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Abstract

In this work, we first examine the efficacy of score-based generative models (SGMs)1

for out-of-distribution (OOD) detection. We show previously proposed OOD de-2

tection metrics based on SGMs fail to address OODs that share similar textures but3

different object shapes. Based on the observation, we construct RotNCSN, a novel4

OOD detection method based-on the score matching and data augmentation. Rot-5

NCSN first applies random rotation to the perturbed data and forces its output to be6

rotation-invariant. Therefore, RotNCSN becomes more shape-aware. Experiment7

results show that RotNCSN consistently improves over the baseline metric based8

on the SGMs. Furthermore, RotNCSN also achieves competitive OOD detection9

performance in the FashionMNIST domain.10

1 Introduction11

Score-based generative models (SGMs) Song and Ermon [2019], Ho et al. [2020], Song et al. [2021]12

have emerged as a promising method for deep generative modelling on various domains Dhariwal and13

Nichol [2021], Xu et al. [2022] due to its competitive performance and stable training. Furthermore,14

they have been successfully applied in various image-based subtasks, including stroke-based editing15

Meng et al. [2022], super-resolution Hoogeboom et al. [2022], and segmentation Baranchuk et al.16

[2022]. However, most of the applications are based on image generation and relatively little work has17

been devoted to applying SGMs to hypotheis testing, including out-of-distribution (OOD) detection.18

OOD detection aims to design a reliable metric that discriminates the given distribution from the19

others. Since generative models naturally model in-distribution images, they are widely applied for20

OOD detection Havtorn et al. [2021], Xiao et al. [2020]. However, there are few investigations on the21

potential of SGM in OOD detection.22

In this paper, we first question whether previous OOD detection metrics based on SGMs determine23

data based on its object shape. For example, in the work of Yang et al. [2021], OOD detection24

methods based on the classifier trained in the CIFAR-10 cat and dog images assign higher confidence25

to the CIFAR-10 data that come from different classes than the dog image from the ImageNet data26

with negligible covariate shift. We take this analog to an unsupervised setting and design OOD data27

that share a similar texture to the in-distribution data. OOD detection metrics based on the norm of28

the score function Mahmood et al. [2021] and reconstruction loss are vulnerable to such OOD data29

that share a similar texture.30

To overcome such issues, we propose RotNCSN, an OOD detection method that integrates score31

matching with data augmentation. RotNCSN is trained to be rotation-invariant and therefore be more32

shape-aware. We test RotNCSN in various OOD detection benchmarks. Compared to the previous33

score matching-based methods, RotNCSN achieves considerable improvement. Moreover, RotNCSN34

shows competitive performance against state-of-the-art baselines on unsupervised OOD detection.35
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2 Background36

In this section, we introduce the formulation of OOD detection. Furthermore, we study examples of37

score-based methods applied to OOD detection.38

2.1 OOD detection39

In OOD detection, we want to distinguish the given distribution D from the others. Therefore, given40

Dtrain ⊂ D, we design a metric f that can discriminate samples from Dtest ⊂ D from the other outlier41

distributions. We use binary hypothesis testing measures to evaluate the model; area under the ROC42

curve (AUROC) or detection accuracy.43

In unsupervised OOD detection where only the data information is applied, generative models have44

been widely used to extract reliable metrics. In the beginning, the likelihood or discriminator output45

of the generative models, including VAE Kingma and Welling [2014], GAN Goodfellow et al. [2014],46

and GLOW Kingma and Dhariwal [2018], is used. However, Nalisnick et al. [2019] found that such47

metrics can be vulnerable to distinguishing simple OODs, such as SVHN from CIFAR-10 Krizhevsky48

and Hinton [2009]. Various methods are proposed to explain such phenomena; complexity of the49

data Choi and Chung [2020], Serrà et al. [2020], overfitting to low-level features Havtorn et al.50

[2021], Kirichenko et al. [2020], Schirrmeister et al. [2020], Zhang et al. [2021], and overfitting into51

backgrounds ren et al. [2019]. While SGMs do considerably better in such dataset Mahmood et al.52

[2021], we show they are still vulnerable to OODs generated by geometrical transformations.53

2.2 SGMs and application to OOD detection54

In this section, we introduce MSMA Mahmood et al. [2021], an OOD detection method that utilizes55

the score function of SGM. MSMA use NCSN Song and Ermon [2019] as a base model for training56

the score function. NCSN utilizes a score function sθ(x, l) that takes perturbed data and the degree57

of perturbation as input. NCSN trains to match the gradient of log-likelihood of the perturbed data in58

multiple scales (σi)
L
i=1. We follow the denoising score matching version of NCSN that is optimized59

to minimize the loss function below.60
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i
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2

]
(1)

MSMA utilizes the normality vector fmsma(x) for the observed data x, which is based on the multi-61

scale score function. fmsma is a L-dimensional vector where each indice is defined as below.62

fmsma(x)i = ∥σisθ(x, σi)∥ (2)

MSMA trains an unsupervised one-class classification model based on the normality vector and63

uses its likelihood to detect OOD data. Alongside the score function, we also explore the choice of64

normality vector frec based on the reconstruction error of the perturbation.65

frec(x)i = Ex̃∼N (x,σiI)

∥∥∥∥sθ(x̃, σi) +
x̃− x

σ2
i

∥∥∥∥ (3)

While computing the expectation may require multiple iterations, we found that the number of66

iterations does not affect the normality vector much. MSMA learns an unsupervised model (e.g67

GMM) over the normality vector of training data to extract scalar metrics. While MSMA shows68

state-of-the-art performance in some OOD detection tasks Mahmood et al. [2021], we show that they69

show underwhelming performance in detecting various OODs.70
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Method CIFAR-100 rot90 rot180 rot270 Patch shuffle

fmsma 0.615 0.554 0.542 0.562 0.737
frec 0.607 0.556 0.546 0.570 0.737

Table 1: AUROC of previously proposed SGM-based OOD detection methods trained in the CIFAR-
10 dataset tested in the proposed OOD dataset. All the methods show underwhelming performance
on the OOD data.

Figure 1: Visual schematic of RotNCSN. RotNCSN forces the output to be rotation-invariant
concerning the perturbed data.

3 Methodology71

3.1 Proposed Method72

3.2 Motivation73

We first ask our motivating question: do SGMs recognize in-distribution data via object shape instead74

of texture? For example, if a classifier model changes its prediction when the texture changes, the75

model is likely to predict the data by the texture, not by the object shape Geirhos et al. [2019]. Since76

we are dealing with the unsupervised setting, we test SGMs against the model that shares similar77

backgrounds but differs in shape. Specifically, we test the MSMA Mahmood et al. [2021] method78

on the NCSN trained in the CIFAR-10 Krizhevsky and Hinton [2009] dataset against the following79

OODs.80

• CIFAR-100 is known as near-OOD data for CIFAR-10 since they share similar textures. Since81

CIFAR-100 and CIFAR-10 are both subsets of the 80-million image dataset, an OOD detector should82

be aware of class-wise discriminability. This is challenging for an unsupervised OOD detection83

setting.84

• Rotation is also a plausible OOD to check the dependence of metric to object orientation. In the85

CIFAR-10 dataset, most data share a similar shape orientation. For example, there is no deer standing86

upside-down in the CIFAR-10 dataset. Therefore, we regard rotated data as OOD data Gossweiler87

et al. [2009]. We test the CIFAR-10 dataset that rotated 90, 180, and 270 degrees counter-clockwise88

and refer to them as rot90, rot180, and rot270.89

• Patch shuffling extracts the patch from the image and shuffles the order of the patch to construct90

the OOD data. We divide the image into 16 8 × 8-sized patches and shuffle them in random order.91

This operation relatively destroys the object’s shape compared to the texture Noroozi and Favaro92

[2016].93

We now report the performance of GMMs trained on fmsma Mahmood et al. [2021] and frec in the94

following OODs in Table 1. Both metrics show underwhelming performance in detecting OOD95

images that share similar textures. We further show that the trend is consistent when evaluated in the96

alternative dataset, SVHN. We refer the results to Appendix.97

We now introduce our proposed scheme RotNCSN. In the training phase, RotNCSN applies random98

rotation r ∈ R = {Rot(X, 0),Rot(X, 90),Rot(X, 180),Rot(X, 270)}. Then, RotNCSN minimizes99

the loss function below.100
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OOD RotNCSN (ours) fmsma frec LR IC Likelihood Ratio

EMNIST 0.982 0.961 0.937
MNIST 0.994 0.828 0.842 0.967 0.946 0.924

NotMNIST 0.978 0.932 0.892 1.0 0.923 0.996
KMNIST 0.988 0.901 0.893 0.983 0.708 0.983

OOD RotNCSN fmsma frec

CIFAR-100 0.678 0.615 0.607
Table 2: AUROC of RotNCSN and other OOD detection metrics on FashionMNIST (up) and CIFAR-
10 (down) in-distribution datasets. Results on LR, IC, and Likelihood Ratio are from Xiao et al.
[2020]
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The score function of RotNCSN outputs the original noise matrix instead of the rotated noise matrix.101

Therefore, RotNCSN naturally learns to discriminate in-distribution data from the rotated data.102

Moreover, we expect RotNCSN to be more shape-aware since rotation-based self-supervised learning103

methods show efficacy in various downstream tasks Gidaris et al. [2018], Hendrycks et al. [2019].104

When new sample x is given, RotNCSN outputs the normality vector frot(x) as follows.105

frot(x)i = Ex̃∼N (x,σiI)

∑
r∈R

∥∥∥∥sθ (r (x̃) , σi) +
x̃− x

σ2
i

∥∥∥∥ (5)

RotNCSN then trains a unsupervised model (e.g. GMM) over the extracted normality vector from the106

training data. This is consistent to the evaluation of Mahmood et al. [2021].107

4 Discussion108

We first evaluate the performance of RotNCSN in the following OOD detection tasks. We refer109

training of the RotNCSN in the Appendix.110

FashionMNIST: we evaluate RotNCSN trained in FashionMNIST Xiao et al. [2017] dataset against111

the various OOD dataset; EMNIST, MNIST LeCun et al. [2010], NotMNIST, and KMNIST Clanuwat112

et al. [2018].113

CIFAR-10: we evaluate RotNCSN trained in the CIFAR-10 dataset against the challenging CIFAR-114

100 dataset. Since the two datasets show similar textures, we expect the conventional normality vector115

to struggle in this task.116

We sample x̃ once w.r.t each x while we compute frot(x). For the baseline, we compare with117

conventional normality vector fmsma and frecon. We directly use the trained score model of Mahmood118

et al. [2021] for evaluating the basline method. Since all score-based methods output the normality119

vector, we train GMM over the normality vector of the train data to output the explicit likelihood.120

Furthermore, as a competitive unsupervised OOD detection baseline, we compare the results of Xiao121

et al. [2020], Serrà et al. [2020], and ren et al. [2019] and refer to them as LR, IC, and Likelihood122

Ratio. For the result of LR and Likelihood Ratio, we refer to the result of Xiao et al. [2020] that use123

VAE.124

We show the OOD detection result in Table 2. In the FashionMNIST domain, our proposed RotNCSN125

consistently improves over the conventional NCSN-based OOD detection metrics (MSMA, Recon).126

Furthermore, RotNCSN is competitive with various OOD detection methods. Finally, in the CIFAR-127

10 domain, RotNCSN improves over MSMA in the challenging CIFAR-100 detection task. We leave128

further analysis in the Appendix.129
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Figure 2: Examples of the tested OODs. (a): Original CIFAR-10 image. (b),(c),(d): rotated CIFAR-
10 images. (e): patch-shuffled CIFAR-10 image. (f): CIFAR-100 images.

Method rot90 rot180 rot270 Patch shuffle

fmsma 0.635 0.520 0.630 0.897
frec 0.640 0.527 0.634 0.865

Table 3: AUROC of previously proposed SGM-based OOD detection methods trained in the SVHN
dataset tested in the proposed OOD dataset.

A Appendix191

A.1 Further results on the motivation192

We further provide the visualization and additional results that support our hypothesis. First, we193

provide a visualization of the OOD data used in Figure 2. We further test our motivation in the194

alternative SVHN dataset. We refer the result to Table 3. Similar to CIFAR-10, SGM trained in the195

SVHN dataset also struggles to detect rotated OODs although they are not in the training dataset.196

Nevertheless, SGM trained in the SVHN dataset is more robust to patch shuffling compared to the197

CIFAR-10 dataset.198

A.2 Experiment settings199

In training the RotNCSN, we do not change any training details (e.g noise scale) except the training200

epoch. We train RotNCSN for 400000 steps in the FashionMNIST dataset and 600000 steps in the201

CIFAR-10 dataset.202

A.3 Further analysis203

In this section, we further analyze the performance of RotNCSN compared to the NCSN. We visualize204

top-9 samples that RotNCSN and NCSN output the lowest likelihood on the FashionMNIST domain205

in Figure 3. While NCSN assigns higher uncertainty to relatively complex data, RotNCSN assigns206

higher uncertainty to data with a possible anomaly. For example, in the third row of the left of Figure207

3, we observe cracks in the object.208

We further analyze the effect of each noise level for OOD detection. While our method originates on209

the multi-scale vector, we extract the score of each noise level and use them independently for OOD210

detection. We simply use the distance from the mean of the training dataset’s score as the detection211

metric. Instead of AUROC, we plot TNR at 95% TPR for the distinct visualization.212

We report the result in Figure 4. Since we did not train over GMM nor use multi-scale score matching,213

the performance is less than the reported one in Table 2. The OOD detection performance increases214

while the noise level increases generally. However, the performance diminishes after 0.359. One215

hypothesis to explain this behavior is that reconstructing the original image at a high noise level may216

be an ill-posed problem and therefore become unsuitable for OOD detection.217
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Figure 3: Top-9 samples from the Fashion-MNIST dataset where RotNCSN (left) and NCSN (right)
assign highest uncertainty.

Figure 4: True negative rate (TNR) at 95% True positive rate (TPR) performance of RotNCSN w.r.t
noise-level.
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