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ABSTRACT

Recent advancements in Protein Language Models (pLMs) have enabled high-throughput analysis of
proteins through primary sequence alone. At the same time, newfound evidence illustrates that codon
usage bias is remarkably predictive and can even change the final structure of a protein. Here, we
explore these findings by extending the traditional vocabulary of pLMs from amino acids to codons
to encapsulate more information inside CoDing Sequences (CDS). We build upon traditional transfer
learning techniques with a novel pipeline of token embedding matrix seeding, masked language
modeling, and student-teacher knowledge distillation, called MELD. This transformed the pretrained
ProtBERT into cdsBERT; a pLM with a codon vocabulary trained on a massive corpus of CDS. Inter-
estingly, cdsBERT variants produced a highly biochemically relevant latent space, outperforming their
amino acid-based counterparts on enzyme commission number prediction. Further analysis revealed
that synonymous codon token embeddings moved distinctly in the embedding space, showcasing
unique additions of information across broad phylogeny inside these traditionally “silent” mutations.
This embedding movement correlated significantly with average usage bias across phylogeny. Future
fine-tuned organism-specific codon pLMs may potentially have a more significant increase in codon
usage fidelity. This work enables an exciting potential in using the codon vocabulary to improve
current state-of-the-art structure and function prediction that necessitates the creation of a codon pLM
foundation model alongside the addition of high-quality CDS to large-scale protein databases.

Keywords Artificial intelligence · Machine learning · Protein language model · Codon usage bias · MELD · BERT

1 Introduction

Understanding how a protein’s sequence impacts its overall function, physiochemical properties, efficacy, and stability
is vital for deciphering mechanisms that underpin biology, including replication, transcription, translation, metabolism,
molecular signaling, and even disease-state-specific interaction networks [1, 2, 3, 4, 5, 6]. Protein Language Models
(pLMs) have taken biomedical research by storm, allowing for unprecedented large-scale protein analysis. Some notable
contributions include AlphaFold2, RoseTTAFold, ESMFold, OmegaFold, and EMBER2, which have successfully
estimated amino acid sequence-to-structure mapping [7, 8, 9, 10, 11]. More generalized models such as ProtBERT,
ProtT5, Ankh, and xTrimoPGLM offer highly effective contextualized sequence representations that map intuitively to
protein function, gene ontology, physiochemical properties, and more [12, 13, 14]. Interestingly, some pLM projects
have opted for different vocabularies outside of the traditional single-letter amino acid code. For example, the generative
model ProtGPT2 employs a tokenizer encompassing over 50,000 recurrent common oligomers, enhancing the scope of
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the token embedding matrix (TEM) by introducing more vocabulary variety [15]. However, the existence of codons
within biology presents a promising biologically pertinent vocabulary to use for token embedding.

At the core of molecular biology lies the central dogma, which encapsulates the flow of genetic information from DNA
to RNA to proteins [16]. Codons, comprising three nucleotides for every one amino acid, serve an intermediary role
in this process, encoding the 20 standard amino acids as well as three distinct stop signals. Given the 64 possible
codon combinations, this genetic code exhibits redundancy, allowing several synonymous codons to encode for the
same amino acid. Historically, synonymous codons were perceived as being inconsequential to the resultant protein
structure due to the consistent amino acid they encode for, termed a ’silent’ mutation [17]. However, recent revelations
in biochemistry and bioinformatics challenge this viewpoint.

The phenomenon of optimal codons, the specific codon most frequently used by an organism, showcases the rich
variability across evolutionary lineages [17, 18]. The variance in codon usage bias alone enables accurate prediction of
an organism’s phylogenetic lineage and the organelle of origin for a genetic sample [19]. This intricate codon usage can
be attributed to metabolic demands, regulatory mechanisms governing gene expression, and adaptive responses within
the organism. This complexity is further demonstrated by the fact that synonymous codons employ different tRNAs.
Distinct tRNAs are recruited for different codons, meaning that organisms favoring a select set of optimal codons can
economize on their tRNA production to optimize metabolic efficiency and potentially offer adaptive advantages in
specific ecological niches [20, 21, 22, 23, 24].

Moreover, studies have elucidated that silent mutations can indeed influence the final protein structure [18, 25]. The
same amino acid sequence, when encoded by different synonymous codons, can produce structurally diverse protein
domains [25]. One postulated mechanism attributes this variance to the rate of translation; rare tRNAs can slow down or
even pause translation, providing the emerging polypeptide chain an extended window to attain its native conformation,
possibly even leveraging the ribosome as a chaperone [18, 26, 27, 28]. Conversely, abundant tRNAs expedite translation.
Either scenario could be potentially optimal for a protein, given its specific requirements. Additionally, optimal codons
are thought to translate with higher accuracy compared to their lower usage counterparts [22]. Therefore, we hypothesize
that the codon sequence of a protein likely contains more information than the amino acid sequence.

If codon sequences are truly superior from an information standpoint, then it follows that pLMs based on codon
sequences should provide an increased depth of protein knowledge. To test if a pLM based on codon sequences
can discern additional information, we developed cdsBERT (CoDing Sequence Bidirectional Encoder Representation
Transformer). cdsBERT was seeded with ProtBERT and further trained on 4 million CoDing Sequences (CDS) compiled
from the NIH and Ensembl databases. The resulting model was subsequently trained via a modified student-teacher
Knowledge Distillation (KD); we termed this vocabulary extension pipeline MELD (Masked Extended Language
Distillation). Our hypothesis was that a shift in synonymous codon embeddings within the TEM would indicate
a nontrivial addition of protein information after applying MELD. Furthermore, we also validated our model by
conducting Enzyme Commission (EC) classification with cdsBERT vs. ProtBERT to establish how intuitively the codon
latent space maps to an example of protein function.

2 Methods

2.1 Coding sequence compilation

The CDS is a DNA sequence that determines the sequence of amino acids in a protein [29]. We utilize two curated
sources of CDS in our research. First was the NIH Consensus CDS (CCDS) project, which contains a high-quality
aggregate of CDS over the entire mouse and human genomes [29]. To introduce wider phylogenetic diversity into our
dataset, we compiled the CDS data of over 300 additional genomes from Ensembl [30] as a second source. Preprocessing
included removing sequences that 1) did not start with ATG or end in a traditional stop codon, 2) were longer than 1000
amino acids (computational efficiency), and 3) had lengths that were not multiples of three. To optimize data storage,
we used a novel codon single letter code shown in Table 1, to reduce dataset storage space by one-third. We attempted
to make the letter code as relevant as possible, keeping the human optimal codons as their corresponding uppercase
amino acid code, and the second most frequent synonymous codons in the lowercase version. Other seemingly random
additions were kept as close to the original amino acid letter as possible. We mapped methionine to “(” and the stop
codons to either “)”, “}”, or “]”. This made all possible open reading frames easily visible by containing them within
different forms of brackets.
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Amino Acid Single-Letter Code Three-Letter Code Codon Single Letter Codon Amino Acid Single-Letter Code Three-Letter Code Codon Single Letter Codon
Alanine A Ala GCU a Leucine L Leu CUC l
Alanine A Ala GCC A Leucine L Leu CUA J
Alanine A Ala GCA @ Leucine L Leu CUG L
Alanine A Ala GCG b Lysine K Lys AAA k
Arginine R Arg CGU B Lysine K Lys AAG K
Arginine R Arg CGC # Methionine M Met AUG (
Arginine R Arg CGA $ Phenylalanine F Phe UUU f
Arginine R Arg CGG % Phenylalanine F Phe UUC F
Arginine R Arg AGA r Proline P Pro CCU p
Arginine R Arg AGG R Proline P Pro CCC P

Asparagine N Asn AAU n Proline P Pro CCA o
Asparagine N Asn AAC N Proline P Pro CCG O

Aspartic acid D Asp GAU d Serine S Ser UCU =
Aspartic acid D Asp GAC D Serine S Ser UCC s

Cysteine C Cys UGU c Serine S Ser UCA z
Cysteine C Cys UGC C Serine S Ser UCG Z

Glutamic acid E Glu GAA e Serine S Ser AGU w
Glutamic acid E Glu GAG E Serine S Ser AGC S

Glutamine Q Gln CAA q Threonine T Thr ACU X
Glutamine Q Gln CAG Q Threonine T Thr ACC T

Glycine G Gly GGU ^ Threonine T Thr ACA t
Glycine G Gly GGC G Threonine T Thr ACG x
Glycine G Gly GGA & Tryptophan W Trp UGG W
Glycine G Gly GGG g Tyrosine Y Tyr UAU y

Histidine H His CAU h Tyrosine Y Tyr UAC Y
Histidine H His CAC H Valine V Val GUU u
Isoleucine I Ile AUU i Valine V Val GUC v
Isoleucine I Ile AUC I Valine V Val GUA U
Isoleucine I Ile AUA j Valine V Val GUG V
Leucine L Leu UUA + Stop * Ter UAA ]
Leucine L Leu UUG M Stop * Ter UAG }
Leucine L Leu CUU m Stop * Ter UGA )

Table 1: Translation between amino acid identifiers and novel single letter identifiers. Bold codons have the highest
frequency in humans and the italicized codons have the second highest.

2.2 Protein language models

pLMs, underpinned by transformer neural network architectures, have demonstrated great utility in protein science. Orig-
inally designed for natural language processing (NLP) tasks, transformers have remarkable proficiency in interpreting a
multitude of sequential data; including protein, nucleotide, and broader chemical sequences [1, 12].

A cornerstone of this proficiency lies in the token embeddings, a representation method that transforms words in natural
language, or amino acids in protein sequences, into numerical vectors. In essence, each amino acid is analogous to
a word in natural language and is mapped to a unique integer, while the entire protein sequence can be viewed as a
sentence. These integers then serve as indices, providing access to a predefined matrix or lookup table, the TEM. As
such, the TEM is a learned vector representation that encapsulates the syntactic and semantic nuances of each amino
acid [1, 31].

Central to the transformer architecture is the multi-head self-attention mechanism. This mechanism is adept at capturing
long-range dependencies between tokens in a sequence. It achieves this by evaluating the importance of each token
relative to every other token in the sequence. The mathematical representation of this self-attention can be formulated
as:

Attention(Q,K, V ) = softmax
(
QKT

√
dK

)
V, (1)

where Q, K, and V denote the query, key, and value matrices, respectively. dk is the dimension of the key matrix.
These matrices are extracted from the embeddings of amino acids, described by:

Q = We ×WQ, K = We ×WK , V = We ×WV , (2)

with We being the TEM and WQ, WK , and WV representing learned weights [31].

Further expanding on the self-attention mechanism, the multi-head attention subdivides the input sequence, creating
multiple sets of query, key, and value matrices. Each of these sets, or “heads”, processes the sequence independently,
capturing unique relationships and patterns. These individual outputs are then consolidated to provide a comprehensive
understanding of the sequence with a further learned linear projection [31].

In total, a single “transformer layer” is made up of a combination of attention and feed-forward layers, which introduce
non-linear transformations in the latent space. Typically, many of these transformer layers need to be stacked together

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.558027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.558027
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORIGINAL RESEARCH - SEPTEMBER 16, 2023

to effectively capture semantic information in the embeddings and contextual information with attention. In our case,
we utilized a pre-trained model: ProtBERT-BFD.

ProtBERT-BFD is a pLM with 30 transformer layers, 16 attention heads, an embedding dimension of 1024, and trained
on the Big Fantastic Dataset (BFD) comprised of over 2 billion amino acid sequences in a self-supervised fashion
[12]. We chose to use this specific pLM due to its modest size at 420 million parameters compared to much larger
counterparts. The size and excellent protein understanding enabled efficient model use and training. Additionally, the
1024 embedding size is quite large relative to its total parameter count. This means that the capability of this model
in capturing semantic and nuanced synonymous codon information is intuitively higher than a model with a smaller
embedding dimension in which to store that information.

2.3 MELD

To effectively extend the vocabulary of a pLM we developed a novel pipeline using TEM seeding, masked language
modeling (MLM), and student-teacher knowledge distillation (KD) called MELD.

Firstly, instead of training a TEM from scratch for cdsBERT we expanded the TEM of ProtBERT from size 30 (normal
amino acids, special amino acids, special tokens) to 69, to include the 64 codons and 5 special tokens [32]. Instead of
initializing weights randomly we seeded all synonymous codons with the same weights from their corresponding amino
acid. Stop codon token embeddings, which do not have a corresponding amino acid, were seeded randomly.

After TEM seeding we utilize MLM to learn new vocabulary specific semantic information. MLM is the process of
randomly hiding portions of the text and then having the model “fill in the blanks,” repeating this many times [33]. The
MLM task was formatted as the following objective with a corpus of tokens U = u1, . . . , un maximizing the likelihood:

L(U) =
∑
i

logP (ui|ui−k, ..., ui−1; θ), (3)

where k is the context window of masked tokens [33], and the conditional probability P is predicted by cdsBERT with
parameters θ (We,WQ,WK ,WV , etc. ∈ θ). The output distribution of tokens was learned through the hidden or latent
space outputs H = h0, ..., hm:

h0 = UWe +Wp,

hl = transformerlayer(hl−1)∀i ∈ [1,m],

P (u) = softmax(hnW
T
e ),

where U = (u−k, ..., u−1) is the context vector of tokens, m is the number of transformer layers, and Wp is the position
embedding matrix [33]. L(U) was maximized during training by minimizing the cross-entropy between the model
output and the true label.

To learn more fine-grain and contextual information we utilized KD after MLM; a methodology that uses a contrastive
loss to compare the latent output of two models with the goal of improving the representation of the smaller or less
trained model [34, 35]. Codon sequences were fed into cdsBERT with the equivalent amino acid sequences into
a state-of-the-art pLM while aligning their numerical interpretations in space. The pLM we chose was the base
Ankh model; a highly efficient pLM that offers a state-of-the-art yet open-source biochemically-relevant latent space
representation despite its modest size [13]. We kept Ankh frozen and in half-precision with cdsBERT in half-precision
as well for expedited training.

To build an effective vector representation for contrastive loss we averaged the last hidden state over the length for BERT
and Ankh variants. Additionally, we utilized a trainable linear layer to project the 768-dimensional vector from Ankh to
a 1024-dimensional vector for the loss function. This way, we could ensure the cdsBERT latent space somewhat copied
the biochemical relevance of Ankh with the freedom to move weights in a larger vocabulary.

We chose a custom contrastive loss to enable the use of information from within the batch to reward the model when a
sample’s corresponding pair was closest in space and move embeddings away from samples that were not matching
pairs [36]. The combination of batch-wise matrix multiplication and softmax had the form:
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logits = C ×AT

codon_similarity = C × CT

amino_similarity = A×AT

targets = softmax
(

codon_similarity + amino_similarity
2

)
ycodon = argmax(targets, axis = 1)

yamino = argmax(targetsT , axis = 1)

codon_loss = −
∑
i

δ(ycodoni , i) log(softmax(logits)i)

amino_loss = −
∑
i

δ(yaminoi , i) log(softmax(logitsT )i)

loss =
codon_loss + amino_loss

2

where C was the batched codon representation, A was the amino acid representation, conducted one-hot encoding,
and n was the batch size. Using this loss strategy, we contrasted the BERT models after MLM with Ankh base using
500,000 total sequences from a random subset of our CDS data. The final models were denoted with a +; cdsBERT+
and ProtBERT+ for comparison.

2.4 Enzyme commission number prediction

EC numbers serve as a comprehensive and hierarchical numbering scheme to classify and describe enzyme-catalyzed
reactions based on their generalized function [37, 38]. This structured classification begins at a broad level and
progressively narrows to specific enzyme actions. Primary sequence data has fueled successful EC predictions using
sophisticated deep-learning techniques including pLMs [39, 40, 41, 42, 43, 44]. Thus, we used EC prediction as a
gold-standard to discern biochemically-relevant protein representations.

For EC data acquisition, we used human and mouse samples from the CCDS database. Preliminary analysis showed that
CCDS typically matched exactly to their UniProt counterpart while Ensembl sequences tended to be slightly different.
To overcome this, CCDS were matched to their UniProt counterparts, then trimmed by sequences with a single EC
number annotation whose length did not exceed 1000 amino acids. The CCDS codon sequences were processed using
cdsBERT, while their amino acid counterparts were subjected to ProtBERT for comparative analysis.

To prepare feature vectors for classification, we input the corresponding sequences to their respective model and
averaged across the length. After the full dataset had been encoded, each sample v was normalized via the mean of the
set µ and standard deviation σ, v′ = v−µ

σ , resulting in a v′ used for classification. In addition to v′, we incorporated
two prominent classification algorithms believed to be particularly efficacious for data that is hypothesized to be
well-separated: Support Vector Machines (SVMs) and K-Nearest Neighbors (KNN). SVMs operate by finding a
hyperplane that best divides a dataset into classes, making it suitable for high-dimensional and particularly separable
data [19, 45]. KNN is a non-parametric method that classifies a data point based on how its neighbors are classified,
proving effective for datasets where class boundaries are irregular [45]. We include KNN for comparison as SVM has a
small chance of resulting in a particularly good or bad fit. This shortcoming was further alleviated by cross-validation
(CV) where independent fits were used to optimize hyperparameters for the classifiers.

Labels were associated with their respective vectors either as the first EC digit or as the full class mapped to a unique
integer. We looked at first and full EC digits to give a reference frame to our resultant metrics. First EC digit is a much
easier less discriminative task and thus would result in higher metrics. Thus this comparison lets us conclude if the end
performance was data-limited given the preprocessed EC CCDS dataset size of 2629. Because of the small dataset
size, we reported the average 10-fold CV metrics as our evaluation metrics. The training and evaluation process used is
illustrated in Figure 1.

2.5 cdsBERT weight analysis

To characterize changes to the synonymous codon embeddings after training, we used a Principal Component Analysis
(PCA) plot to visualize the approximate magnitude of any movement in the reduced projected space of two principal
components [46].

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.558027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.558027
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORIGINAL RESEARCH - SEPTEMBER 16, 2023

Figure 1: Model diagram used for the MELD process and model evaluation. Stage 1: seed cdsBERT with ProtBERT-
BFD and extend the TEM with the codon vocabulary. Synonymous codons started with their corresponding amino acid
ProtBERT embedding, stop codons were randomly initialized. Stage 1 used MLM on codon sequences from CCDS and
Ensembl. Stage 2: KD with Ankh-base. Vector embeddings from the averaged last hidden state were used to train KNN
and SVM classifiers for EC number prediction.

To compare the movement of the codon embeddings, we used a novel vector comparison of the form:

σ

√∑
i

(x1i − x2i)2 −
x1x2

||x1||2||x2||2

 ,

where σ is the sigmoid function, x1 and x2 are token embeddings from two different codons, and ||x1||2 and ||x2||2
are the L2 norms of x1 and x2, respectively. By subtracting the cosine similarity from the Euclidean distance, we
quantified the angle and magnitude difference of the vectors. The sigmoid function normalized the measure between 0
and 1 for easy comparison, enabling a standardized vector difference metric that incorporates magnitude and angle in
space. We refer to this metric as the sigmoid-distance-similarity. We calculated the sigmoid-distance-similarity between
every codon and their start location in the TEM. Stop codons were excluded from this analysis as they were initialized
randomly. We refer to this as the movement list.

To determine embedding movement correlations we compared the movement list to three lists derived from the codon
usage dataset [19]:

• Average usage list: The average codon usage across diverse phylogeny, preserving generalized conserved
codon usage mechanisms.

• Kingdom ranking list: A list of codons and a corresponding score depicting how influential that codon’s
frequency is in predicting the phylogenetic identity of a sample.

• DNA ranking list: A list of codons and a corresponding score depicting how influential that codon’s frequency
is in predicting the DNA type (origin) identity of a sample.
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Because the feature ranking analysis of the CUF dataset constructed two individual rankings based on lasso and random
forests, we needed a unified heuristic to construct a single list. We extended the feature ranking by using a strategic
voting scheme to combine feature ranking outputs from the lasso, random forests, extreme gradient boosting, mutual
information, and recursive feature elimination. The result of the ensemble was a single list of codons and scores for
kingdom ranking and DNA ranking.

We aimed to decipher potential relationships between the movement list and three distinct variables: average usage,
kingdom, and DNA lists. To robustly determine the nature and strength of these associations, we employed both
Pearson’s and Spearman’s correlation analyses.

During our training stages, we were curious how MLM and KD affected the weights more broadly than just the token
embeddings during vocabulary extension. To analyze this, we measured the average MSE between these weight types
in ProtBERT vs. cdsBERT to look at MLM and cdsBERT vs. cdsBERT+ to look at KD.

3 Results

In the initial stages, cdsBERT’s performance, following MLM, lagged behind the base ProtBERT model; cdsBERT
achieved an accuracy of 62.4% versus ProtBERT’s 74.7% on full EC numbers using KNN, as detailed in Table 2.
Given the substantial computational demands of MLM, and with our dataset’s extensive size (approximately 9.5 million
sequences) it was not feasible to complete even a single epoch of training. This led us to surmise that cdsBERT might
be undertrained with its new vocabulary, resulting in an inferior latent space representation.

To ascertain whether the suboptimal cdsBERT performance was due to inadequate training or inherent to the new
vocabulary, we applied KD to cdsBERT, producing cdsBERT+, and similarly applied KD to ProtBERT, yielding
ProtBERT+. The results were promising: cdsBERT+ accuracy increased by over 16.3% to 78.7%, outperforming the
original ProtBERT. In contrast, ProtBERT+ improved only 3.4% to 78.1%. Notably, cdsBERT+ beat ProtBERT+ in all
KNN metrics and SVM accuracy. Further KD training with either Ankh-base or Ankh-large did not enhance cdsBERT+
or ProtBERT+ performance. This implies that both models may have approached their performance ceilings on our EC
dataset, potentially constrained by their architecture and size.

For the first EC digits, cdsBERT+ and ProtBERT presented comparable results, with cdsBERT+ excelling in SVM
performance and ProtBERT in KNN. However, ProtBERT+ slightly outperformed both. The full results are in Table 2
with Ankh-base added for comparison. We used the average last hidden state instead of the [CLS] for an aggregate
representation in training and evaluation as a fair comparison because when using the [CLS] token or pooler output with
ProtBERT it performed significantly worse. The pooler output used was standard from the Hugging Face transformers
package, a dense linear layer and the Tanh activation function [32]. We are unsure exactly why ProtBERT is not robust
to this addition, but random or previously learned initialization of the pooler output severely degraded ProtBERT’s
performance on EC prediction after KD. The pooler output with cdsBERT performed nearly the same as the averaging
scheme.

Our model weight MSE analysis (Figure 2) offers insight into cdsBERT’s significant performance leap upon transition-
ing to cdsBERT+ (Figure 2B). We hypothesized that the MLM phase would predominantly refine the TEM responsible
for semantic information, whereas KD would optimize attention layers for contextual learning. Our results confirmed
this to an extent. During the vocabulary extension in MLM, the TEM underwent more extensive updates relative to
other layers, based on the training we conducted (Figure 2A). In contrast, KD primarily influenced the linear layers,
followed by the TEM and attention layers (Figure 2B). These findings underline the overall efficacy of MLM and KD
in enriching semantic and contextual understanding during vocabulary expansion in pLM vocabulary using MELD.
Whereas these have been used together in previous language models for the creation of distilled models, we observed
significantly greater effects of KD following MLM.

A deeper dive into the weight modifications revealed intriguing dynamics. Upon training, synonymous codons
exhibited distinct shifts, clustering around their native amino acid embeddings from ProtBERT. The PCA plot (Figure
3AB) presents this in a 2D space, where codons are labeled based on their corresponding amino acid identity and
physiochemical attributes. Positive amino acid groupings are clustered tightly along PC1 while negative ones are
clustered along PC2. Neutral and polar amino acids are mostly placed on the lower half of PC2 with polar amino
acids are largely constrained to the right side of PC1. Importantly, the three stop codons have clustered together
despite being initialized randomly. Although synonymous codon shifts appear slight within the full 2D PCA projection,
closer examination of the six synonymous serine codons (Figure 3A inset), for example, reveals unique groupings and
deviations among the codons, suggesting unique semantic information and possible usage patterns have emerged from
the CDS samples.
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CV Scores cdsBERT ProtBERT cdsBERT+ ProtBERT+ Ankh
Full
KNN accuracy 0.624 0.747 0.787 0.781 0.797
KNN precision 0.445 0.563 0.602 0.591 0.619
KNN recall 0.463 0.585 0.624 0.613 0.641
KNN F1 0.449 0.569 0.606 0.598 0.626
SVM accuracy 0.695 0.771 0.794 0.789 0.806
SVM precision 0.506 0.60 0.606 0.622 0.634
SVM recall 0.536 0.628 0.628 0.646 0.655
SVM F1 0.515 0.609 0.612 0.629 0.641
First
KNN accuracy 0.793 0.931 0.930 0.935 0.946
KNN precision 0.728 0.895 0.890 0.887 0.926
KNN recall 0.690 0.865 0.861 0.872 0.889
KNN F1 0.697 0.871 0.867 0.871 0.900
SVM accuracy 0.857 0.941 0.942 0.944 0.955
SVM precision 0.856 0.936 0.942 0.943 0.958
SVM recall 0.719 0.847 0.852 0.855 0.876
SVM F1 0.761 0.878 0.883 0.887 0.903

Table 2: EC prediction of using KNN, SVM and the protein vector representations from various models. Reported
metrics are averaged from 10-fold cross validation. Results for full EC numbers mapped to unique integers are on top
while the results for just predicting the first EC digit are on the bottom. The best performing result from our work is
bolded. The initial cdsBERT after MLM performed poorly after MLM but increased dramatically after KD training,
surpassing the original ProtBERT weights. Most importantly, cdsBERT+ performed slightly higher than ProtBERT+ on
full EC numbers. Results for Ankh-base are shown for comparison, italicized because Ankh performs better than our
architecture variants.

Figure 2: (A) MSE measurements of cdsBERT seeded with ProtBERT after MLM illustrates that the main update
during MLM was of the TEM, learning semantic information. (B) The same analysis between the MLM and KD
weights (cdsBERT+) shows that while the TEM was updated during KD, much of the fine-tuning was broadly in the
space of contextual understanding via intermediate linear layers and attention.

To comprehensively quantify codon shifts within the token embedding space, we calculated the sigmoid-distance-
similarity for every pair of embeddings (Figure 4). In this distogram, purple represents a larger shift distance while
orange denotes a closer distance. Each element on the plot corresponds to the metric applied between the ith and jth
codon embedding. The diagonal, showing a perfect similarity, indicates that a codon embedding is perfectly similar to
itself. Along the diagonal, 21 distinct regions are evident, with each corresponding to synonymous codons. Notably,
this representation strongly suggests that synonymous codons evolved independently during the training phase; if they
had moved in unison each region would be a consistent dark orange shade.

To interpret potential causes that underlie the movement of synonymous codons, we turned to a previously published
codon usage frequency (CUF) dataset [19]. This dataset contains each of the 64 codon frequencies of a nucleotide
sample (summing to 1) and corresponding labels of species, relative phylogenetic identity, and organelle of origin. With
approximately 13,000 CUFs across wide phylogeny, this dataset enabled correlation analysis of our codon embeddings
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Figure 3: (A) PCA plot illustrating the token embeddings of cdsBERT+ projecting from 1024 to two-dimensional space.
Codons are grouped according to their corresponding amino acid properties. (B) Same as A but without label clutter,
larger points, and added opacity for easy visualization. (C) Randomized embeddings are shown to get a sense of how
well the groupings are. Codon embedding points in all subplots are scaled by the weight of their corresponding amino
acids in Daltons.

to potentially explain movement patterns throughout MELD. We used the kingdom-set of the CUF data to split the
phylogenetic classes into virus, bacteria, archaea, animals, and plants, and DNA type classes into nuclear, mitochondrial,
and chloroplast [19]. Trends of the codon shifts in movement, kingdom ranking, DNA ranking, and average usage, as
defined by Pearson’s or Spearman’s correlations are shown in Figure 5. Notably, a medium negative correlation existed
between codon movement and its average usage, suggesting codons used more frequently were less prone to shifting
away from the native amino acid embedding during training. This relationship is intuitive, as the higher frequency
codons should most resemble their native amino acid counterparts since amino acids in sequences are preferentially
from this subset.

The only other statistically significant correlation was the small positive relationship between average usage and DNA
ranking. Thus, the more likely a codon is to be used the more likely it is differentially used in different organelles, such
as the nucleus, mitochondria, and chloroplast. These two statistically significant correlations imply that there should be
a relationship between the embedding movement and codon influence on DNA type prediction, but this relationship is
weak and not significant. The other weak correlations are also intuitive, namely 1) usage and influence on kingdom
prediction were positively correlated, 2) influence on DNA and kingdom were positively correlated, and 3) embedding
movement and kingdom ranking were effectively not correlated.
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Figure 4: Distogram comparing the distance of each codon embedding to every other one, using the sigmoid-distance-
similarity metric. Purple signifies greater distance and orange is closer. Each entry is the metric applied between the ith
and jth codon embedding, where the diagonal is perfect similarity between one codon embedding and itself. Around the
diagonal are 21 distinct segments, each corresponding to synonymous codons.
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Figure 5: Statistical correlation measurements between all combinations of reported codon phenomena. The four lists
of codons and corresponding measures are embedding movement, average usage over phylogeny, feature ranking for
phylogenetic prediction, and feature ranking for DNA type prediction.
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4 Discussion

Recent studies into codon usage bias have cast light on its significance, especially in scenarios where the fundamental
structure of the resulting protein is impacted. This work accentuates the necessity for codon awareness in achieving
pLMs that are truly biologically relevant. cdsBERT is emblematic of this exploratory step in pLM vocabulary, steering
toward a more informed and enriched language model.

To establish cdsBERT, we demonstrated a novel and efficient pipleine for extending the vocabulary of pLMs termed
MELD. We suspect that by leveraging new semantic and contextual information from MLM and KD natural language
models could be compared and extended for greater proficiency in multiple languages even without intuitive TEM seed-
ing. Furthermore, the potential for other chemical language model extensions where there is translatable nomenclature
is evident.

For full EC number prediction, the addition of the codon vocabulary increased the overall performance, even when
ProtBERT was further trained with KD. However, as these performance gains were small, we only expect a slight
performance increase from switching vocabularies. Despite codon usage alone affecting post-transcriptional modifica-
tions, mRNA structure, protein structure, influencing the speed of translation, and enabling phylogenetic and DNA type
prediction, the vast majority of protein information can be summarized with the amino acid vocabulary. Of course, in the
limit, a well-trained pLM would not be hindered by the codon vocabulary as the model could learn to ignore the codons
and simply translate to amino acids if information encoded within codons was truly never helpful. A well-trained model
could even ignore or not ignore this additional information depending on the context needed. Therefore, whereas the
precise amount of information added by codon sequences over amino acid counterparts is yet unknown, we conclude
there is an addition of information.

The correlation analysis used to understand possible reasons for codon movement in the embedding space yielded
intuitive but mostly negligible relationships. However, the correlation between average codon usage and codon
embedding movement was highly statistically significant with a medium negative relationship (Figure 5). This
showcases the ability of cdsBERT to capture extremely generalized codon-based information due to its exposure to
vast phylogeny. Meaning, the general trends in usage, when averaged across phylogeny, are at a minimum captured in
the TEM. This finding is exciting, demonstrating potential for a well-trained codon-based pLM holding general trends
within the TEM and contextualizing sequence properties based on the codon usage of a given input. This is similar to
previous applications of codon bias based on single nucleic acid samples instead of the averages of whole genomes, for
example, horizontal gene transfer and open reading frame prediction [19]. With this in mind, we believe the correlations
with kingdom and DNA ranking would increase dramatically if cdsBERT was fine-tuned on a specific phylogeny,
learning more specific usage patterns instead of generalized ones. Thus, this correlation analysis has potential in serving
as a metric to determine if a codon-based model has been fine-tuned effectively.

Our studies highlight the pressing need for meticulous CDS mappings to expansive protein sequence repositories,
such as UniProt. This would enable the creation of vast sequence databanks conducive to self-supervised learning, as
well as curated datasets for evaluating the biochemical significance of the derived latent spaces. Looking forward, the
momentum generated by this research underscores the importance of forging a foundational model based on extended
vocabularies. Such models, drawing inspiration from successful endeavors like ESM or Ankh, could set the benchmark
for future pLMs.

Given an adequate data pool, a codon-centric foundation model could undergo fine-tuning akin to contemporary pLMs.
This could encompass a spectrum of annotation tasks, ranging from EC and gene ontology categorization, to predicting
structures and interactions. On the side of generative models, possibilities span areas like protein design. Moreover, a
foundation model’s versatility could be stretched to consider organism-specific codon biases, particularly in industrial
contexts for protein and peptide synthesis; enabling more efficient and effective industrial translation [47, 48].

In conclusion, cdsBERT, reiterates the profound potential of utilizing codon awareness. By emphasizing the balance
between fundamental amino acid information and the nuanced codon details, we hope to build awareness for the
addition and use of CDS data in large protein repositories.

5 Data and model availability

The data used for training is available through public databases ncbi.nlm.nih.gov/projects/CCDS/ and ensembl.
org/info/data/biomart. The weights of cdsBERT+ are available through Hugging Face at huggingface.co/
GleghornLab/cdsBERT.
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