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Abstract

In this study, we investigate the variational princi-
ple for neural symplectic forms, thereby design-
ing the variational integrators for this model. In
recent years, neural networks models for physi-
cal phenomena have been attracting much atten-
tion. In particular, the neural symplectic form
is a method that can model general Hamiltonian
systems, which are not necessary in the canoni-
cal form. In this paper, we make the following
two contributions regarding this model. Firstly,
we show that this model is derived from a varia-
tional principle and hence admits the Noether the-
orem. Secondly, when the trained models are used
for simulations, they must be discretized using
numerical integrators; however, unless carefully
designed, numerical integrators destroy physical
laws. We propose variational integrators for the
neural symplectic forms, which are numerical in-
tegrators that preserve the laws of physics.

1. Introduction
In recent years, research on deep learning techniques to for-
mulate models from observed data of physical phenomena
have been attracting much attention. The techniques include
the Lagrangian neural network (Cranmer et al., 2020) and
the Hamiltonian neural network (Greydanus et al., 2019).
In particular, following the Hamilton mechanics, the Hamil-
tonian neural network(HNN) uses the following Hamilton
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equation for modeling the dynamics:

d

dt

(
q
p

)
=

(
O I
−I O

)
∇H, (1)

where q is the generalized coordinates and p is the gener-
alized momenta. The Hamiltonian H is the total energy
of the system and this function is learned from the data in
HNN. By employing the equation of this form as the model,
HNN ensures the energy conservation law, thereby improv-
ing the long-term prediction. Nonetheless, the above form,
which is called the canonical form of the Hamilton equa-
tion, is only satisfied in the Darboux coordinates, that is, the
generalized coordinate and the generalized momenta. This
means that the training data for HNN is usually unavail-
able since the analytic form of the generalized momenta
is in general unknown without the detailed knowledge on
the target system. To overcome this limitation, the neural
symplectic form (NSF) was proposed (Chen et al., 2021).
NSF uses the coordinate-free expression of the Hamilton
equation and can be trained by using the observation data in
general coordinate systems.

We make two contributions to this model. Firstly, we show
that this model is derived from the variational principle. In
NSF, the 1-form that derives the symplectic 2-form is mod-
eled by neural networks. It was explained in Chen et al.
(2021) that in this way, models other than Hamiltonian sys-
tems would not be explored, and hence this model is trained
efficiently. However, what is more important is that this
model always yields Hamiltonian systems, which implies
that a variational principle exists in this model. The vari-
ational principle is a fundamental principle of analytical
mechanics. In fact, most of the important physical laws are
derived from this principle. For example, the Noether theo-
rem, which states that if the system has a symmetry there
exists a conservation law corresponding to this symmetry,
follows from the variational principle. We show that a vari-
ational principle for NSF certainly exists, and this model
admits the Noether theorem.

Meanwhile, a primal application of the deep physical mod-
els is physical simulations, and to perform the simulations,
these models must be discretized. However, the applica-
tion of typical numerical integrators destroys the Hamil-
ton structure of the models along with the physical prop-
erties such as the energy conservation law (Hairer et al.,
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2013). The discrete-time models have been considered, as
such models do not require further discretization for simula-
tions (see, e.g., Matsubara et al. (2020); Saemundsson et al.
(2020); Desai & Roberts (2020); Xiong et al. (2020); Jin
et al. (2020); Santos et al. (2022); Offen & Ober-Blöbaum
(2022).) On the other hand, discrete-time models have a
disadvantage of being unable to be used in the simulations
with time steps other than that used in the training process.
As a result, studies on the methods to discretize continuous-
time deep physical models for simulation are important.
In addition, such methods are also useful for designing
discrete-time models.

The numerical integrators that preserve the mechanical struc-
ture are called the structure-preserving integrators or the
geometric integrators. Among them, symplectic integrators
are the most important. They are designed so that the sym-
plectic form is preserved, thereby preserving the physical
properties. However, most symplectic integrators are de-
signed for the Hamilton equation of the canonical form, and
they may not be available for NSF because the Hamilton
equations of the neural symplectic forms are not canoni-
cal. Another way to design a symplectic integrator is the
variational integrator for Lagrangian mechanics (Marsden
& West, 2001). By discretizing the variational principle,
the variational integrator discretizes the Euler–Lagrange
equation while preserving various conservation laws. In this
paper, we show that this integrator is available for NSF.

The main contributions of this paper include:

• Finding a variational principle for NSF, which implies
that the Noether theorem holds for this model.

• Developing variational integrators for NSF, which are
numerical integrators that admits the energy conserva-
tion law and the discrete Noether theorem.

2. Related work
The related work includes the following studies: as the
discrete-time models mentioned above, there have been
many studies of discrete-time models, such as Matsubara
et al. (2020); Saemundsson et al. (2020); Desai & Roberts
(2020); Xiong et al. (2020); Jin et al. (2020); Santos et al.
(2022); Offen & Ober-Blöbaum (2022). In addition, other
methods such as (Rath et al., 2021) using Gaussian process
regression. However, to the best of the authors’ knowledge,
there has been no research on the variational principle or
variational integrators for neural network models that repre-
sent the Hamilton equation.

3. Variational Integrator
The variational integrator was proposed by West–Marsden
as a discretization method for the Euler–Lagrange equa-

tion (Marsden & West, 2001). In the Lagrangian mechanics,
the Euler–Lagrange equation, which is the equation of mo-
tion, is derived from the variational principle (Abraham &
Marsden, 2008). In addition, most properties, such as the
energy conservation law and the Noether theorem, of this
equation are also derived from this principle (Marsden &
Ratiu, 2013). The variational integrator uses the discrete
variational principle to derive numerical integrators, thereby
preserving the physical properties.

More precisely, given a Lagrangian L(q, q̇), the Euler–
Lagrange equation is derived by computing the variation of
the action integral

∫
L(q, q̇)dt. Instead of computing the

variation of this integral, to derive the variational integra-
tor, the variation of the action sum

∑
n Ld(q

(n), q(n+1))∆t
is typically computed. ∆t is the time step size and q(n)

is an approximation of q(n∆t). Ld(q
(n), q(n+1)) is any

discretization of the Lagrangian L(q, q̇). This discrete vari-
ational calculus gives a discrete approximation of the equa-
tions of motion, which is used as a numerical integrator. It is
known that numerical integrators by this process admit the
energy conservation law and the discrete Noether theorem.
See Marsden & West (2001) for details.

4. Neural Symplectic Forms
Sympletic 2-Form on manifolds In this section, we briefly
explain NSF. In terms of geometry, the Hamilton equation is
defined as a flow on a symplectic manifold, which is a pair
of a manifold and a symplectic 2-form. Because a flow is
defined in a coordinate-free form, the Hamilton equation can
be defined in a coordinate-free manner as well (Abraham
& Marsden, 2008; Marsden & Ratiu, 2013). NSF uses this
coordinate-free form of the Hamilton equation.

Suppose that the phase space is M = R2N . The differ-
ential 0-form on R2N denotes the function mapping from
R2N to R. The differential 1-form on R2N is a linear func-
tion defined at each point u ∈ R2N , and it maps a vector
v ∈ R2N to a real number. In general, because any linear
function from v ∈ R2N to R can be expressed as an inner
product with a vector, any differential 1-form can be ex-
pressed as a vector field depending on u. For differential
forms, a differential operation called the exterior derivative
d is defined. The exterior derivative maps a differential
k-form to a differential (k + 1)-form. This operator has a
remarkable property: dd = 0. A differential 2-form ω is
a skew-symmetric bilinear function ω : R2N × R2N → R
that is defined at each u ∈ R2N . Using an appropriate
matrix, any skew-symmetric bilinear function can be ex-
pressed as ωu(v1, v2) = v1

TWuv2, u ∈ R2N , (v1, v2) ∈
R2N ×R2N . where the subscript u denotes that ω or the ma-
trix W depends on u. Some definitions related to differential
2-form are as follows:

Definition 4.1. A differential form ω is closed if dω =0.
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Definition 4.2. A differential 2-form ω is non-degenerate if
the skew matrix associated with ω is non-degenerate.

Definition 4.3. A symplectic 2-form is a closed and non-
degenerate differential 2-form.

Using the above, the Hamilton equation can be expressed as

du

dt
= XH , ω(XH , v) = dH(v) for all v ∈ R2N . (2)

By replacing the 2-form ω with the skew-symmetric matrix,
this equation becomes

du

dt
= XH , XH

TWv = v · ∇H ⇔ du

dt
= W−T

u ∇H.

Neural Symplectic Form The equation (2) holds regard-
less of the coordinate system. Therefore, by using (2) as a
model, as long as the given data is described by the Hamilton
equation, it is possible to learn both the symplectic 2-form
and the Hamiltonian that define the Hamilton equation, no
matter what coordinate system the data is given in.

To use (2) as a model, the symplectic 2-form or the ma-
trix W must be learned from data. Although a differential
2-form corresponds to a skew-symmetric matrix, not all
skew-symmetric matrices define a symplectic 2-form; sym-
plectic 2-forms must be closed; in other words, it must be
in Ker d. The 2-form modeled by NSF is guaranteed to be
closed in the following way. Actually, according to the de
Rham theorem, when the phase space is R2N , it holds that
Im d = Ker d. The difference between these two spaces
Im d/Ker d is called the cohomology space. The de Rham
theorem states that the cohomology space is isomorphic to
the homology space, which is roughly a space of spatial
holes. Because R2N contains no holes, the homology space
must vanish, and hence Im d = Ker d holds. Even when
the phase space has a hole, in many cases the space can be
embedded in a large Euclid space without holes, and the
model would work on such a space.

For this reason, instead of learning it directly, the symplectic
2-form is obtained by learning the differential 1-form θ
and computing its exterior derivative ω̂ = dθ by automatic
differentiation. By doing so, the property dd = 0 of the
exterior derivative guarantees that the learned 2-form is
closed. The following is the model of NSF:

ω̂ = dθNN,
du

dt
= X̂HNN

,

ω̂(X̂HNN
, v) = dHNN(v) for all v ∈ R2N . (3)

As mentioned above, the 1-form θNN and the 2-form ω̂ can
be represented as a vector YNN and a matrix Ŵu. Thus the
model expressed in terms of vectors and a matrix, without

using the differential forms is given as

du

dt
= Ŵ−T

u ∇HNN(u),

(Ŵu)i,j =
∂(YNN)i
∂uj

− ∂(YNN)j
∂ui

.
(4)

5. Variational principle for neural symplectic
forms

In NSF, skew-symmetric matrices that do not correspond
to symplectic forms are not explored. Hence, in Chen et al.
(2021) it is explained that this model can be trained much
more efficiently than learning general skew-symmetric ma-
trices; however, more important fact is that the model (3) is
always Hamiltonian and hence there should be a variational
principle that derives this model.

As is well-known the Hamilton equation (1) in the canonical
form is derived from the variational principle using the
following action integral (Abraham & Marsden, 2008):∫ T

0

(p · q̇ −H(q, p)) dt T ∈ R. (5)

We investigate a similar principle for the NSF. First, we
focus on the first term pdq of the action integral (5). Tak-
ing the exterior derivative of it gives the symplectic form:
d(pdq) = −dq ∧ dp, which is similar to −θNN in NSF.
Therefore, instead of (5), we should consider the following
integral: ∫ T

0

(−θNN(u̇)−HNN) dt, (6)

In fact, the variational principle associated with this integral
derives NSF.

Theorem 5.1. The model (3) is derived by requiring the
derivative of the action integral (6) to vanish with u(0) and
u(T ) fixed.

Proof. Roughtly, ignoring the higher-order terms, for any
∆u, we get∫ T

0

(−θNN(u̇)− θNN(u̇+∆u̇)

−HNN(u+∆u)) dt−
∫ T

0

(−θNN(u̇)−HNN) dt

=

∫ T

0

[(
u̇T (

∂θNN

∂u

T

− ∂θNN

∂u
)− ∂HNN

∂u

)
∆u

]
dt.

For the right-hand side to vanish for any ∆u, u̇T (∂θNN

∂u

T −
∂θNN

∂u )− ∂HNN

∂u must vanish, which results in (4). See Ap-
pendix A for details.
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This theorem means that the laws of physics, particularly,
the Noether theorem holds for NSF. Therefore, if the action
integral (3) admits a symmetry, NSF has a corresponding
conservation law.

6. Variational integrators for neural
symplectic forms

Note that all quantities needed to define the action integral
(6) are available in the NSF model (3); hence the action
integral (6) can be used to derive variational integrators.

Although any discretization can be employed, we discretize
the above action integral (6), for example, as

N∑
n=0

(
−θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−HNN(
u(n+1) + u(n)

2
)

)
∆t, (7)

where ∆t is the time step size and u(n) is an approximation
of u(n∆t). θNN(v1; v2) denotes the linear function v1 ∈
R2N 7→ θNN(v1; v2) ∈ R at each point v2 ∈ R2N .

Taking the discrete variation of the action sum (7) with
respect to the infinitesimal perturbations ∆u(n),∆u(n+1),
and considering any variation to be zero, we require the
following equality:

1

∆t

(
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−D1θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

)
+

1

2

(
−D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−DHNN(
u(n+1) + u(n)

2
)

−D2θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−DHNN(
u(n) + u(n−1)

2
)

)
= 0,

where DHNN is the derivative of the neural network HNN,
and D1θNN and D2θNN are derivatives with respect to the
first and second variables of the neural network θNN, respec-
tively. See Appendix B for the detailed derivation of the
above numerical scheme.

7. Numerical Experiments
We tested the proposed method in the following numerical
experiment. Firstly, we trained the NSF on a Hamiltonian
system, a double pendulum (see Appendix C for details),

(a) The Heun method (b) Variational integrator

Figure 1. Simlulated orbits. Each component of u(t) =
(θ1(t), ϕ1(t), θ2(t), ϕ2(t)) is represented: blue (θ1), orange (ϕ1),
green (θ2), and red (ϕ2).The horizontal axis represents the time
and the vertical axis represents the values of the variables.

(a) The Heun method (b) Variational integrator

Figure 2. The evolution of the energy predicted by the proposed
and the Heun method. The horizontal axis represents time and the
vertical axis represents energy.

using the code and data published in Chen et al. (2021)1.
The Hamiltonian HNN and the 1-form θNN were modeled
by using a neural network with two hidden layers of 200
units and the tanh activation function. We trained the model
using the Adam optimizer with a learning rate of 10−3 for
2000 iterations. All computations are performed by using
NVIDIA A100.

Next, the model was discretized using the proposed method.
The proposed method is symmetric and hence has a second-
order accuracy (Hairer et al., 2013). Therefore, we com-
pared it with the Heun method, which also has a second-
order accuracy. The time step ∆t was set to 0.04. The
calculated trajectories and the energies learned by the neural
network are shown in Figures 1 and 2, respectively. The
trajectories are not significantly different; in fact, NSF pre-
serves the laws of physics through the variational principle,
and hence even the Heun method yields good results. How-
ever, the energy graphs show that the energy by the Heun
method gradually increases, while that by the proposed
method oscillates, neither diverging nor decaying. This
confirms that the proposed variational integrator does not
destroy the energy conservation law.

8. Concluding Remarks
In recent years, the neural network modeling of physical
phenomena has been widely studied. Among them, NSF

1https://github.com/YuhanChen0805/neural_
symplectic_form (MIT License)

https://github.com/YuhanChen0805/neural_symplectic_form
https://github.com/YuhanChen0805/neural_symplectic_form
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is a practical method in that the model can be trained from
data given in arbitrary coordinate systems. In this study, we
have investigated the variational principle that derives NSF.
This shows that NSF admits the physical properties, particu-
larly the Noether theorem. In addition, taking the variation
of the discretized action integral expressed by the neural
networks, we have proposed variational integrators for NSF.
The numerical experiment has confirmed the conservation
of energy. Meanwhile, only the simplest action sum is used
in this study. Future work includes the development of more
accurate numerical integrators by discretizing the action
integral in a more sophisticated way.
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A. The variational principle for the neural
symplectic forms

We consider the variation of the action integral (6) of NSF
with infinitesimal perturbations ∆u with respect to u with
the both ends fixed ∆u(0) = ∆u(T ) = 0:

∫ T

0

(−θNN(u+∆u) · (u̇+∆u̇)−HNN(u+∆u)) dt

−
∫ T

0

(−θNN(u) · (u̇)−HNN(u)) dt.

Applying the Taylor expansion to the above equation, we
get

∫ T

0

(
−θNN(u) ·∆u̇− ∂θNN

∂u
∆u · u̇− ∂HNN

∂u
∆u

)
dt,

where higher-order terms of ∆u are omitted. Next, by the
integration by parts we obtain

∫ T

0

(
d

dt
θNN(u) ·∆u− u̇T ∂θNN

∂u
∆u− ∂HNN

∂u
∆u

)
dt,

where we used ∆u(0) = ∆u(T ) = 0. Then, from the chain
rule, we have

∫ T

0

[(
u̇T (

∂θNN

∂u

T

− ∂θNN

∂u
)− ∂HNN

∂u

)
∆u

]
dt.

For this variation to be zero for any ∆u, the following
equation must be satisfied

u̇T (
∂θNN

∂u

T

− ∂θNN

∂u
)− ∂HNN

∂u
= 0

⇐⇒ (
∂θNN

∂u

T

− ∂θNN

∂u
)T u̇ =

∂HNN

∂u
.

It follows that

u̇ = W̃−⊤
u ∇HNN(u), (W̃u)i,j =

∂(θNN)i
∂uj

− ∂(θNN)j
∂ui

,

which is same as the equation of NSF (4).

B. Derivation of the variational integrator for
the neural symplectic forms

We compute the variation of discretized action integral (7)
with respect to the infinitesimal perturbations ∆u(n) of u(n)

under the assumption that ∆u(0) = ∆u(N) = 0:

N∑
n=0

(
−θNN(

u(n+1) +∆u(n+1) − u(n) −∆u(n)

∆t
;

u(n+1) +∆u(n+1) + u(n) +∆u(n)

2
)

−HNN(
u(n+1) +∆u(n+1) + u(n) +∆u(n)

2
)

)
∆t

−
N∑

n=0

(
−θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−HNN(
u(n+1) + u(n)

2
)

)
∆t.

Applying the Taylor expansion to the 1-form θNN and the
Hamiltonian HNN, we get

N∑
n=0

(
−D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

∆u(n+1) −∆u(n)

∆t

−D2θNN(
u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)
∆u(n+1) +∆u(n)

2

−DHNN(
u(n+1) + u(n)

2
)
∆u(n+1) +∆u(n)

2

)
∆t,

where DHNN is the derivative of HNN; D1θNN and D2θNN

are derivatives with respect to the first and second variables
of the θNN, respectively. The higher-order terms of ∆u(n)’s
are omitted. Since θNN is a 1-form, θNN defines a linear map
that maps a vector v to a real number θNN(v;u) for each u.
Because this is a linear map, there exists a vector θ⃗NN(u)

such that θNN(v;u) = θ⃗NN(u) · v. Note that although θ⃗ is a
linear map with respect to the vector v, θ⃗ can be nonlinearly
dependent on u. By using this expression, D1θNN and
D2θNN are given as

D1θNN(v;u) =
∂

∂v
θ⃗NN(u) = θ⃗NN(u)

D2θNN(v;u) =
∂

∂u
θ⃗NN(u) · v = JT v,

where J is the Jacobian matrix: J = ∂θ⃗NN

∂u .
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Rearranging the above equation, we get

N∑
n=0

[(
1

∆t
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−1

2
D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−1

2
DHNN(

u(n+1) + u(n)

2
)

)
∆u(n)

]
∆t

+

N+1∑
n=1

[(
− 1

∆t
D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−1

2
D2θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−1

2
DHNN(

u(n) + u(n−1)

2
)

)
∆u(n)

]
∆t.

By using the assumption that the both ends are fixed
∆u(0) = ∆u(N) = 0, the second term can be rewritten
as:

N+1∑
n=1

[(
− 1

∆t
D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−1

2
D2θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−1

2
DHNN(

u(n) + u(n−1)

2
)

)
∆u(n)

]
∆t

=

N∑
n=0

[(
− 1

∆t
D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−1

2
D2θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−1

2
DHNN(

u(n) + u(n−1)

2
)

)
∆u(n)

]
∆t.

We thus obtain

N∑
n=0

{[
1

∆t

(
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−D1θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

)
+
1

2

(
−D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−DHNN(
u(n+1) + u(n)

2
)

−D2θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−DHNN(
u(n) + u(n−1)

2
)

)]
∆u(n)

}
∆t.

By requiring the variation with respect to any ∆u(n) to be

zero, we get

1

∆t

(
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−D1θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

)
+

1

2

(
−D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−DHNN(
u(n+1) + u(n)

2
)

−D2θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−DHNN(
u(n) + u(n−1)

2
)

)
= 0,

which is the proposed variational integrator.

C. The equation of motion of the double
pendulum and the necessity of the neural
symplectic forms

In this section, we show the equation of the double pen-
dulum used in the experiment. We also explain why it is
difficult to learn this equation with a Hamiltonian neural
network and why NSF is necessary.

The equation of the double pendulum used in the experiment
is as follows

dθ1
dt

= ϕ1,
dθ2
dt

= ϕ2,

dϕ1

dt
=
(
g(sin θ2 sin(θ1 − θ2)−

m1 +m2

m2
sin(θ1))

− (l1θ
2
1 cos(θ1 − θ2) + l2θ

2
2) sin(θ1 − θ2)

)
/l1(

m1 +m2

m2
− cos2(θ1 − θ2)),

dϕ2

dt
=
(g(m1 +m2)

m2
(sin θ1 cos(θ1 − θ2)− sin(θ2))

− (
l1(m1 +m2)

m2
θ21 + l2θ

2
2 cos(θ1 − θ2)) sin(θ1 − θ2)

)
/l2(

m1 +m2

m2
− cos2(θ1 − θ2)).

This equation can be rewritten into the standard Hamiltonian
equation by using generalized momentum; however, the
analytic expression of the generalized momentum is given
by the following very complex expression

p1 = (m1 +m2)l
2
1ϕ1 +m2l1l2ϕ2 cos(θ1 − θ2),

p2 = m2l
2
2ϕ2 +m2l1l2ϕ1 cos(θ1 − θ2).

Without detailed prior knowledge, such an expression can-
not be known in advance; however, the Hamiltonian neural
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network assumes the canonical form of the Hamilton equa-
tion and hence requires the generalized momenta as data.
Hence, the Hamiltonian neural network cannot be applied
to learning the dynamics of which the generalized momenta
are unknown from real data.


