood function replaced by (6) is
called GLCU. Both are essentially the same clas-
sifiers, i.e., they have the same assumptions about
the underlying data and hence the same model pa-
rameters. The only difference lies in the evaluation
of likelihood function.

3.2 Discriminative classifier

For discriminative classifier such as multi-class
logistic regression (LR), the posterior probability
of a class (Cy) given an input feature vector w is

exp{h] w + by}

p(Cr | W) = )
> exp{h]Tw +b;}

(N

where {by, hy} V k are the parameters of the clas-
sifier. Unlike in GLC, we cannot analytically com-
pute the expectation over (7) with-respect-to the
input embeddings (Gaussian distributions). Instead
we approximate the expectation using Monte Carlo
samples (Xiao and Wang, 2019):

% exp{h} e, + by} L ®)

p(Cr | W) !
k ~ T
M == %" exp{hje, + b;}

m=

€m ~ q(w)Vm. Eq. (8) represents the posterior
probability computation for logistic regression with
uncertainty (LRU).

Theoretically, given the true uncertainties in the
training examples, GLCU and LRU can better esti-
mate the model parameters of the classifier. Simi-
larly, it can also exploit the uncertainties in the test



examples during prediction. However, in our case,
the uncertainties are estimated using the Bayesian
multilingual document model as described in Sec-
tion 2.3. The underlying assumption here is that
uncertainties extracted using the model are close
enough to the true uncertainties as expected by the
classifiers, which is empirically supported through
our experimental results presented in Section 5.

4 Experimental setup

This section presents the details on data for multi-
lingual training of MBay model and dataset prepa-
ration for downstream classification (topic ID) task.
We also discuss the details of various pre-trained
multilingual models and downstream classifiers
that are used in our experiments.

4.1 Data for multilingual training

The following datasets were used for train-
ing the proposed MBay model. Europarl(v7)
(Koehn, 2005), UNPC(v1) (Ziemski et al., 2016),
MultiUN(v1) (Eisele and Chen, 2010), Global-
Voices(v2018g4) (Tiedemann, 2012), News-
Commentary(v16) (Akhbardeh et al., 2021),
CVIT(PIBv1.3, MKB) (Siripragada et al., 2020),
Samanantar(indic2indic) (Ramesh et al., 2022),
Japanese-English Wikipedia, and CCAligned(EN-
JA) (El-Kishky et al., 2020). The total number of
sentences used are 17.89M covering 17 languages.
All the words were lower-cased and punctuation
was stripped. Further, words that do not occur in at
least two sentences were removed. We used scikit-
learn (Pedregosa et al., 2011) for pre-processing.
More details are given in Appendix A.

4.2 Dataset preparation for topic ID

The original MLDoc corpus was pre-
pared (Schwenk and Li, 2018) in order to
have a standard training, development (dev) and
test sets across 8 languages®. The usual setup
contains 1000 samples each or training and dev,
and 4000 for test, across 4 classes (topics). The
aim was to create a class balanced sets (uniform
class prior), which gives us 250 samples per topic
in both training and dev, and 1000 samples per
topic in the test. However, not every language in
the original Reuters Multilingual Corpus (RCV)
has enough examples, hence the class prior is not
uniform (Schwenk and Li, 2018). Moreover, it
only covers a small subset (6000 samples in total)

’DE, EN, ES FR, IT, JA, RU, ZH

of the actual RCV corpus, and results from such
as smaller subset tend be less certain. To address
this, we use the MLDoc data preparation scripts,
and create 5 different splits of the data, where each
split contains the same aforementioned number of
training, dev and test samples. This is analogous to
a 5-fold cross-validation scheme. The mean and
standard deviations across 5 splits are reported
during evaluation. The experimental results show
that such a robust evaluation is needed as the
standard deviation across 5 splits is noticeable (see
Section 5 and Appendix E).

IndicNLP-suite (Kakwani et al., 2020) contains
several resources for NLP in Indian languages.
From this suite, we take the IndicNLP news ar-
ticles (INA for short) classification dataset, and
prepare a cross-lingual setup similar to that of ML-
Doc. The INA comprises of 9 languages® covering
7 classes (topics). However, not all the 7 topics
are present in the news articles across all the 9 lan-
guages. In order to make cross-lingual experiments
across multiple languages, we consider two setups:
A two-class setup covering all 9 languages, and a
three-class setup covering 5 languages. We keep at
most of 250 samples per topic in both training and
dev, and 1000 samples per topic in the test. Finally,
we create 5 such splits, which allows us to report
mean and standard deviations.

As we re-processed both MLDoc and INA
datasets, we call the newer versions as MLDoc5x
and INAS5x respectively, where 5 represents the five
different splits. Details in Appendix B.

w ‘ EN DE FR IT ES RU Avg. (s.d.)

5e-02 | 85.34 8882 89.28 78.74 8832 77.38 84.65(4.84)
5e-03 | 85.88 90.72 89.70 80.78 89.36 79.78 86.04 (4.34)
S5e-04 | 86.50 90.88 89.68 79.88 88.62 79.34 85.82(4.58)

Table 1: In language classification accuracy (in %) on
the dev sets of MLDoc5x for various hyper-parameters
of MBay-6L seed model. The embedding dimension is
fixed to 256 and the classifier is GLCU.

4.3 MBay configurations

The proposed Bayesian multilingual document
model has two important hyper-parameters, i.e.,
latent (embedding) dimension K and /5 regular-
ization weight w corresponding to the model pa-
rameters { T}V (. We fixed the embedding di-
mension to 256 and explored w € {5e — 02, 5e —
03,5e — 04}. The prior distribution (1) was set

BN, GU, KN, ML, MR, OR, PA, TE, TA



to M(w | 0,(0.1)I) and the variational distribu-
tion ¢(w) was initialized to be the same as prior.
This enabled us to use same learning rate for both
mean and variance parameters. The number of
Monte Carlo samples R for approximating the ob-
jective function (4) was set to 8, which we found
to be a reasonable trade-off between computation
complexity and convergence speed. A maximum
batch size of 4096 was used during training. A con-
stant learning rate of 5e — 02 was used both during
training and inference. The model is trained for
a maximum of 100 epochs and inference is done
fora maximum of 50 iterations. Our models are
implemented using PyTorch (Paszke et al., 2017)
and will be made public.

4.4 Topic ID systems for MBay

In total we trained 4 different linear classifiers
on the embeddings extracted from MBay model.
The first two linear classifiers, GLC and LR are
trained using only the point estimates of the embed-
dings, i.e., using only the mean parameter (/). The
next two classifiers, GLCU and LRU are trained
with the full posterior distributions of embeddings,
q(w) = N(w | v,diag(y)™1), as described in
Section 3. To better illustrate the importance of
uncertainties during the test (prediction) time, we
used the trained GLC and LR models, but during
the prediction, we evaluate likelihood using the full
posterior distributions (along with uncertainties) of
the test document embeddings. This is valid be-
cause both GLC and GLCU have exactly the same
model parameters (Section 3.1). Similarly LR and
LRU have exactly the same model parameters (Sec-
tion 3.2). We represent these two classifiers as
GLCU-P and LRU-P, where -P denotes uncertainty
exploited only during prediction.

The generative classifiers (GLC, GLCU) have
no hyper-parameters to tune. We added /5 regular-
ization term with weight o € {le — 4,...5e + 1}
for the parameters of LR, LRU. This classifier was
trained for a maximum 100 epochs using ADAM
with a constant learning rate of 5e —2. For LRU, we
used M = 32 for the empirical approximation (8).
M > 32 did not affect the classification perfor-
mance significantly but, lower values degraded the
performance about 5%.

Initially three MBay models were trained on 6
languages (DE, EN, ES, FR, IT, RU) with differ-
ent hyper-parameters. We performed in-language
classification on MLDoc5x using GLCU on these

6 languages and picked the MBay model config-
uration that gave the best performance on dev set.
These results are presented in Table 1. We denote
this seed model as MBay-6L. This model with the
same hyper-parameter (w = 5e — 03) is then ex-
tended independently to {JA, ZH}, and to 9 Indian
languages using EN as pivot (bridge). More details
are in Appendix C.

4.5 Pre-trained multilingual models

There are numerous pre-trained multilingual mod-
els from which we picked the following* based on
their diversity in architecture, training criterion and
overall performance.

LASER (Artetxe and Schwenk, 2019) is based on
seq2seq BiLSTM trained in 223M parallel sentence
covering 93 languages, sharing a common sub-
word vocabulary. The language-agnostic embed-
dings are obtained by forward propagating through
the encoder followed by a pooling layer.
XLM-R-stsb (Reimers and Gurevych, 2020) is
based on sentence transformers (Reimers and
Gurevych, 2019) and XLM-R (Conneau et al.,
2020), where knowledge distillation is used to
adapt the the multilingual student model XLM-R
to align the representations from BERT.

LaBSE (Feng et al.,, 2020) is based on dual-
encoder architecture and is trained on 17B mono-
lingual sentences for MLM, and on 6B translation
pairs for translation ranking task, covering 109 lan-
guages. The pre-trained model is available for pub-
lic, whereas the exact training data is not.
Distill-mUSE is multilingual knowledge distilled
version of mUSE (Yang et al., 2020). While the
original was trained on 15 languages, this version
supports 50 languages (Reimers and Gurevych,
2020).

We trained two different classifiers on the embed-
dings extracted pre-trained multilingual language
models. The first one is a two layer perceptron
(MLP) widely used in prior works (Artetxe and
Schwenk, 2019). The second one is the LR.

5 Results and discussion

Here we present only the main zero-shot transfer
results, while the detailed results are given in the
Appendix E (Tables 9, 10, 11). The mean and std.
deviation across 5 splits for MLDoc and INA are
only presented in the Appendix. For LASER +
MLP system, we observed around 14 points of std.

*More details are given in Table 8 from Appendix.



Zero-shot transfer (source language to the rest) ZS* IL*
Model Classifier | EN DE FR IT ES RU JA ZH | Avg. | Avg.
LASER% MLP 7328 7347 7198 70.84 68.13 69.08 66.29 72.53 | 70.70 | 88.46
LASER* MLP 71.43 7257 7473 70.02 7125 6827 54.82 6835 | 68.93 | 88.91
LASER“ LR 7052 73.12 75.80 70.56 7499 66.27 48.37 68.46 | 65.81 | 88.65
LASERP MLP 7476 75.02 7593 69.55 69.41 69.32 60.95 68.00 | 70.37 | 87.81
LASER? LR 7397 75.19 75775 7022 7393 68.68 61.70 69.34 | 71.10 | 87.87
XLM-R-stsb’  MLP 7429 7248 7402 70.84 7024 69.08 72.06 7028 | 71.66 | 87.09
XLM-R-stsb’ LR 72.87 70.87 72.61 6849 6831 6576 70.75 69.47 | 69.89 | 85.78
XLM-R-stsb™ MLP 68.11 68.10 69.80 6622 6592 6698 64.03 63.94 | 66.64 | 85.80
XLM-R-stsb™ LR 67.18 67.79 68.10 6447 64.17 6435 63.17 62.17 | 65.17 | 84.63
Distil-mUSE!  MLP 7592 7486 7590 7251 74.01 69.84 69.77 71.40 | 73.03 | 88.14
Distil-mUSE! LR 77.02 7641 7698 76.04 7480 71.28 72.02 74.08 | 74.83 | 88.33
Distil-mUSE™ MLP 7334 7333 7381 71.72 74.66 69.85 68.05 71.29 | 72.01 | 87.92
Distil-mUSE™ LR 74.55 7530 75.57 7417 7457 71.07 6851 7375 | 73.44 | 88.14
LaBSE! MLP 80.02 7929 79.11 7870 79.93 77.16 78.42 76.90 | 78.69 | 89.93
LaBSE! LR 80.48 7991 80.00 79.08 80.02 76.71 78.60 78.04 | 79.13 | 89.85
LaBSE™ MLP 79.29 80.07 80.36 78.76 79.07 76.05 78.49 76.17 | 78.53 | 89.84
LaBSE™ LR 80.27 80.22 79.81 7872 79.66 7592 7895 77.47 | 78.88 | 89.77
MBay GLC 65.04 6471 6539 61.65 6228 57.05 54.02 59.99 | 61.27 | 83.70
MBay GLCU 74.14 70.07 7240 7320 72.64 67.57 6448 66.03 | 70.06 | 85.30
MBay GLCU-P | 74.08 7046 7259 73.07 72.62 67.66 6435 6649 | 70.16 | 86.05
MBay LR 7033 7043 71.18 6730 68.45 6235 59.81 65.69 | 66.94 | 86.35
MBay LRU 72.59 71.02 71.87 7204 7131 65.11 6321 65.17 | 69.04 | 86.08
MBay LRU-P 7292 70.83 71.67 71.89 69.57 6430 63.42 65.59 | 68.77 | 86.02

Table 2: Results on MLDoc5x. a: Averaging sentence
itory. p: Max-pooling over encoder outputs. t: Input
sequence length. ZS*: Zero-shot. IL*: In-language.

deviation across 5 splits in MLDoc5x when trans-
ferring from IT—DE (Table 9). Higher (> 5) std.
deviations are also observed for other pre-trained
models in different transfer directions. This sug-
gests that one needs to have a robust evaluation
scheme in order to study and compare the perfor-
mance of multilingual models across various lan-
guages and tasks. Further, when reporting average
results, care should be taken to separate them into
in-language vs (zero-shot) transfer directions. A
simple way to summarize the results is to compute
average only across transfer directions for every
language (excluding the source language). This
gives us an idea of how well the model can transfer
to other languages on an average. The in-language
classification accuracy across various languages
should be reported separately.

The first row from Table 2 show the results with
LASER on the original single MLDoc split. We
tried to replicate the results, but observed signif-
icant variance for JA and ZH (see Table 7 in Ap-
pendix D). All the subsequent rows are the average
results on MLDoc5x for systems based on various
pre-trained models and the proposed MBay model.
For most of the pre-trained models we can see that
LR performs slightly better than MLP in zero-shot
transfer setting. The results from MBay are com-

embeddings. g: Results taken from official GitHub repos-
trimmed to 128 tokens. m : Input trimmed to maximum

parable to LASER and XLM-R-stsb, while LaBSE
outperforms all the other systems. Moreover, in
case of MBay, we can see that generative classifier
exploiting uncertainty outperforms the discrimina-
tive classifiers. This suggests that in the common
embedding space, our classifiers are able to exploit
the estimated uncertainty from the MBay model.

The Tables 3 and 4 show average results in
INASx under 2-class and 3-class settings respec-
tively. Here we can see that MBay outperforms
other pre-trained models except LaBSE; and XLM-
R-stsb in 3-class setting. The poor performance
of LASER and XLM-R could be attributed to
less and low-quality training data for these (mid-
resource) Indian languages. The objective func-
tion of mUSE and LaBSE are similar where as the
quality and quantity of the training data is much
different. LaBSE was trained on large amounts of
high-quality (manually verified, and filtered) data,
which could explain its superior performance. Un-
fortunately, the exact training data used for LaBSE
is not available for public.

6 Conclusions

In this paper, we revisited zero-shot cross-lingual
topic identification. We identified shortcomings
in the evaluation protocol of MLDoc corpus. We



ZERO-SHOT TRANSFER (FROM LANGUAGE) 7S* >
Model CLFE BN GU KN ML MR OR PA TA TE Avg. | Avg.
LASER? MLP 76.41 - - 7726 77.19 - - 74.52 77.46 | 76.57 | 92.77
LASER? LR 76.70 - - 77.86 74.85 - - 7422 77.15 | 76.16 | 90.90
XLM-R-stsb’ MLP 90.77 89.38 94.13 91.92 91.78 9229 89.88 91.95 92.72 | 91.65 | 95.52
XLM-R-stsb’ LR 90.84 88.82 93.32 9240 90.78 9143 89.00 91.88 91.03 | 91.08 | 96.09
XLM-R-stsb™ MLP 85.60 88.57 9195 89.42 87.58 91.39 88.62 86.75 90.37 | 88.92 | 95.66
XLM-R-stsb™ LR 87.69 87.68 92.74 90.98 87.61 91.83 88.61 8541 90.99 | 89.28 | 95.48
Distil-mUSE!  MLP - 84.80 - - 82.14 - - - - 83.47 | 93.65
Distil-mUSE! LR - 83.24 - - 86.39 - - - - 84.81 | 93.50
Distil-mUSE™ MLP - 77.65 - - 72.53 - - - - 75.09 | 92.98
Distil-mUSE™ LR - 83.79 - - 76.51 - - - - 80.15 | 92.55
LaBSE! MLP 96.41 9691 97.18 9731 9743 96.83 9641 9743 97.13 | 97.00 | 98.03
LaBSE! LR 96.62 96.71 97.78 97.21 9731 97.37 96.40 97.34 97.63 | 97.15 | 98.06
LaBSE™ MLP 95.92 9698 9748 9737 97.54 9646 9690 96.93 97.19 | 96.97 | 97.95
LaBSE™ LR 96.60 96.69 97.56 97.23 97.56 9747 96.87 97.38 97.75 | 97.23 | 97.98
MBay GLC 67.22 50.86 82.83 50.47 50.71 8220 49.54 83.64 8538 | 66.98 | 73.48
MBay GLCU 91.89 9354 94.69 93.72 94.01 94.67 93.93 9347 94.43 | 93.82 | 96.67
MBay GLCU-P | 92.67 9324 9496 9438 9548 9470 93.65 93.86 94.66 | 94.18 | 97.03
MBay LR 91.59 90.76 93.41 93.14 93.34 9291 91.54 9096 9291 | 92.28 | 96.44
MBay LRU 92.50 91.95 9449 9356 94.67 94.17 9227 92.16 94.24 | 93.34 | 96.80
MBay LRU-P 9236 91.97 9445 9337 9458 9326 91.34 9228 94.09 | 93.08 | 96.67
Table 3: Results on INASx 2-class setup.
ZERO-SHOT TRANSFER (FROM LANGUAGE) | ZS* IL*

Model CLFE GU ML OR PA TE Avg. | Avg.

LASER? MLP - 72.83 - - 83.90 78.37 | 93.51

LASER?P LR - 73.97 - - 83.39 78.68 | 93.38

XLM-R-stsb’  MLP 90.57 9191 91.79 89.43 93.05 91.35 | 95.22

XLM-R-stsb® LR 88.94 90.99 90.68 86.41 91.38 89.68 | 93.79

XLM-R-stsb™ MLP 86.99 87.86 90.16 87.23 90.09 88.47 | 95.39

XLM-R-stsb™ LR 82.62 8795 88.77 83.78 90.12 86.65 | 93.78

LaBSE! MLP 9743 97.41 97.11 96.52 97.14 97.12 | 98.21

LaBSE! LR 9591 96.86 96.69 95.28 97.01 96.35 | 97.64

LaBSE™ MLP 9745 9747 96.65 96.92 97.18 97.13 | 98.09

LaBSE™ LR 95.62 96.79 96.59 95.25 97.00 96.25 | 97.47

MBay GLC 3240 33.87 82.01 32.68 84.89 53.17 | 57.82

MBay GLCU 89.21 89.92 91.12 88.63 90.58 89.89 | 95.29

MBay GLCU-P | 89.42 90.839 91.19 88.97 90.97 90.29 | 95.78

MBay LR 87.16 87.18 89.18 85.84 88.84 87.64 | 94.95

MBay LRU 87.87 89.91 89.84 86.64 90.22 88.90 | 95.26

MBay LRU-P 87.00 90.09 89.92 86.76 90.22 88.80 | 95.16

Table 4: Results on INASx 3-class setup.

proposed a simple robust alternative by creating 5
different splits and reporting the mean and std.dev.
of the results. The same protocol was extended to
Indic news articles dataset covering 9 languages.
We benchmarked some of the diverse and popular
pre-trained models on the new evaluation proto-
col covering 17 languages (128 transfer directions).
We also presented a Bayesian multilingual docu-
ment model, which learns language-independent
document embeddings along with their uncertain-
ties. We propagated the uncertainties into a gener-
ative and discriminative linear classifier for zero-
shot cross-lingual topic ID. Our proposed system
in budget friendly in terms of computation, while
at the same time performs competitively to other

large scale pre-trained models such as LASER, and
XLM-R. We belive our MBay model can act as
a strong baseline for future research works in the
direction of cross-lingual topic ID. We observe that
there is a need for creating a larger and diverse
dataset covering several topics and languages.

7 Limitations

While we aimed to cover 17 languages, the number
of topics in classification experiments are at most
4. There is a need to benchmark these systems
on a diverse and large multi-label cross-lingual
dataset. The proposed MBay model is build on bag-
of-words simplification and may not be a suitable
choice for fine-grained semantic similarity tasks.
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A Data for multilingual training

* We considered only top 450k sentence from
EN-JA pair from CCAligned corpus, which
was further filtered based on heuristics, result-
ing in 185k parallel sentences.

* From UNPC(v1), we considered only top 2
million sentences.

* The initial seed model (MBay-6L) was trained
on 6 languages (DE, EN, ES, FR, IT, RU) us-
ing the data from Europarl, UNPC, MultiUN,
Global-Voices, and News-Commentary. From
these datasets, we considered only those sen-
tences that are at least 30 words long.

* The seed model (MBay-6L) is extended to JA
and ZH languages with the help of parallel
data from UNPC, MultiUN, Wikipedia (EN-
JA)?, filtered CCAligned (EN-JA), Global-
Voices and News-Commentary.

* The seed model (MBay-6L) is extended to 9
Indian languages (BN, GU, ML, MR, KN,
OR, PA, TA, TE) with the help of paral-
lel data from CVIT (PIB, MKB), Samanan-
tar (indic2indic), Global-Voices and News-
Commentary datasets. From these datasets,
we considered only those sentences that are at
least 10 words long.

Shttps://alaginrc.nict.go.jp/

WikiCorpus/index_E.html
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* The Table 5 shows the detailed statistics of
the number of sentences and their parallel lan-
guages across all the 17 languages.

B Data for Topic ID

This section presents the statistics of MLDoc5x
and INASx topic ID datasets created for the experi-
ments reported in this paper. We attempted to keep
about 250 examples per topic in each training and
development sets, and 1000 examples per topic in
the test set. We created 5 such splits and the av-
erage number of examples per language-set-topic
are illustrated in Tables 6. The original data for
languages GU, ML, PA, were smaller, hence they
have smaller number of examples per set.

C MBay models

* The initial (seed) MBay models were trained
on 6 languages (DE, EN, ES, FR, IT, RU)
using the parallel data (7.48M sentences) de-
scribed in Appendix A. The training took
about 25 hrs on a single NVIDIA RTX A6000
with 48 GB of memory. The trained model
has 154M parameters. This model trained on
6 languages is referred as MBay-6L.

* The MBay-6L seed model was extended to JA,
ZH using EN as pivot. It was trained on 3.3M
parallel sentences, and took about 11 hrs on
a similar GPU. This extended training added
51.4M additional parameters for JA and ZH.
During training, the parameters of EN were
frozen and the parameters of other languages
(DE, ES, FR, IT, RU) were not loaded as they
are not required.

* The MBay-6L seed model was extended to 9
Indian languages using EN as pivot. It was
trained on 7.29M parallel sentences, and took
about 21hrs to train on a similar GPU. This
added 96.2M additional parameters to repre-
sent 9 Indian languages. As the vocabulary
sizes for these languages is not as big as other
high-resources languages (Table 5, the num-
ber of additional parameters were also rela-
tively less.
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Language ISO code Parallel pairs Sentences (M)  Tokens (M)  Vocabulary size

& English EN EUUUT\ {KN} 3.89 154.46 100k
& French FR & 1.62 73.38 100k
& German DE £ 0.85 33.02 100k
& Italian IT & 0.67 25.18 100k
& Russian RU & 1.11 37.01 100k
& Spanish ES £ 1.64 74.03 100k
u Chinese ZH {EN, JA} 1.19 54.84 100k
u Japanese JA {EN, ZH} 0.37 21.15 100k
T Kannada KN 7 0.36 7.92 25521
T Bengali BN Z U {EN} 0.95 20.05 36925
T Gujarati GU Z U {EN} 0.75 15.92 28268
T Malayalam ML ZU {EN} 0.57 13.89 36877
A Marathi MR Z U {EN} 0.86 18.43 30557
T Odia OR ZU {EN} 0.50 11.36 25450
A Punjabi PA ZU {EN} 0.95 15.34 24209
T Tamil TA T U {EN} 0.93 21.21 33960
A Telugu TE Z U {EN} 0.68 11.96 32548
Total 17.89 609.16

Table 5: Statistics of the data used in training and extending the MBay model. Sentences and tokens are in millions
M).

MLDoc5x Topics
| CCAT | ECAT | GCAT | MCAT

DE 257 270 1019 | 245 259 936 | 251 259 1022 | 247 237 1023
EN 257 270 1019 | 245 259 936 | 251 259 1022 | 247 237 1023
ES 305 310 1186 | 198 197 782 | 205 214 816 | 292 279 1216
FR 257 270 1019 | 245 259 936 | 251 259 1022 | 247 237 1023
IT 257 270 1019 | 245 259 936 | 251 259 1022 | 247 237 1023
JA 257 270 1019 | 245 259 936 | 251 259 1022 | 247 237 1023
RU 274 283 1081 | 255 265 1023 | 204 256 819 | 267 256 1077
ZH 306 313 1193 | 282 312 1187 | 118 93 401 | 294 282 1219

| INA5x Topics

|  Entertainment | Sports | Business
BN 250 250 1001 | 250 249 999 - - -
GU 34 37 149 37 36 147 40 38 160
KN 233 237 931 | 235 231 938 - - -
ML 78 81 319 83 80 328 75 76 302

MR 121 122 494 | 120 123 494 - - -
OR 237 232 928 | 236 233 948 | 237 237 959
PA 40 41 163 40 39 165 43 44 170
TA 236 232 928 | 231 235 935 - - -
TE 248 249 988 | 252 253 997 | 250 247 1015

Table 6: Number of examples in each topic for every language in RCV (MLDoc5x) and IndicNLP news articles
(INAS5x) datasets. Under each topic, the three columns represent training, development and test sets respectively.
Each number represents the average number (rounded to nearest integer) of examples across 5 splits for the respec-
tive language-set-topic.

D MLDoc results with LASER LASER/tree/main/tasks/mldoc.
In Table 7, a positive value indicates that we
obtained a better result, while a negative value in-

We tried to replicate the MLDoc results us- ) .
dicates the opposite.

ing LASER, however we found significant
differences is few language directions. The
Table 7 shows the absolute differences in the
results we obtained as compared the ones re-
ported in the official github repository: https:
//github.com/facebookresearch/
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TEST LANGUAGE
EN DE FR IT ES RU JA ZH

EN | -042 -170 -472 -0.23 305 013 -1.67 -3.30
DE 093 -0.68 065 -218 -1.83 030 -7.17 -0.78
FR | -1.60 -240 -058 -222 -198 -0.17 -6.87 -13.31
IT | -238 -259 -225 278 320 586 -647 -10.72
ES | -024 -270 -285 -1.58 -493 780 -4.05 8.95
RU 053  -2.76 035 255 225 -1.00 -2.05 2.17
JA | 10.70 1437 1028 6.23 11.87 9.53 -0.07 1532
ZH 2.02 0.20 1.01  0.38 585 0.17 4.15 0.51

Table 7: Discrepancy in replicating the results of LASER + MLP system.

Model URL

LASER https://github.com/facebookresearch/LASER

XLM-R-stsb https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
LaBSE https://huggingface.co/sentence-transformers/LaBSE

Distil-mUSE  https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2

Table 8: Pre-trained models and their download URL.

E Detailed results

Here we present the detailed results i.e., mean and
std.dev. across 5-splits in all the transfer direc-
tions. For each pre-trained multilingual model, we
only show the results of the system that yielded
best downstream performance. Notice in Tables 9,
10 and 11 that the high std.dev. indicates that the
choosing a different training / dev / test split could
result in different performance of the system. The
original MLDoc is sampled from RCV multilin-
gual corpus and had only one such split and hence
couldn’t capture the variance in the results.

The first two parts in Table 9 show LASER? +
MLP and LASER? + LR. Notice that for LR the
variance across 5 splits is much lower as compared
to MLP.
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TEST LANGUAGE
EN DE FR 1T ES RU JA ZH

‘ LASER? + MLP

EN | 87.0(0.7)  855(1.4) 83.0(3.8) 68.4(4.6) 77.8(22) 67427 67.1(3.8) 74.1(0.7)
DE | 73.7(49) 92.1(0.1)  83.9(0.7) 734(1.4) 81.0(1.9) 669(5.7) 71.6(49) 74.6(9.5)
FR | 762(0.5) 88.0(0.4) [905(0.5) 723(1.2) 79.9(2.0) 68.0(0.9) 69.8(0.5 77.2(1.0)
IT | 61.3(125) 78.8(14.1) 77.1(8.3) '842(077)" 76.0(2.6) 63.4(4.6) 61.2(7.6) 69.1(6.5)
ES | 64.4(03) 81.9(1.9) 78.8(3.1) 744(2.5) 925(0.1) 57.7(33) 64.1(7.6) 64.5(12.2)
RU | 649(23) 78.1(55) 702(7.3) 667(3.1) 70.2(54) "834(03)" 67.5(6.3) 67.5(11.3)
JA | 586(1.1) 70735 62827 57.3(1.3) 59.8(1.9) 51.7(29) [ 859(0.1) 65.8(8.1)
ZH | 63.7(79) 763(52) 705(7.9) 64.8(6.7) 685(3.9) 61.0(1.9) 71.2(2.5) ['86.9(0:7)

| LASER? + LR

EN | 87.3(0.5)  86.2(1.1) 81.9(1.2) 67.2(2.1) 768(2.0) 66.0(2.0) 663(23) 735(2.1)
DE | 73.0(1.4) "924(03)" 83.0(0.8) 73.5(1.1) 81.1(12) 68.0(0.8) 71.3(0.9) 76.4(2.0)
FR | 75.1(03) 882(1.0) [90.3(0.5) 728(1.1) 79.3(1.0) 67.9(2.0) 69.3(1.9) 77.6(2.4)
IT | 61.1(1.8) 80.4(2.6) 77.1(2.0) "845(07)" 76.6(1.7) 644(1.0) 61.9(3.6) 70.1(3.5)
ES | 68.5(0.5 84.1(0.8) 81.6(1.3) 76.0(1.3) 927(04) 64.9(12) 69.5(1.5) 72.9(2.3)
RU | 64.8(0.8) 769(1.4) 69.3(24) 66.6(1.3) 69.1(1.8) '83.1(04) 67.0(1.2) 669 (3.6)
JA | 603 (1.4)  729(1.1)  64.1(1.9) 564(15) 604(1.6) 50.1(1.2) [ 857(04) 67.6(1.7)
ZH | 642(24) 775(1.2) 71.6(22) 66.8(0.9) 68.4(1.5) 64.0(1.7) 73.1(0.4) [ 87.0(0.7)

\ XLM-R-stsb’ + MLP

EN | 88.0(0.7)  85.1(1.2) 79.4(1.7) 69.4(1.0) 78.8(0.8) 66.3(3.7) 688(1.6) 722(2.7)
DE | 75.1(0.7) 925(04)  83.0(0.5) 71.5(24) 77.9(09) 61.7(0.5 69.5(2.6) 68.7(4.1)
FR | 773(1.2) 878 (1.4) | 89.7(08) 729(2.0) 78.6(22) 63.7(27) 69.0(2.9) 68.9(3.3)
IT | 69.0(1.2) 82.6(1.2) 79.1(1.6) | 83.0(0.:6) 77.9(1.7) 565(3.1) 67.6(1.8) 63.2(L7)
ES | 713(1.5)  78.7(26) 784(1.8) 724(2.6) 923(03) 57.8(6.1) 68.4(1.5) 64.7(2.1)
RU | 69.3(0.7) 769(28) 753(1.2) 650(2.8) 70.9(2.1) 829(02) 63.6(1.6) 62.4(3.8)
JA | 71.6(1.4)  83.0(0.7) 77.1(1.2) 66.4(1.6) 73.7(1.0) 61.7(4.1) [ 83707 709 (1.2)
ZH | 70.1(2.8) 794(27) 75.1(2.5) 64325 693@3.01) 62.6(22) 71.2(1.3) | 84.7(0.4)

\ Distil-mUSE’ + LR

EN ['89:3(03)" 859(1.4) 824(1.3) 69.1(1.9) 77.7(1.5) 623(24) 65233) 79.3(1.3)
DE | 77.7(1.0) | 93.1(04) @ 84.9(0.3) 73.0(0.6) 79.6(1.5) 66.4(1.0) 655(4.2) 80.1(1.0)
FR | 78.7(0.6)  89.4(0.4) [90.7(04)" 73.1(1.0) 80.0(1.7) 64.4(1.7) 633 (1.1) 80.1(1.3)
IT | 72.1(2.2) 834(12) 81.4(0.9) [ 83.7(0.6) 79.8(1.9) 64.5(1.8) 60.7(3.7) 77.2(1.1)
ES | 777(1.1)  857(1.3)  82.5(L.1) 75.4(0.7) "927(04)" 63.93.1) 60.8(1.8) 76.1(1.8)
RU | 70.8(2.6) 82.0(1.9) 743(2.3) 66.5(1.0) 68.8(2.4) 832(04) 64.1(0.8) 71.1(2.1)
JA | 70421 766(1.9)  719(1.9) 627(1.3) 66327 56.0(2.4) '850(0:6)" 75.6(1.3)
ZH | 76.1(22) 83.6(2.1) 779(2.1) 712(.0) 755(1.6) 67.0(22) 650(22) | 87.4(0.4)

\ LaBSE’ + LR

EN | 90.6 (0.4) 89.0 (0.9) 87.8(0.6) 762(1.3) 82.7(1.0) 69.6(3.4) 758(1.1) 822(0.6)
DE | 77.8(1.5) 93.8 (0.3) 88.2(0.7) 76.2(0.8) 849(2.2) 720(29) 765(1.5) 83.7(0.7)
FR | 81.4(0.4) 91.1 (0.6) 92.1(0.4) 763(1.2) 836(1.4) 71.0(3.2) 737(1l.1) 829(1.3)
IT | 73.3(1.2) 87.0 (0.6) 84.2(1.1) | 86.6(0.2) 852(0.7) 71.6(1.1) 71.7(1.2) 80.6(1.3)
ES | 77.9(1.5) 89.9 (0.6) 86.9(1.3) 81.0(0.9)  93.9(03) 68.93.00 754(15) 81.6(1.0)
RU | 733 (1.1) 86.1 (1.8) 80.7(22) 74.1(1.3) 72.8(3.4) 86.0(0.5) 71.2(1.8) 78.8(1.5)
JA | 76.8 (0.5) 87.1 (1.3) 83.7(14) 728(0.5) 795(1.1) 67.6(2.7)  86.2(0.5) 82.8(1.8)
ZH | 76.8 (0.6) 86.6 (2.4) 83.4(2.7) 742(25) 79.2(1.5) 69.4@3.8) 76.7(1.9) @ 89.6(0.6)

‘ MBay + GLCU-P

EN | 86.8(0.3)  85.6(0.3) 824(1.0) 703(l.1) 785(0.6) 650(1.7) 66.8(1.6) 70.1(1.5)
DE | 752(09) 91.1(05)  85.6(0.5) 70.6(1.0) 79.8(1.1) 549(1.7) 57.927) 69.3(1.3)
FR | 753(0.6) 87.0(0.7) | 89.8(04) 74.1(04) 80.9(0.6) 65.7(1.3) 51.9(L.1) 73.2(1.3)
IT | 73.8(1.0) 84.6(0.9) 83.9(0.5) | 82.1(0.7) 82.9(0.9) 583(24) 59.5(1.8) 68.4(0.9)
ES | 741(0.6) 84.6(1.1) 825(0.7) 753(0.7) 89.1(02) 58.5(1.8) 64.7(1.6) 68.6(1.2)
RU | 66.8(1.7) 749(1.6) 753(1.7) 67.6(1.3) 73.6(1.2) 812(05) 553(1.5) 60.1(2.8)
JA | 675009  766(1.2)  68.1(1.5) 59.9(0.8) 67.4(0.8) 51.6(1.5) [847(0.7) 59.4(1.2)
ZH | 69.1(0.9) 77.9(1.8) 735(1.9) 63.5(1.2) 66.9(1.5) 50.8(1.9) 63.7(1.1) | 83.7(0.6)

Table 9: Detailed classification results on the MLDoc5x test sets using various models with best downstream
classification performance. Values in the parenthesis indicate the std.dev. across 5 splits. Bold values indicate
the numbers with std.dev > 3. p: Max-pooling over encoder outputs. ¢: Input trimmed to 128 tokens. m : Input
trimmed to maximum sequence length.
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TEST LANGUAGE

BN GU KN ML MR OR PA TA TE
| LASER’ + MLP

BN | 954(0:5) - - 90.8 (0.5 854(2.5) - - 57.4(8.1) 720 (5.5)

ML | 86.2(1.6) - - 934 (1.8) 86.3(2.8) - - 63.7(52) 72.8(22)

MR | 89.2(3.0) - - 88.8 (2.4) |934(1.0) - - 59.8 (7.0) 70.9 (2.3)

TA | 80.6(23) - - 77.8(2.2) 769 (5.1) - - 88.1(0.7) 62.8(5.1)

TE | 83.6(39) - - 83.9(33) 86.0(19) - - 56.3(2.9) [93.7(0:5)

\ XLM-R-stsb’ + LR

BN | 95.0(0.3) 92.4(09) 874(22) 93.6(1.1) 936(1.2) 913(1.7) 91.5@3.00 93.7(14) 832(@3.1
GU | 847(19) 934(2.0) 84.0(1.7) 915(1.0) 927(1.2) 90.6(3.5) 893(4.0) 91914 858(1.9)
KN | 885@3.3) 943(0.7) | 93.7(0.7) 95.6(0.6) 95.0(0.5) 93.0(1.0) 94.1(1.6) 96.6(0.3) 89.5(1.1)
ML | 883 (24) 93.6(1.2) 89.6(2.1) 953(09) 95.6(0.8) 945(0.5) 94.8(0.7) 956(1.0) 87.2(0.5)
MR | 86.7(2.1) 94.8(0.7) 839(2.3) 944(0.7) 96.4(0.3) 945(0.7) 93.8(2.0) 94.1(04) 84.1(1.3)
OR | 90.1(3.4) 93.4(1.8) 86.6(1.4) 93.0(2.9) 953(1.0) 963(0.4) 92.8(2.8) 94.1(1.5) 86.0(2.5)
PA | 87.3(1.9) 919(1.3) 848(1.3) 90.7(2.0) 91.7(1.9) 91.7(1.4) 9452.00 92.7(1.8) 81.3(2.3)
TA | 90.6(2.0) 9292.0)0 89.7(14) 950(1.0) 95.6(0.6) 90.034) 91.5(24) 979(0.4) 89.7(0.3)
TE | 87.2(2.6) 919(1.5) 89.0(1.8) 92.0(22.6) 935(2.0) 89844 90.13.7) 94.8(.9)  94.7(0.7)

| LaBSE™ + LR

BN | 97.0(04) 955(2.1) 95.0(0.7) 97.3(0.8) 96.1(1.7) 97.6(04) 97.6(1.2) 97.5(22) 96.2(1.1)
GU | 95.4(0.7) '969(12) 95.6(0.5) 97.3(0.3) 96.5(0.6) 97.3(0.5 97.4(1.0) 97.2(1.0) 96.7(0.4)
KN | 95.7(1.1) 96.7(0.8) [96:9(0:2)" 98.8(0.6) 97.9(0.3) 97.3(0.4) 98.1(0.4) 98.6(0.3) 97.5(0.6)
ML | 952(1.1) 97.0(1.1) 96.2(0.3) 984 (03) 98.0(0.3) 97.6(0.6) 97.8(0.7) 98.6(0.4) 97.4(0.4)
MR | 96.5(0.3) 97.2(1.0) 96.5(0.2) 98.4(0.6) "98:1(02)" 98.1(0.2) 984 (0.5 98.6(0.2) 97.0(0.3)
OR | 96.5(0.6) 96.6(0.7) 96.2(0.2) 98.0(0.6) 98.0(0.2) | 98.4(0.2) 98.5(0.8) 98.6(0.4) 97.4(0.3)
PA | 964 (0.3) 956(0.9) 955(0.2) 97.7(0.4) 97.5(0.3) 97.9(0.2) "985(0:5)" 98.1 (0.4) 96.3(0.3)
TA | 96.6(0.4) 96.5(1.2) 96.5(0.3) 98.1(02) 97.6(0.6) 98.0(0.2) 98.0(0.9) 99.2(0.1) 97.7(0.2)
TE | 96.7(04) 97.4(0.9) 96.9(0.3) 98.3(0.5) 97.9(0.2) 97.4(0.5) 98.3(0.9) 99.1(0.2) | 985 (0.2)

| MBay + GLCU-P

BN | 962(0.6) 91.8(24) 91.5(0.7) 90.0(0.8) 94.5(0.4) 93.6(04) 91.8(1.1) 96.4(0.5) 92.0(0.9)
GU | 94.4(0.9) "97.0009)" 91.6(0.7) 92.0(0.3) 943(1.0) 94.8(0.5) 91.2(0.9) 96.7(0.6) 90.8(1.6)
KN | 91.4(1.4) 944(1.9) '956(0.5) 94.6(1.1) 959(0.4) 958(0.6) 951(1.3) 98.0(0.3) 94.5(0.5)
ML | 93.1(1.9) 94.0(2.3) 93.5(0.5) [972(0:6) 94.9(12) 94.6(1.6) 93.8(2.3) 98.0(0.4) 93.2(0.3)
MR | 944 (12) 95.0(1.4) 943(0.5 96.0(0.3) 967(0.3) 96.5(0.5 96.1(1.1) 98.2(0.4) 93.4(0.7)
OR | 93.9(0.7) 950(0.9) 93.1(0.6) 958(0.7) 96.5(0.6) [97.9(02) 94.5(1.4) 96.9(0.3) 91.8(0.5)
PA | 922(3.6) 93.4(1.9) 922(0.8) 93.9(0.8) 95.1(0.6) 94.0(0.9) 97.2(0:8) 97.1(0.6) 91.2(0.6)
TA | 93.4(0.4) 943(1.4) 93.0(0.8) 944(1.4) 948(0.9) 93.5(0.4) 93.4(0.7) 98.7(0:1) 94.1(0.5)
TE | 91.9(1.2) 953(0.7) 942(0.6) 942(1.1) 954(0.6) 94.7(0.3) 93.4(1.6) 98.1(0.2) = 96.7(0.4)

Table 10: Detailed classification results on the 2-class setup from INASx test sets using various models with best
downstream classification performance. Values in the parenthesis indicate the std.dev. across 5 splits. Bold values
indicate the numbers with std.dev > 3. p: Max-pooling over encoder outputs. ¢: Input trimmed to 128 tokens. m :
Input trimmed to maximum sequence length.
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TEST LANGUAGE
GU ML OR PA TE

\ XLM-R-stsb’ + MLP

GU [1942(15)" 92.6(1.1) 92.6(1.0) 913(1.8) 85.8(2.9)
ML | 932(1.5) 952(0.7) 93.8(0.5) 94.0(1.6) 86.7(1.8)
OR | 94.0(1.1) 94.3(0.9) 1964 (04) 93.1(2.6) 85.8(2.0)
PA | 91.6(1.6) 91.5(1.4) 923(24) [953(12) 82.3(2.9)
TE | 93.5(0.9) 93.4(L0) 929(1.8) 92.3(1.0) | 94.9(0.7)

| LaBSE™ + MLP

GU | 97.0(1.0) 97.7(04) 97.6(03) 97.6(1.1) 97.0(0.3)
ML | 97.1(0.8) 983 (04) 97.5(0.8) 97.8(0.6) 97.4(0.4)
OR | 954 (1.7) 97.5(0.3) 983(0.3) 97.4(0.6) 96.3(1.1)
PA | 959(0.9) 97.4(0.3) 97.9(0.3) | 98.5(0.5) 96.4(0.2)
TE | 97.0(1.0) 97.8(0.5) 96.8(0.9) 97.1(1.2) 98.4(0.3)

| MBay + GLCU-P

GU | 96.0(0.3) 90.6(0.9) 88.4(0.9) 89.2(1.6) 89.5(1.3)
ML | 92.6(1.6) 949(0.7) 889(1.3) 91.3(1.4) 90.8(0.6)
OR | 91.6(0.5) 92.3(0.6) | 96.5(0.3) 91.0(1.2) 89.8(0.7)
PA | 91.1(1.3) 90.2(1.1) 850(2.0) 953 (1.1) 89.5(0.7)
TE | 93.2(1.3) 90.9(0.6) 87.5(0.7) 92.3(1.4) | 96.1(0.3)

Table 11: Detailed classification results on the 2-class setup from INASX test sets using various models with best
downstream classification performance. Values in the parenthesis indicate the std.dev. across 5 splits. Bold values
indicate the numbers with std.dev > 3. p: Max-pooling over encoder outputs. ¢: Input trimmed to 128 tokens. m :
Input trimmed to maximum sequence length.
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